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Overview

• High-resolution methods for first-order hyperbolic systems
• Shock waves in nonlinear problems
• Heterogeneous media with discontinuous properties
• Godunov-type methods based on Riemann solvers
• Second-order correction terms with limiters to minimize

dissipation and dispersion



Acoustics on a manifold
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p = pressure, um = velocity vector in computational space.
This models compressional waves on a surface, e.g. acoustics in a
metal sheet.



At each cell edge:

• Parallel transport cell-centered velocities to edge,
• Change coordinates to a local orthonormal frame at cell edge

to obtain normal and tangential velocities,
• Solve 1d Riemann problem normal to cell edge

(assuming locally flat)
• Scale resulting waves by length of side,

transform back to cell-centered coordinates,
• Update cell averages.



Parallel Transport
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Parallel Transport for acoustics

For acoustics with q = (p, u1, u2)T , solve Riemann problem with
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f-wave formulation

Split jump in fluxes ∆F into waves.
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This is n = 1 portion of the source term

ψ = −Γm
nkT

kn.



Acoustics on a manifold
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With finite volume formulation,
• Source term is automatically incorporated by parallel

transport of fluxes,
• Covariant divergence is handled by use of edge lengths and

cell volume,
• Parallel transport and orthonormalization allows use of

standard flat-space Riemann solver at interface.



CLAWMAN software

www.amath.washington.edu/˜claw/clawman.html

Currently only 2d.
AMR available by request.

Requires metric tensor H

• 2 × 2 matrix as function of x1 and x2,
• Used to compute scaling factors for edge lengths, cell areas,
• Used for orthonormalization at cell edges.

Christoffel symbols are needed for parallel transport

• Computed by finite differencing H.



AMR on a manifold
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