Alexander Alekseenko, Northridge, USA

Constrained Evolution and
Differential Boundary

Conditions

(The sand box for a young
numerical relativist)



Proposed questions

e How do we define constrained evolution?

e How many boundary conditions are needed for constrained
evolution?

e Can there be boundary conditions other than Neumann and
Dirichlet?

e How energy estimates motivate boundary conditions?



What is constrained evolution?

O?u; = &’ 0;u;

8juj = 0
Bfuz = 8j8juz- 8t2uz - 8j8ju7;
8jUj = 0 8ju]' = 0
+ full set of ID compatible ID
+ full set of BD compatible BD

overdetermined hope for constra-
Int preservation

atzuz _ 8j8jui
— Biajuj

8juj = 0

+ compatible 1D

+ 777 many BD

well-posed 7?77



The 1D example
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8tu—3wu

How many boundary conditions? (free evolution)
(D.Arnold, N.Tarfulea, A.Alekseenko)

e Consider the constraint quantity C' = 0,.u.
e Notice that C satisfies the wave equation 9?C' = 9*C.

e Require either or

C(a)=C(b) =0 0,C(a) = 0,C(b) =0

dyu(a) = d,u(b) =0 O*u(a) = &%u(b) = 0
O7u(a) = 0*u(b) =0
u(a) = u(b) =0



The 1D example
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How many boundary conditions? (free evolution)
(G.Calabrese, J. Pullin, O. Sarbach, M. Tiglio, O. Reula)

e Consider the constraint quantity C' = 0,.u.
e Notice that C satisfies the wave equation 9?C' = 9*C.
e Require, for example,

0,C(a) =0, C(b) =0
O?u(a) = 0, O,u(b) =0
d7u(a) = 0,

u(a) = ug(a)t + uq(a)



The 1D example
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o, u =20
Needs no boundary conditions!
Indeed:
e Replace with

Btzu =0

o, u =20

e Integrate (2) from any consistent initial data:

u(x,t) = ug(x)t + uq(x), O, ug = O,u; =

(1)

(2)



Vector wave equation (constrained evolution)

I

thuz — ajajuz- X// (3)
N
Bjuj =0 &Q

How many boundary conditions?
Two, if can eliminate “constraint dependency.”

Subtracting 8;87u; from (3),
Olu; = 283'6[3-1;,2.] (4)

8j’LLj = 0
Two boundary conditions:

niuy) = 0 or u;m' =0, ul' =0.



Proof of nju;; = 0: Contract (4) with o', integrate,
/(6’,52u@-)6’tui :/ 280 uy)) Opu’
0 0

Integrating by parts:
1 i

oS

The rest follows from the identity:

oy = Nonaug P+ | @muad + 0wl ~ [ wnior,
oLy oLy

(check uimi = uzli = 0, thus ((9 niuz)uj = (aa un)umn’ =0,

' ' 0 T



Inhomogeneous Dirichlet data nju; = gsnm; + ganpm
Is equivalent to

0 0 0

J o o
on 9T Tam? T g1

u;ym’ = ga, ul! = g3, implies

(from J'u; = 0).

-])n[iﬁtuﬂ < 0, for example,

Radiation type condition (0u;

0 ", 0 0
Gnu]m] + @u]m] 8mu‘7n]’ Gnu]lj — ﬁtu]l] — alu]n]
L i, 0 j
(implies)  O0;(Ou;n’ + o UjT ) =20

(from 0u; = 0, 20u; = 0, commuting derivatives and (3))



Differential BCs (conserving 0'u; = 0):
Bfu,,, — Bﬂaju,,;
give constraint compatible u;(0), 9;u;(0) and
niu;) = 0 and 8juj =0

Proof. Notice that C' = d’u; satisfies the wave equation
20 = 919,C, with C(0) = ,C(0) = 0.

The second boundary condition implies C'|s5q = 0. Thus,
C=0, = 0&u;=0

Verity nju; = 0 as in the previous example.



