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Scalar Problem
Let Q2 — bounded polygonal domain in R2.

Consider simple linear hyperbolic problem:

a-Vu=f in £, u=g¢9 on [;,(R2),

a = (a1, an) constant vector,
[, (£2) portion of 92 on which a-n < 0,
n = unit outward normal to 0f2.

Fundamental idea of finite element methods:

Place mesh of triangles (or other elements) on 2
(assume max diameter of elements < h).



Triangular Mesh on polygon €2.

Seek approximate solution uy, in space of piecewise polynomials.

Determine uj;, by appropriate variational formulation of problem.

Many ways in which this can be done.



Consider triangle T with one side on inflow boundary [,,(£2).
Assume uy, € P>(T).

Then u;,, has 6 degrees of freedom, which may be taken to be
values at vertices and values at midpoints of edges (or average
value of uj;, on edges).
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Continuous Galerkin method: Reed-Hill 1973
(strongly imposed boundary conditions):

Let u;, = gy on I;,(T), g7y a quadratic interpolant of g. Leaves 3
degrees of freedom to be determined.



Observe true solution u satisfies:
/ a-Vuvdr =/ fuvdx
T T

So could determine u; by equation:

/a-Vuhvdxzf fvdx, Vv € P1(T).
T T

Use this equation to determine approximate solution in all
triangles with one-inflow side on inflow boundary (can be done
in parallel on all such triangles).

Then must solve on triangles with 2 inflow sides:



type 1 type II

e VNN
/N NS N

By continuity, u already known at 5 degrees of freedom on type
II triangle. Determine remaining degree of freedom by:

/Toz - Vupvdr = /va dzx, Vv € Po(T).



Computation of Approximate Solution

{
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Discontinuous Galerkin method: Reed-Hill 1973
(weakly imposed boundary conditions):

Integrating by parts:

/a~Vuvd:1:=j{ uva°n—/ua-Vvd:1:
T oT T

=/ uva-n—l—/ gva-n—/ua-vadaz
rout(T) rin(T) T
So can now determine u; by equation:

o -n — o - Vudx
/I_out(T) “hY " ‘/TUh

=/vad:v—/l_m(T)gva-n, Vv € Py (T).
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Can rewrite this in form:

j{ uhva~n—/uha-V1}daz
oT T

- /vadx + /l_m(T)(uh —gva-n, Yve P (T),

or integrating back by parts:

/Ta-Vuhvdac:/vada:—l—/l_m(T)(uh—g)va-n



To continue inside 2, use similar approach, but write equation
as:

 Vurv dr = / d / + _ ur .
/T a - Vupv dx . fvdx + e (u, —up)va-n
for all v € P>(T), where

vE(z) = |imiv(:v + ea),

€E—

I.e., u}_ll_ denotes w;, inside T' and w, denotes value of uy inside
T~ (already known).

Basic conservation property of homog. equation.

Multiplying by v and integrating over subdomain G,
1 2

1
0=(aVuu)g="> [ a V@?)=_ “n.
(- Vu,u)g 2Ga (u®) QaGuan
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This may be written in the form

1 2 1 2
—/ u|a-n|:—/ u’la - n
2 rout(G) 2 rz’n(G)

sincea-n>0o0nTl,4/(G)and a-n <0 on I;,(G).

If €2 disjoint union of subdomains G;, summing
identities, and cancellation of integrals over common boundaries
leads to conservation result:

1 2 1 2
—/ u|a-n\=—/ u’la - n.
2 rout(Q) 2 rzn(Q)

Follow this type of analysis at discrete level to obtain stability
and error analysis of finite element approximation schemes.
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The Classical Discontinuous Galerkin Method

Let 75, denote triangulation of €2 into triangles T', diameter < h,
P, (T) space of polynomials of degree <n on T.

