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What kinds of solutions to the Einstein
equations might we expect to find?

e Black hole solutions

These have a smooth event horizon, are non-singular
outside the horizon and becoming asymptotically
flat far from the horizon.

e “Soliton” or "Particle"” -like solutions
These are globally regular, i.e. they have no sin-
gularities and become asymptotically flat at large
distances.

e Others
— Cosmological

— Gravitational waves



The No-Hair Conjecture

e Birkhoff — Schwarzschild is the unique spherically
symmetric solution with asymptotic flatness.

e Israel — Schwarzchild is the unique solution for static,
nonrotating black holes with asymptotic flatness.

e Robinson - Carter — Kerr(-Newman) is the unique
solution for axisymmetric, stationary black holes
with asymptotic flatness.

e Price’s Theorem — Everything that can be radiated
away will be radiated away in collapse.

= Black holes are completely characterized by M, J,
Qe, and Q.. (their gauge charges).



No Solitons

e Lichnerowicz — There are no globally regular solu-
tions to the Einstein-Maxwell equations. (nonsin-
gular and asymptotically flat)

e This was generalized to Kaluza-Klein and super-
gravity models.

e Deser - Coleman — There are no static Yang-Mills
solutions in flat spacetime.

e Deser — There are no static soliton solutions of the
Einstein-Yang-Mills equations in 2+41.

= This is suggestive that there are no solitons in Ein-
stein’s theory.



Nonetheless ...
Bartnik and McKinnon (1988) — There are particle-
like (soliton) solutions to the EYM equations.

Assume static, spherically symmetric, and an SU(2).

The metric is
1

dr® 4 r?dQ°
p(r)

ds? = —A(r)?u(r)dt® +

The SU(2) connection (matrix valued) is
A = a(r)rsdt+ w(r)midb
+(cot O3 + w(r)m) sin 8d¢

Finite energy = a = 0.

BC's for our ODE’s: regularity at the origin
w(r) ~1=br>4+ 0%
and asymptotic flathess

w(r)? > 1
The numerical problem is a simple shooting on b.

Infinite number of solutions characterized by the
number of zeros of w(r): b,.
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The first five BM solutions.
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Energy density of the first five BM
solutions.




Metric function u(r) for the first five BM
solutions
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Black holes in EYM

There also turn out to be black holes in addition to
the BM *“solitons.”

The requirements are almost the same

— static, spherically symmetric metric

— spherically symmetric SU(2) gauge connection
— asymptotic flatness

Added assumption is the existence of a horizon at
rp, > 0. The place where u(r,) = 0.

Again, simple shooting on w; = w(r,) reveals an
infinite number of discrete solutions characterized
by the number (n) of zeros of w(r).

These solutions are parameterized by r;, or corre-
spondingly, the mass of the black hole: M(ry).

As with the BM solutions, the global YM charge
vanishes.

In the n — oo limit, this sequence of black hole solu-
tions approaches the Reissner-Nordstrom solution.



The first five EYM black hole solutions.
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Energy density of the first five EYM
black hole solutions.
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Metric function u(r) for the first five
EYM black holes
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Stability

These solutions — both soliton and black hole — are
unstable in linear perturbation theory.

For the nt" solution, there are 2n unstable modes.

There are n modes unstable to gravitational pertur-
bations and n modes unstable to gauge field per-
turbations.

Zhou and Straumann: BM solutions unstable either
to dispersal of the fields to infinity or collapse to a
Schwarzchild black hole.

Choptuik et al showed that for n = 1 this is Type I
critical behavior and that the model also has Type
IT critical behavior.
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Einstein-Yang-Mills-some-kind-of-scalar

It is natural to generalize the EYM results to a broader
class of theories which e.g. add some scalar field cou-
pling.

Let’s consider two.

e Einstein-Yang-Mills-Dilaton

L= R—2V,pVFe — eI F} F

where Fj, is the SU(2) Yang-Mills field strength and
~ is a dimensionless coupling constant.

e Einstein-Yang-Mills-Higgs

1 2
L =-—R-— F.,F" —2D,$"D"¢" — ﬁ—z(qsaqsa —1)?
(87

«

where the Higgs field ¢% is in the adjoint repre-
sentation of SU(2) and a and B are dimensionless
coupling constants.
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Einstein-Yang-Mills-Dilaton

Various theoretical models (e.g. string theory, Kaluza-
Klein, inflation, etc) suggest the existence of a
massless, real scalar field — the “dilaton.”