More fancy BCs:

Bfu,,, — 8j8ju7;

give constraint compatible u;(0), 9;u;(0) and

B[iuj]ni = 0 and ajuj =0

(Motivated by the energy identity

1 o
0f)

Reduces to (p = Oyu;(0)n't + u;(0)n?)
O 0 0 0

iiza _z'Z:—, _le:_
Y= 5 T am” an a1"



Appendix



Linearized BSSN equations

Op = —%/43 + %8565, oo = —K, Ok = —0'0),
OrYi; = —2A;; + 20 zﬂj — 204;0°3s,
5’1514@] 1818 [Yij -+ 8 282(3)]90 — 252-]-(3’18190

— (97;(9]'04 + %&jé’l@la,
6’751”2- — —%a@ﬁ + %82(9865 + 6’16’1@-,

Constraint equations:

0P 01, — 80'0p = 0, and/or O'T; — 80" =0
07 A;; 6’-k =0,
F — 8%



Reduction to second order in time

(’9,5214@-]- — 818114@-]-
8,5216 = 0'0k.
Introduce | 5
M; =0 A;; — g@-k

Evolution of constraint M.:
Q?Mj — 8181Mj

Initial data M;(0) = 9,M;(0) = O for compatible data. Thus,
M; = 0 as long as

(%Mj)é’thSO on OS2



(-ZM;)0:M? = 0 via the main variables.

Introduce, orthonormal basis: n;, m;, [,

' Jop. — O 0y ni o 0 o0 O, 70 ;
Rewrite, 0O Uj = 5-UiN' + 5 -u;m’ + aluzl : D/

9 9 9
Ok = 5-KN; + 3-Kmy + 5kl 00

Decompose

-+ A4 (lzl] — m@-mj) -+ Ab (QTLZTLJ — lzl] — mzmj)
Substitute into M; = 8jAZ-j — %&;k and the result into
(ZM;)0:M7 =0
Simplify ...



(M) @)

_ (%[%a%m : %SZAQ 9 aanA5—§%{]
y at[%a%m : %SZAQ » aan%_g%"]
’ aan%c%m ' %ngS aifLM (’9?71A5 gaiﬁ]
y at%a%m : %SZAB—a%A4—a%A5 g aiﬁ]
: aan[%(%Az : % aiA3+%A4—%A5 gglﬁ;]
c oL a2 429 a9 uy O a5 20 0 g

20m 20m ol ol 301



By a direct observation, either of the two sets of boundary
conditions are constraint-preserving:

Al1=0, A2=0, ZA3=0, 244=0,

0 _ 0 .. _
%A5 — O, %li — O,
Y A1=0, LA2=0, A3=0, A4=0,
A5 =0, kr=0.
(the first set eliminates the second multiplier in the first
term of ((0/0n)M")(0;M;) = 0 and the first multipliers in

the second and third terms (by commuting partial derivatives
and using evolution eqn. The second set is verified in a similar

way. )

Too restrictive!



Differential boundary conditions
Require M; = 0 on 0f2:

10 10 9, 20 i
iﬁ_mA1+§ﬁA2 | 28nA5 35, = Min'=0
10 10 0 0 2 0 Z
§%A1 i 55143 @mA4 0mA5 30m Mim” =0
liAZIlaASJrQAZL—QJ% 20 = Ml'=0

29n 20m Y 9l 300"

For example, prescribe A3, A4, k, use M; = 0 as the
boundary conditions for the rest.

Well-posedness 777



Evolving boundary conditions
Require (%Mmi =0, MI'=0, Mm'=0. Solve for

5?2 52 202 492 O
2op M~ Gt —3apr T3lgE T gt
52 o O
N (512 am2)A4 | azamAS’

19 19 9 9 2 9
son T oa B T oM T e 3am” T 0
19 10 9 9 20

= 0

For example, prescribe A3, A4, k, evolve first equation for

Ab, use other two as the inhomogeneous Neumann data on
Al and A2.



The static constraints equations:

0; Aij = 0'9,A;; — 20, M,
(93/% — 0'Oik — g@lMl

Implies

NO NEED IN
CONSTRAINT-PRESERVING BOUNDARY
CONDITIONS!



Linearized BSSN, densitized lapse (a = 6, §; = 0)

Op = —é&

Ok = —Gﬁlﬁggp,

Oyij = —24;,

O A;; = —%alal;%j + 0uI'j) — 80:0;¢,
o', = —%6’@%.

Constraint equations:
P91y, — 89'0p =0, and/or I'T; — 89'0;p = 0;

8‘714/,;]' — %82/@ — O;
L= 0%,



Energy estimate with boundaries
(C.Gundlach and J.M.Martin-Garcia)

Growth of energy

e = [lk]2+ I1AI + 36]19r]? + T — 89y

L, .
‘|‘H§3ﬂji — 01(T5) — 89)0) 1%,
is determined by three boundary terms

%, %, g
— . _ — A ) AY
Ore 6/@@(3”@)/1 /asz(anvy)

0f



Input is needed

e De Rham complex, de Rham complex, de Rham complex!
e Semigroup theory, proofs of existence in H (div)-like spaces.
e Analysis of long term stability for nonlinear equations.

e Nonlinear energy estimates.