For each T € 13, Discontinuous Galerkin method is:
Find uj, € P,(T) such that

(a'vuhavh)T_/l__ )

for all v, € Pno(T), where (-,-)7 denotes L? inner product over T

(uf —up)vpa-n=(f,o)7

Following continuous problem, take test function
v, = up. I hen, for homogeneous problem, f =0

(a-Vuh,uh)T—/l_ (u}j——u}:)u}j—a-n:O.

zn(T)
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Integrating first term to boundary, get

1 2 / + _ =Yt
— UrAX - N — u — U u a-Nn
2 Jor P r,m(T)( h h) U

_ 1 2. 1 2
—2/|_0ut(T)(uh) “ n+2/rzn(T)(Uh) o

_ + _u VT o
/I_m(T)(uh up)up N

_ 1 2. 1 N2 o AN27

- ]éT(uh) o Fm(T)(uh) ()l m
_/m(T)[(uh 1 —uyulla-n

_ - N2, o T + .12,

= 2éT(uh) o-n— g Fm(T)[uh uy |“a-m
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lLLocal stability estimate:
%/I_OUt(T)(u}:)2|a -n|+ %/I‘m(T) [u}_ll_ — ug]2|a -y
= %/rmm(u’:)% !
Summing over triangles, G = UT,

1 2/ . 1 + N2
2/r0ut<a>(uh) o n';2/rm<T>(uh up ) lee-ml

_1 ~12| 4 -
_Q/Fm(G)(uh) - m.

Basic identity to establish stability.

Remark: Get other DG methods by making
other choices of uy on I;,(T") (than u, ).
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Hyperbolic Systems
Let 2, — bounded domain in RY with boundary I,.

First order hyperbolic systems, positive in sense of Friedrichs
N
Lu = Agdu/dt + > A;0u/dz;+ Bu=F in €,
i=1
(M —-—D)u=gqg onl,
where Ag is either O or I, A;, B, M given m X m matrices

depending on x, u an m-vector.

Q =Q; when Ag =0 and Q = Q; x (0,T) when Ag =1,
[T = boundary of 2.

D =¥ J An;, where n = (n;) is unit outward normal to I'.
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For mathematical analysis, let ¢ > 0 constant and assume:

A;(x) symmetricc, M+ MT >0 on T, + other conditions
Then for g=20

/F-udazz/ Lu-udaz>g/u-udw
Q Q

/(M-I—MT)u uds > §||u||L2(Q)
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Examples:

Transport Equation: m =1, Ag = 0:

B-Vu+~yu=f in Q
u=g onl_={zel:B3 -n<O0}.

D=g@3-n, M=|D|. Note M—D =-28-nonl_and M—D =0
on [}, so no boundary condition on outflow boundary.

Wave equation as first order system

Maxwell’s equations
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Numerical Methods: Case A =0, g=0

Let 7, be family of *“triangulations” of €2, into simplices indexed
by h, maximum diameter of simplices K &€ 1y,.

P.(K) set of polynomials on K of total degree < k.
Vi, ={ve HY () 1 v|g € P.(K) VK €1}

Vi, = [Vp]™.

Wy, ={v e L2(Q) :v|g € P.(K) VK €1},

Wi, = [Wy]™.
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Set (u,v) = [ u-vdr, <u,v >= [ u-vds.
Standard Galerkin method: weakly imposed B.C.
Find u; € V}, such that Vv € V},

(Luy,v) + % < (M — D)up,v >= (F,v).
Stability Estimate:

Exactly as in continuous case.
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Choosing vy, = uy,

1
F-u dw:/Lu-u der+ — < (M — D)up,u;, >
/Q h o Ltn - dw + o ( JUp, Uy,

(o) 1 T (o) 2
> 7 ar d —/MMu-ud>—u |
_Q/Quh up de + - r( + M7 )uy, h3_2|| nllz2¢0)
T hen

lunll 2@y < CllFL2(q)-

Error Estimate:

lu — wpll 20y < Ch¥|lullpg1-
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Streamline Diffusion Method:
Find uy < Vhi

1
(Luy,v + hLgv) + 5 < (M — D)uy,v >
= (F,v+ hlLgv), Yv eV,
where Lo = YN ; A2
Improved Stability Estimate:

