Alexander Alekseenko, Northridge, USA

Constrained Evolution and Differential Boundary Conditions

(The sand box for a young numerical relativist)

Proposed questions

- How do we define constrained evolution?
- How many boundary conditions are needed for constrained evolution?
- Can there be boundary conditions other than Neumann and Dirichlet?
- How energy estimates motivate boundary conditions?

What is constrained evolution?

$$egin{aligned} \partial_t^2 u_i &= \partial^j \partial_j u_i \ \partial^j u_j &= 0 \end{aligned}$$

$$egin{array}{lll} \partial_t^2 u_i &=& \partial^j \partial_j u_i & \partial_t^2 u_i &=& \partial^j \partial_j u_i & \partial_t^2 u_i &=& \partial^j \partial_j u_i \ \partial^j u_j &=& 0 & \partial^j u_j &=& 0 & -\partial_i \partial^j u_i \end{array}$$

overdetermined

+ compatible ID

+ compatible BD

hope for constraint preservation

$$egin{array}{ll} \partial_t^2 u_i &= \partial^j \partial_j u_i \ &- \partial_i \partial^j u_j \end{array}$$

$$\partial^j u_j = 0$$

+ compatible ID

+ ??? many BD

well-posed ???

The 1D example

$$\partial_t^2 u = \partial_x^2 u$$
 $\partial_x u = 0$

How many boundary conditions? (free evolution)

(D.Arnold, N.Tarfulea, A.Alekseenko)

- Consider the constraint quantity $C = \partial_x u$.
- Notice that C satisfies the wave equation $\partial_t^2 C = \partial_x^2 C$.
- Require either

$$C(a) = C(b) = 0$$
$$\partial_x u(a) = \partial_x u(b) = 0$$

or

$$\partial_x C(a) = \partial_x C(b) = 0$$

$$\partial_x^2 u(a) = \partial_x^2 u(b) = 0$$

$$\partial_t^2 u(a) = \partial_t^2 u(b) = 0$$

$$u(a) = u(b) = 0$$

The 1D example

$$\partial_t^2 u = \partial_x^2 u$$
 $\partial_x u = 0$

How many boundary conditions? (free evolution)

(G.Calabrese, J. Pullin, O. Sarbach, M. Tiglio, O. Reula)

- Consider the constraint quantity $C = \partial_x u$.
- Notice that C satisfies the wave equation $\partial_t^2 C = \partial_x^2 C$.
- Require, for example,

$$\partial_x C(a) = 0,$$
 $C(b) = 0$
 $\partial_x^2 u(a) = 0,$ $\partial_x u(b) = 0$
 $\partial_t^2 u(a) = 0,$
 $u(a) = u_0(a)t + u_1(a)$

The 1D example

$$\partial_t^2 u = \partial_x^2 u \tag{1}$$

$$\partial_x u = 0$$

Needs no boundary conditions!

Indeed:

Replace with

$$\frac{\partial_t^2 u}{\partial_x u} = 0 \tag{2}$$

$$\frac{\partial_t^2 u}{\partial_x u} = 0$$

• Integrate (2) from any consistent initial data:

$$u(x,t)=u_0(x)t+u_1(x), \qquad \partial_x u_0=\partial_x u_1\equiv 0$$

Vector wave equation (constrained evolution)

$$\partial_t^2 u_i = \partial^j \partial_j u_i$$

$$\partial^j u_j = 0$$

$$(3)$$

How many boundary conditions?

