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ABSTRACT

A scheme is presented for accurately propagating the gravitational field constraints in finite-difference
implementations of numerical relativity. The method is based on similar techniques used in astrophysical
magnetohydrodynamics and engineering electromagnetics and has properties of a finite differential calculus on a
four-dimensional manifold. It is motivated by the arguments that (1) an evolutionary scheme that naturally
satisfies the Bianchi identitieswill propagate the constraints and (2)methods inwhich temporal and spatial deriv-
atives commute will satisfy the Bianchi identities implicitly. The proposed algorithm exactly propagates the con-
straints in a local Riemann normal coordinate system; i.e., all terms in the Bianchi identities (which all vary as
@3g) cancel to machine roundoff accuracy at each time step. In a general coordinate basis, these terms and those
that vary as @g@2g also can be made to cancel, but differences of connection terms, proportional to ð@gÞ3, will
remain, resulting in a net truncation error. Detailed and complex numerical experiments with four-dimensional
staggered grids will be needed to completely examine the stability and convergence properties of this method. If
such techniques are successful for finite-difference implementations of numerical relativity, other implementa-
tions, such as finite-element (and eventually pseudospectral) techniques, might benefit from schemes that use
four-dimensional grids and that have temporal and spatial derivatives that commute.

Subject headings: black hole physics — relativity

1. INTRODUCTION

The quest for solutions of dynamical strong-gravity
problems, such as black hole formation or mergers and
gamma-ray burst production, that are astrophysically rele-
vant and accurate enough to predict gravitational wave
forms has occupied much of the last half of the twentieth
century and beyond. Its history has been frustrated by the
need to address several unforeseen numerical problems,
including (1) proper initial data to begin the evolution, (2)
the development of coordinate and physical singularities
during the evolution, and (3) the growth of numerical insta-
bilities in the time-dependent solutions. These problems
have been dealt with by addressing each in turn with such
techniques as (1) elevation of the initial data problem to a
complete subfield; (2) development and analysis of appro-
priate gauge/slicing conditions that avoid coordinate singu-
larities; (3) excision of black hole centers, inside horizons, to
avoid physical singularities; and (4) the use of symmetric or
hyperbolic equations to enhance numerical stability.

One of the several remaining problems in this field is that,
for some problems and some coordinate systems, the con-
straint-violating modes will grow exponentially. These
eventually overwhelm any solution in only a short period of
time (<100M), rendering a long simulation (and the compu-
tation of any gravitational wave forms) impossible. For very
high resolution simulations the exponential growth of errors
begins early and continues until the errors diverge. On the
other hand, for simulations with coarse spatial resolution
the errors begin and remain at the truncation level until the
much smaller constraint violations grow to a level that
exceeds the truncation accuracy. Then the solution joins the
general exponential growth seen in the high-resolution sim-
ulations, blowing up in much the same manner as in the
high-resolution case (Scheel et al. 2002). The similar behav-
ior of this error at a variety of mesh spacings indicates that
it may be a numerical solution to the discrete equations that

are being integrated. Current attempts to solve this problem
include adding the constraints as penalty functions to the
evolution equations and techniques that reconverge the con-
straint equations every few time steps.

Constraint propagation is also an issue in the solution of
Maxwell’s equations. Techniques for doing so in the fields
of astrophysical magnetohydrodynamics (MHD) and elec-
tromagnetics of antennas and waves have been in place for
decades. These enforce the constraints not just stably, but to
machine accuracy. Finite-difference methods for constraint
propagation in astrophysical MHD are known as the
Evans-Hawley constrained transport (CT) method (Evans
& Hawley 1988) and now are an integral part of publicly
used codes, such as ZEUS (Stone & Norman 1992a; Stone
& Norman 1992b) and ZEUS-3D (Clarke 1996). In engi-
neering electromagnetics these are known as the Yee algo-
rithm (Yee 1966) and have many variants (De Raedt et al.
2002). They all involve building a mesh that is staggered in
space, and often in time as well, and then defining appropri-
ate vector and scalar quantities at whole or half-mesh
points.