VR Loupl p2(q) + lunllp2(q)+ < Mup, uy, >1/2< ClF 120y

Improved Error Estimate:
1/2
lw — upll 2¢) < CHFFY2 )y,
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Discontinuous Galerkin Method:

Let 6 =0 or h. Find u; € Wj:

1
> [(Lup, v+ 6Lgv)k + 5 < (Mg — Di)[up], v > K]
KETh

= Z (F,’U—|—5Lo’U)K, Vv e Wy,
Kemn,
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where [u] = u™ — u©*t,

U, V) = u-vde, <u,v>p= u-vds,
(u,v) g | /K K= | .
u'(z) = Iim wu(y), €K,
y—x,yck
ul(x) = |lim wu(y), €K,
y—z,y¢K
Y K
Dg =) Amn;, Mg = p(Dg)I
1=1

Stability Estimate analogous to Streamline Diffusion,
but norms are piecewise over the elements.

Error Estimate the same as for Streamline Diffusion.

In general, get global problem to solve.



Explicit Time Dependence: Ag =1

N
Lu=0u/ot+ ) A0u/dz;+ Bu=F, in Qg x (0,7),
1=1
(M —D)u=0 onlz;x(0,T), u(x,0) = ug(x), xc 2,

where matrices A;, B, M depend on (x,t).

Since n = (£1,0,...,0) at t =T and ¢t = O, respectively,
D=y Amn; ==+I.

Choosing M =1 fort=0ort="1T,
(M —-D)=0att="1T, so no BC there.

(M — D) =21 at t = 0, so get initial condition at ¢t = 0.
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Numerical Methods:
Apply Standard Galerkin or Streamline Diffusion
method using finite element triangulations of strips

Since M — D = 0 on “top" part of 9S, (t = t,4+1), compute
discrete solution on one strip after another.

Let Vi* C HL(Sp), V/* = [V/*]™, 6§ =0 or 1.
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Find uy € V,* such that Vv € V'
(Luj,v + dhLgv)g, + /Q uly (x,tn) - vy (x,tn) dx
1
+ 5 < (M — D)Uh,'v >rx><(tn7tn+1)

= (F,v + 0hLgv)g, + /Q u” (x,tn) - vy (x, tn) d,

where now Lg = 9/0t + XY 1 A;0/0x;.

Note: weakly imposed “continuity condition” at t = t,:

1
E(M —D)u-v= ’U]_T_(:B,tn) vy (@, tn)

— u’r_t(w’ tn) | ’U—l—(watn)
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Another possibility: Discontinuous Galerkin on each strip.
Let W;Z’ C LQ(Sn), W}? — [W}?]m

Use previous formulation, but replace

(Lup, v+ 6Lov)g, by >  (Lup,v+06Lov)g
KEThﬂSn

(F,v+6hLlgv)s, by Y (F,v46hLlov)g
KEThﬂSn

and add boundary integral terms

1
> 5 < (Mg — D) [upl,v > .
Note: Within each strip methods are implicit: must solve for all
unknowns at the same time.
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An EXxplicit Method

Divide space-time domain into mesh of elements K, union of
simplices in RV+1,

Let M(K) =T(K)N{M(2z) x (0,7)). OnIN(K)—-TI*(K), require
nt = 0 and define D; = sign{n:} D.

Define bilinear form
ar(u,v) = (Lu, v)K—I—/ Dtu v
M in (K) }
1

+ > I’*(K)(M — D)u - v,
where, I,,,(K) [ out(K)] denotes portion of N'(K) — M (K) where
ny < 0 [ny > 0].
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On each element K, approximate u by u; € P,(K), polynomials
of total degree < n over K.

Starting from appropriate interpolant ug(:z;,O) of
initial condition ug, develop solution explicitly by:

ar(up,v) = (F,v)g for all v € Po(K).

Key idea: Special mesh construction allowing explicit method
without violating domain of dependence considerations.
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