Two, if can eliminate "constraint dependency." Subtracting $\partial_i \partial^j u_i$ from (3),

$$\partial_t^2 u_i = 2 \partial^j \partial_{[j} u_{i]}$$
 (4) $\partial^j u_j = 0$

Two boundary conditions:

$$egin{aligned} n_{[i}u_{j]} = 0 & ext{or} \quad u_i m^i = 0, \ u_i l^i = 0. \end{aligned}$$

Proof of $n_{[i}u_{j]} = 0$: Contract (4) with $\partial_t u^i$, integrate,

$$\int_{\Omega} (\partial_t^2 u_i) \partial_t u^i = \int_{\Omega} 2(\partial^j \partial_{[j} u_{i]}) \partial_t u^i$$

Integrating by parts:

$$\frac{1}{2}\partial_t \left[\|\partial_t u_i\|^2 + 2\|\partial_{[j} u_{i]}\|^2 \right] = \int_{\partial\Omega} (\partial_{[j} u_{i]}) n^{[j} \partial_t u^{i]}$$

The rest follows from the identity:

$$\|\partial_{(i}u_{j)}\|^{2} = \|\partial_{[i}u_{j]}\|^{2} + \int_{\partial\Omega} (\partial_{j}n^{i}u_{i})u^{j} + \|\partial^{i}u_{i}\|^{2} - \int_{\partial\Omega} u_{i}n^{i}\partial^{j}u_{j}$$

(check $u_i m^i = u_i l^i = 0$, thus $(\partial_j n^i u_i) u^j = (\frac{\partial}{\partial n} u_i n^i) u_j n^j = 0$, since $\partial^j u_j = \frac{\partial}{\partial n} u_i n^i + \frac{\partial}{\partial m} u_i m^i + \frac{\partial}{\partial l} u_i l^i = 0$.)

Inhomogeneous Dirichlet data $n_{[i}u_{j]}=g_3n_{[i}m_{j]}+g_2n_{[i}m_{j]}$ is equivalent to

$$u_j m^j = g_2, \quad u_j l^j = g_3, \quad \text{implies } \frac{\partial}{\partial n} u_j n^j = -\frac{\partial}{\partial m} g_2 - \frac{\partial}{\partial l} g_3$$
 (from $\partial^i u_i \equiv 0$).

Radiation type condition $(\partial_{[i}u_{j]})n^{[i}\partial_{t}u^{j]} \leq 0$, for example,

$$\frac{\partial}{\partial n}u_jm^j + \partial_t u_jm^j = \frac{\partial}{\partial m}u_jn^j, \quad \frac{\partial}{\partial n}u_jl^j + \partial_t u_jl^j = \frac{\partial}{\partial l}u_jn^j.$$

(implies)
$$\partial_t(\partial_t u_j n^j + \frac{\partial}{\partial n} u_j n^j) = 0$$

(from $\partial^i u_i \equiv 0$, $\frac{\partial}{\partial n} \partial^j u_j = 0$, commuting derivatives and (3))

Differential BCs (conserving $\partial^i u_i = 0$):

$$\partial_t^2 u_i = \partial^j \partial_j u_i$$

give constraint compatible $u_i(0)$, $\partial_t u_i(0)$ and

$$n_{[i}u_{j]}=0$$
 and $\partial^{j}u_{j}=0$

Proof. Notice that $C = \partial^j u_j$ satisfies the wave equation $\partial_t^2 C = \partial^j \partial_j C$, with $C(0) = \partial_t C(0) = 0$.

The second boundary condition implies $C|_{\partial\Omega}=0$. Thus,

$$C\equiv 0, \quad \Rightarrow \quad \partial^j u_i\equiv 0$$

Verify $n_{[i}u_{j]}=0$ as in the previous example.

More fancy BCs:

$$\partial_t^2 u_i = \partial^j \partial_j u_i$$

give constraint compatible $u_i(0)$, $\partial_t u_i(0)$ and

$$\partial_{[i}u_{j]}n^i=0$$
 and $\partial^j u_j=0$

(Motivated by the energy identity

$$\frac{1}{2}\partial_{t} \Big[\|\partial_{t}u_{i}\|^{2} + 2\|\partial_{[j}u_{i]}\|^{2} \Big] = \int_{\partial\Omega} (\partial_{[j}u_{i]})n^{[j}\partial_{t}u^{i]})$$

Reduces to $(\rho = \partial_t u_i(0)n^i t + u_i(0)n^i)$

$$u_i n^i = \rho, \quad \frac{\partial}{\partial n} u_i m^i = \frac{\partial}{\partial m} \rho, \quad \frac{\partial}{\partial n} u_i l^i = \frac{\partial}{\partial l} \rho.$$