While the success of CT for electromagnetics is certainly
due in part to the linearity of the physical equations, its abil-
ity to maintain accuracy of the solenoidal (r xB ¼ 0) and
Coulomb (r xE ¼ 4��c) constraints, to a few parts in 1014–
1015 over tens or hundreds of thousands of time steps, is
enticing. If such an algorithm can be found for numerical
relativity, it could be as useful as excision and other such
proven methods.

In this paper the properties of the electromagnetic CT
method (and of spacetime itself) are examined, and a similar
method is developed for numerical relativity. It is the thesis
of this paper and subsequent ones in this series that CT
methods work because they build spacetimes in which the
temporal and spatial derivatives commute (½@0; @i� ¼ Oð�rÞ,
where �r is the machine roundoff error). This naturally
enforces the Bianchi identities, and it is those implicit identi-
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ties that propagate the constraints. This thesis is not fully
tested in this first paper on the subject. In fact, it will take
some time and numerical effort to verify or refute it. Instead,
only the first steps are taken here. It is shown that the pro-
posed CT scheme for numerical relativity works exactly in
Riemann normal coordinates; in general coordinates most
terms also cancel. Detailed numerical simulations in four
dimensions will be needed to fully explore the method’s
stability properties to see whether these conditions are suffi-
cient for stable constraint propagation. If successful, how-
ever, similar CT methods should be possible for other
implementations of numerical relativity, not just for finite
differences.

This paper is intended to be the first in a long series that
will culminate in a numerical code that is capable of simulat-
ing black hole formation and the gamma-ray burst jet gener-
ation and gravitational wave production that is expected to
result from such events. These issues are important both for
dealing properly with the energetics in the system and with
the expected observational consequences of the event. To
treat these problems properly, such a code must be capable
of evolving the relativistic gravitational field, as well as the
fluid matter flowing within that field and the electromag-
netic field generated by currents flowing in that matter. Part
of achieving this goal will be to present a consistent numeri-
cal method, from the relativistic gravitational field to spe-
cific issues of stellar mergers and collapse. In this paper we
lay the groundwork for generating the time-dependent grav-
itational field and for evolving the electromagnetic field in
that metric. In subsequent papers we will present tests of the
constrained transport techniques developed herein and
eventually add the stress energy due to matter and fluid
motion to complete the code. Then, specific astrophysical
problems will be addressed. The ultimate aim of this work is
to foster a closer relationship between astronomers who
observe black hole systems and those numerical physicists
and astrophysicists who study them theoretically.

2. REVIEW OF CT FOR ELECTROMAGNETICS IN
FLAT SPACETIME

2.1. Evans-Hawley CTMethod forMHD

For astrophysical MHD the field equations that are
solved are

_BB ¼ �cr � E ð1Þ

with the solenoidal constraint

r xB ¼ 0 : ð2Þ

(Additional equations are solved, of course, including the
conservation of mass, momentum, and energy, but these are
not relevant here.) The Evans-Hawley constrained trans-
port technique satisfies equation (2) on the initial hyper-
surface, usually to machine accuracy, and then uses a differ-
encing scheme for equation (1) that ensures that equation
(2) is satisfied on each subsequent hypersurface to the same
level of accuracy as on the first. This is done by staggering
the grid in space and time (see Fig. 1). At whole time steps
the magnetic field vector components are defined normal to,
and centered on, grid cube faces. At half–time steps the elec-
tric vector is defined parallel to, and centered on, cube
edges. For the initial conditions the magnetic field is derived
from a vector potential

B ¼ r � A : ð3Þ

This vector potential is defined on cube edges at t ¼ 0t, and
for evolutionary computations _BB � @B=@t is defined on
cube faces, centered in time between nB and nþ1B, i.e., at
t ¼ nþð1=2Þt.