The limit v+ — 0 (with a constant ¢) recovers the
Bartnik-McKinnon solutions.

In addition, the limit v —+ oo leads to YMD un-
coupled from gravity which also possesses soliton
solutions.

T he particular value v = 1 describes the low-energy
limit of heterotic string theory.

Both solitons and black hole solutions can be found
with the coupling v describing a family of solutions.

The assumptions and procedure are the same as
before.

— We shoot on a single parameter b, find an in-
finite set of discrete solutions (n)for a given «
value.
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First five regular solutions
with vy =1

of EYMD
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Dilaton field and metric function n for
regular solutions of EYMD with v =1
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Energy density for regular solutions of
EYMD with v =1
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Black hole solutions of EYMD with v =1
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Dilaton field and metric function n for
black hole solutions of EYMD with v =1
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Stability of EYMD solitons and black
holes

All the solutions are also are unstable in linear per-
turbation theory.

Again, for the n'" solution, there are 2n unstable
modes with n modes unstable to gravitational per-
turbations and n modes unstable to gauge field per-
turbations.

Conjecture: Like the BM soliton solutions, these
will be unstable either to dispersal of the fields to
infinity or collapse to a Schwarzchild black hole.

In addition, if the BM solutions are any guide, and
they belong in this family of solutions, this model
should exhibit both Type I and Type II critical be-
havior. So we would have yet another parameter-
ized family of critical solutions.
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Einstein-Yang-Mills-Higgs

These should describe gravitating monopoles and
dyons for example, so we sort of expect to find
these when gravity is “turned on.”

In addition, one might expect that once these ob-
jects become sufficiently massive, they will “col-
lapse” and form black holes.

We again make the assumptions of spherical sym-
metry, staticity, SU(2) and asymptotic flatness. In
addition, we make the ansatz (hedgehog) for the
Higgs field of ¢ = 7*H(r).

Again, assuming regularity at the origin leads to
solitons and assuming the existence of a horizon
(i.e. of ry such that u(ry) = 0) leads to black hole
solutions.

The numerical problem is somewhat more difficult
as we must search on two parameters.

22



Gravitating monopoles

We again get an infinite number (n = 0,1,2...) of
monopole solutions each parameterized by a and £.
The limit «a - 0 for 8 = 0 and n > 0 correspond
to the BM solutions. The n = 0 solutions can be
thought of as the gravitating generalization of the
t'Hooft-Polyakov monopole.

The parameter « is roughly the ratio of the monopole
mass to the planck mass, so as it inCreases we ex-
pect solutions to no longer exist as they become
unstable. Indeed we get RN + throat 4+ smooth
origin.

All the excited monopole solutions exhibit this be-
havior as well i.e. they are unstable above a critical
value of their mass (a.).

In addition they are unstable to gravitational pertur-
bations as well. SO we can conjecture again that
critical behavior will be present in this system as
well.

The lowest lying (n = 0) monople, is however sta-
ble to gravitational perturbations for o less than its
critical value.
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Non-abelian black holes

There are also magnetically charged black holes
paramterized by their radius r, (or equivalently their
mass M(rp)).

Again, 8 can take on any value but black holes will
only exist for a range of «.

In some regions we find colored black holes. In
others we get abelian RN black holes. There are
also cases where we get infinitely many — a veritable
Z0O.

The majority of the solutions turn out to also be
unstable to gravitational perturbations. (?)
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Some conclusions and possible directions

e EYM, EYMD, and EYMH vyield non-trivial solu-
tions which can be characterized as solitons or black
holes. However, the majority are unstable.

e Implications for “No-Hair Conjecture”

e Physical realization? — early universe?

e Just an introduction — much more

Dyonic configurations — magnetic and electric
charge

Other gauge groups (SU(n), SO(Nn)...)
Axisymmetry, rotation ...

SUSY

Black holes supporting defects

Critical behavior

Evolve the time-dependent equations and con-
sider non-linear stability.

Analytic results

Rigorous proofs of existence
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