Appendix

Linearized BSSN equations

$$\begin{split} \partial_t \varphi &= -\frac{1}{6} \kappa + \frac{1}{6} \partial^s \beta_s, & \partial_t \alpha = -\kappa, & \partial_t \kappa = -\partial^l \partial_l \alpha, \\ \partial_t \tilde{\gamma}_{ij} &= -2 \tilde{A}_{ij} + 2 \partial_{(i} \beta_{j)} - \frac{2}{3} \delta_{ij} \partial^s \beta_s, \\ \partial_t A_{ij} &= \frac{1}{2} \partial^l \partial_l \tilde{\gamma}_{ij} + \partial_{(i} \Gamma_{j)} - 2 \partial_i \partial_j \varphi - 2 \delta_{ij} \partial^l \partial_l \varphi \\ & - \partial_i \partial_j \alpha + \frac{1}{3} \delta_{ij} \partial^l \partial_l \alpha, \\ \partial_t \Gamma_i &= -\frac{4}{3} \partial_i \kappa + \frac{1}{3} \partial_i \partial^s \beta_s + \partial^l \partial_l \beta_i, \end{split}$$

Constraint equations:

$$\partial^p \partial^q \tilde{\gamma}_{pq} - 8 \partial^l \partial_l \varphi = 0$$
, and/or $\partial^l \Gamma_l - 8 \partial^l \partial_l \varphi = 0$
 $\partial^j A_{ij} - \frac{2}{3} \partial_i k = 0$, $\Gamma_j = \partial^l \tilde{\gamma}_{lj}$.

Reduction to second order in time

$$\partial_t^2 A_{ij} = \partial^l \partial_l A_{ij}$$
$$\partial_t^2 k = \partial^l \partial_l k.$$

Introduce

$$M_i = \partial^j A_{ij} - rac{2}{3} \partial_i k$$

Evolution of constraint M_i :

$$\partial_t^2 M_j = \partial^l \partial_l M_j$$

Initial data $M_j(0)=\partial_t M_i(0)=0$ for compatible data. Thus, $M_i\equiv 0$ as long as

$$\left(\frac{\partial}{\partial n}M_j\right)\partial_t M^j \leq 0$$
 on $\partial\Omega$

$(\frac{\partial}{\partial n}M_j)\partial_t M^j=0$ via the main variables.

Introduce, orthonormal basis: n_i , m_i , l_i ,

Rewrite,
$$\partial^{j}u_{j} = \frac{\partial}{\partial n}u_{i}n^{i} + \frac{\partial}{\partial m}u_{i}m^{i} + \frac{\partial}{\partial l}u_{i}l^{i}$$
, $\partial_{i}\kappa = \frac{\partial}{\partial n}\kappa n_{i} + \frac{\partial}{\partial m}\kappa m_{i} + \frac{\partial}{\partial l}\kappa l_{i}$

Decompose

$$A_{ij} = A1 (n_{(i}m_{j)}) + A2 (n_{(i}l_{j)}) + A3 (l_{(i}m_{j)})$$
$$+ A4 (l_{i}l_{j} - m_{i}m_{j}) + A5 (2n_{i}n_{j} - l_{i}l_{j} - m_{i}m_{j}).$$

Substitute into $M_i=\partial^j A_{ij}-\frac23\partial_i k$ and the result into $(\frac{\partial}{\partial n}M_j)\partial_t M^j=0$

Simplify ...