At t ¼ 0t we see that the solenoidal constraint is satisfied
to machine accuracy by this method. For Dx ¼ Dy ¼ Dz we
have simply

r xB ¼þBx � �Bx þ þBy � �By þ þBz � �Bz

¼r xr� A

¼ ðþþAz � þ�AzÞ � ðþþAy � þ�AyÞ
� ð�þAz � ��AzÞ þ ð�þAy � ��AyÞ
þ ðþþAx � þ�AxÞ � ðþþAz � þ�AzÞ
� ð�þAx � ��AxÞ þ ðþ�Az � ��AzÞ
þ ðþþAy � �þAyÞ � ðþþAx � �þAxÞ
� ðþ�Ay � ��AyÞ þ ðþ�Ax � ��AxÞ

¼Oð�rÞ ; ð4Þ

where þBi and �Bi are components on upper and lower cube
i-faces, respectively, and the two leading subscripts on
vector potential components Aj indicate the jth edge at the
intersection of the upper and/or lower cube faces with
normals in the two spatial dimensions orthogonal to j.
Similarly, taking the numerical divergence of equation (1) at
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Fig. 1.—Space-time representation for the Evans-Hawley CT scheme. Open circles are face-centered on the cubes, and crosses are edge-centered.
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1=2t, we have

r x _BB ¼ �cr xr � E ¼ Oð�rÞ ;

so, at time t ¼ 1t the magnetic field remains divergence-free,

r x 1B ¼ r x 0B þ Dt1=2ðr x _BBÞ ¼ Oð�rÞ ;

because it is the sum of two divergence-free fields. The
solenoidal constraint is therefore preserved to machine accu-
racy specifically because the vector identity r xr � E ¼ 0 is
naturally satisfied by the differencing scheme.

In the above equations the electric field can be computed
by any means, and CT still would be maintained. Ideal
MHD codes use Ohm’s law with infinite conductivity to
relate the fluid velocity and the magnetic field:

E ¼ � v

c
� B :

Some astrophysical codes, such as ZEUS and several in
Japan, use the method of characteristics to preserve Alfvén
waves in the E update and so are often called MOC-CT
codes. However, it is important to realize that CT results
simply from the grid staggering and has nothing to do with
the method of characteristics or any other E update scheme.

2.2. Yee Algorithm for Electromagnetics

In full electrodynamics two more Maxwell’s equations
are used to determine the electric field, instead of Ohm’s
law. In vacuum these are

_EE ¼ cr � B � 4�J ; ð5Þ
r xE ¼ 4��c : ð6Þ

Figure 1 then must be modified to include the new quantities
J (current density), �c (charge density), and � (electric
potential; see Fig. 2). We also add another initial data prob-
lem at t ¼ �1=2t that solves equation (6) for E. If, for the
moment, we choose the Coulomb gauge and ignore the
vector potential, we have

r2� ¼ � 4��c ;

E ¼ �r� :

Electric potential and charge density then must be defined
at cube corners on half–time steps, and current density must
be defined on cube edges at whole time steps (same as curlB,

A, and _EE; see Fig. 2). In an arbitrary gauge, we will have

E ¼ �r�� 1

c
_AA ; ð7Þ

indicating that _AA and E are co-located. The equations are
closed by specifying the evolution of �c and J, which
together must satisfy the conservation of charge

r x J ¼ � _��c ; ð8Þ

so _��c must be defined on cell corners at whole time steps.
This method of staggering was suggested by Yee almost 40
years ago (Yee 1966).

Constraints are preserved in the Yee algorithm in the
same manner as in the Evans-Hawley algorithm. For
Faraday’s law and the solenoidal constraint, the procedure
is identical. And for Ampere’s law we have

r x _EE ¼ cr xr � B � 4�r x J

¼Oð�rÞ þ 4� _�c�c ;

which gives the following update for divE:

1=2ðr xEÞ ¼ �1=2ðr xEÞ þ 1ðr x _EEÞDt
¼ 4��1=2�c þ 4�Dt1 _��c þOð�rÞ
¼ 4�1=2�c þOð�rÞ :

Thus, the Coulomb constraint is preserved to machine
accuracy as long as �c is conserved in the update.