$$(\frac{\partial}{\partial n}M_{i})(\partial_{t}M^{i})$$

$$= \frac{\partial}{\partial n}\left[\frac{1}{2}\frac{\partial}{\partial m}A1 + \frac{1}{2}\frac{\partial}{\partial l}A2 + 2\frac{\partial}{\partial n}A5 - \frac{2}{3}\frac{\partial}{\partial n}\kappa\right]$$

$$\times \partial_{t}\left[\frac{1}{2}\frac{\partial}{\partial m}A1 + \frac{1}{2}\frac{\partial}{\partial l}A2 + 2\frac{\partial}{\partial n}A5 - \frac{2}{3}\frac{\partial}{\partial n}\kappa\right]$$

$$+ \frac{\partial}{\partial n}\left[\frac{1}{2}\frac{\partial}{\partial n}A1 + \frac{1}{2}\frac{\partial}{\partial l}A3 - \frac{\partial}{\partial m}A4 - \frac{\partial}{\partial m}A5 - \frac{2}{3}\frac{\partial}{\partial m}\kappa\right]$$

$$\times \partial_{t}\left[\frac{1}{2}\frac{\partial}{\partial n}A1 + \frac{1}{2}\frac{\partial}{\partial l}A3 - \frac{\partial}{\partial m}A4 - \frac{\partial}{\partial m}A5 - \frac{2}{3}\frac{\partial}{\partial m}\kappa\right]$$

$$+ \frac{\partial}{\partial n}\left[\frac{1}{2}\frac{\partial}{\partial n}A2 + \frac{1}{2}\frac{\partial}{\partial m}A3 + \frac{\partial}{\partial l}A4 - \frac{\partial}{\partial l}A5 - \frac{2}{3}\frac{\partial}{\partial l}\kappa\right]$$

 $\times \partial_t \left[\frac{1}{2} \frac{\partial}{\partial n} A 2 + \frac{1}{2} \frac{\partial}{\partial m} A 3 + \frac{\partial}{\partial l} A 4 - \frac{\partial}{\partial l} A 5 - \frac{2}{3} \frac{\partial}{\partial l} \kappa \right] (= 0 ??$

By a direct observation, either of the two sets of boundary conditions are constraint-preserving:

$$A1 = 0,$$
 $A2 = 0,$ $\frac{\partial}{\partial n}A3 = 0,$ $\frac{\partial}{\partial n}A4 = 0,$ $\frac{\partial}{\partial n}A5 = 0,$ $\frac{\partial}{\partial n}\kappa = 0,$

$$\frac{\partial}{\partial n}A1 = 0, \quad \frac{\partial}{\partial n}A2 = 0, \quad A3 = 0, \quad A4 = 0,$$

$$A5 = 0, \quad \kappa = 0.$$

(the first set eliminates the second multiplier in the first term of $((\partial/\partial n)M^i)(\partial_t M_i)=0$ and the first multipliers in the second and third terms (by commuting partial derivatives and using evolution eqn. The second set is verified in a similar way.)

Too restrictive!

Differential boundary conditions

Require $M_i = 0$ on $\partial \Omega$:

$$\frac{1}{2}\frac{\partial}{\partial m}A1 + \frac{1}{2}\frac{\partial}{\partial l}A2 + 2\frac{\partial}{\partial n}A5 - \frac{2}{3}\frac{\partial}{\partial n}\kappa = M_{i}n^{i} = 0$$

$$\frac{1}{2}\frac{\partial}{\partial n}A1 + \frac{1}{2}\frac{\partial}{\partial l}A3 - \frac{\partial}{\partial m}A4 - \frac{\partial}{\partial m}A5 - \frac{2}{3}\frac{\partial}{\partial m}\kappa = M_{i}m^{i} = 0$$

$$\frac{1}{2}\frac{\partial}{\partial n}A2 + \frac{1}{2}\frac{\partial}{\partial m}A3 + \frac{\partial}{\partial l}A4 - \frac{\partial}{\partial l}A5 - \frac{2}{3}\frac{\partial}{\partial l}\kappa = M_{i}l^{i} = 0$$

For example, prescribe A3, A4, κ , use $M_i=0$ as the boundary conditions for the rest.

Well-posedness ???

Evolving boundary conditions

Require $\frac{\partial}{\partial n}M_in^i=0$, $M_il^i=0$, $M_im^i=0$. Solve for

$$\begin{split} 2\frac{\partial^2}{\partial t^2}A5 - (\frac{\partial^2}{\partial l^2} + \frac{\partial^2}{\partial m^2})A5 - \frac{2}{3}\frac{\partial^2}{\partial t^2}\kappa + \frac{4}{3}(\frac{\partial^2}{\partial l^2} + \frac{\partial^2}{\partial m^2})\kappa \\ &= (\frac{\partial^2}{\partial l^2} - \frac{\partial^2}{\partial m^2})A4 + \frac{\partial}{\partial l}\frac{\partial}{\partial m}A3, \end{split}$$

$$\frac{1}{2}\frac{\partial}{\partial n}A1 + \frac{1}{2}\frac{\partial}{\partial l}A3 - \frac{\partial}{\partial m}A4 - \frac{\partial}{\partial m}A5 - \frac{2}{3}\frac{\partial}{\partial m}\kappa = 0$$

$$\frac{1}{2}\frac{\partial}{\partial n}A2 + \frac{1}{2}\frac{\partial}{\partial m}A3 + \frac{\partial}{\partial l}A4 - \frac{\partial}{\partial l}A5 - \frac{2}{3}\frac{\partial}{\partial l}\kappa = 0$$

For example, prescribe A3, A4, κ , evolve first equation for A5, use other two as the inhomogeneous Neumann data on A1 and A2.

The static constraints equations:

$$\partial_t^2 A_{ij} = \partial^l \partial_l A_{ij} - 2\partial_{(i} M_{j)}$$
$$\partial_t^2 \kappa = \partial^l \partial_l \kappa - \frac{3}{2} \partial^l M_l$$

Implies

$$\partial_t^2 M_i \equiv 0!!!$$

NO NEED IN CONSTRAINT-PRESERVING BOUNDARY CONDITIONS!

Linearized BSSN, densitized lapse ($\alpha = 6\varphi$, $\beta_i = 0$)

$$\partial_{t}\varphi = -\frac{1}{6}\kappa,$$

$$\partial_{t}\kappa = -6\partial^{l}\partial_{l}\varphi,$$

$$\partial_{t}\tilde{\gamma}_{ij} = -2A_{ij},$$

$$\partial_{t}A_{ij} = -\frac{1}{2}\partial^{l}\partial_{l}\tilde{\gamma}_{ij} + \partial_{(i}\Gamma_{j)} - 8\partial_{i}\partial_{j}\varphi,$$

$$\partial_{t}\Gamma_{i} = -\frac{4}{3}\partial_{i}\kappa.$$

Constraint equations:

$$\partial^p \partial^q \tilde{\gamma}_{pq} - 8 \partial^l \partial_l \varphi = 0, \quad \text{and/or} \quad \partial^l \Gamma_l - 8 \partial^l \partial_l \varphi = 0;$$
 $\partial^j A_{ij} - \frac{2}{3} \partial_i k = 0;$
 $\Gamma_j = \partial^l \tilde{\gamma}_{lj}.$

Energy estimate with boundaries

(C.Gundlach and J.M.Martin-Garcia)

Growth of energy

$$\epsilon = \|\kappa\|^2 + \|A\|^2 + 36\|\partial_l\varphi\|^2 + \|\Gamma_l - 8\partial_l\varphi\|^2$$
$$+ \|\frac{1}{2}\partial_l\tilde{\gamma}_{ji} - \delta_{l(i}(\Gamma_{j)} - 8\partial_{j)}\varphi)\|^2,$$

is determined by three boundary terms

$$\partial_{t}\epsilon = -6 \int_{\partial\Omega} (\frac{\partial}{\partial n}\varphi)\kappa - \int_{\partial\Omega} (\frac{\partial}{\partial n}\tilde{\gamma}_{ij})A^{ij} + 2 \int_{\partial\Omega} n_{(i}(\Gamma_{j)} - 8\partial_{j)}\varphi)A^{ij}.$$

Input is needed

- De Rham complex, de Rham complex, de Rham complex!
- ullet Semigroup theory, proofs of existence in $H(\operatorname{\mathbf{div}})$ -like spaces.
- Analysis of long term stability for nonlinear equations.
- Nonlinear energy estimates.