2.3. Covariant Formulation of CT for Electrodynamics

Figure 3 recasts the Yee algorithm in covariant form,
using the Faraday tensor F (instead of the vector fields), the
four-current J, and the vector four-potential A. This will
give important clues to developing a CT scheme for
Einstein’s field equations. Maxwell’s equations, including
constraints, then become

D

xM ¼ 0 ; ð9Þ

D

xF ¼ 4�J ; ð10Þ

where M � F is the Maxwell tensor (the dual of F) and

D

is
now the four-gradient operator

D

� ð@=@t; @=@x; @=@y; @=@zÞ :

Because M and F are antisymmetric, they satisfy the tensor
identities (analogous to the vector identities r xr � E)

Fig. 2.—Space-time representation for the Yee algorithm. Similar to Fig. 1, but with filled circles located at cube corners. Another time step has been added
(�1=2t), along with electric field quantities.
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called the Bianchi identities

D

x ð

D

xMÞ ¼ 0 ;

D

x ð

D

xFÞ ¼ 0 :

These identities are related to J. A. Wheeler’s classic state-
ment that ‘‘ the boundary of a boundary is zero.’’ But does
the staggered grid in Figure 3 automatically satisfy these
identities to machine accuracy? A quick analysis of

D

xF
shows that, in fact, it does. The vector

D

xF is defined on cell
edges at whole time steps and on cell corners at half–time
steps, and it involves tensor components that are two half-
steps away from scalar points (whole time-step cell corners).
Taking the divergence of this vector causes like components
to cancel, so that

D
x ð

D
xFÞ ¼ Oð�rÞ

holds in this differencing scheme.
Because of the zero on the right-hand side of equation (9),

that equation itself also is often described as a Bianchi
identity,

dF ¼ 0 ; ð11Þ

where dF is the differential of the tensor F, which in
component form is given by

ðdFÞ��� � F½��;�� ¼ F��;� þ F��;� þ F��;� ;

where the comma denotes ordinary differentiation
(F��;� � @F��=@x�) and the brackets denote permuted
summation.1 This allows the Faraday tensor to be derived
from a vector four-potential

F ¼ dA

or

F�� ¼ A�;� �A�;� :

This is the covariant form for equations (3) and (7). Does
the staggered grid automatically enforce ddA ¼ 0 also? Yes.
We have already shown this to be the case for the magnetic

part (eq. [4]). For the electric part of ddA ¼ 0 we have

r � E ¼ �r � r��r �
1

c
_AA

¼ 1

c
_BB þOð�rÞ : ð12Þ

The second term is _BB=c to order �r, and the first term is zero
to the same order because of the staggered grid (see the
t ¼ �1=2t diagram in Fig. 2). So equation (12) is just the same
Faraday’s law that we are solving to machine accuracy in
the spatial part of equation (9) (or eq. [1]).

To summarize, then, the staggered grid naturally satisfies
the Bianchi (and vector) identities in space and time,

F��
;�� ¼ 0 ; ð13Þ

ðA�;� �A�;�Þ;� þ ðA�;� �A�;�Þ;� þ ðA�;� �A�;�Þ;� ¼ 0 ;

ð14Þ

to machine accuracy for any antisymmetric tensor F and for
any four-vectorA. Here we use the Einstein summation con-
vention, where a repeated index indicates summation over
the four coordinates (F��

;� � ��¼3
�¼0@F

��=@x�). Note that
equation (13) uses the raised form of F, but in flat space this
involves only multiplying by�1 with theMinkowski metric.
As a result of this cancellation, when the spatial parts of
equations (9) and (10) are integrated forward in time

P x ð

D

xFÞ ¼ 4�P xJ ; P x ð

D

xMÞ ¼ 0

(where the spatial projection tensor P�� ¼ n�n� þ g�� is
orthogonal to n̂n), the time parts (the constraints) are
automatically satisfied to machine accuracy,

n̂n x ð

D

xFÞ ¼ 4�n x J; n̂n x ð

D

xMÞ ¼ 0 ;

with no additional computation required. A staggered grid,
therefore, has ‘‘ deep geometric significance ’’ because it
naturally satisfies the Bianchi identities.

3. CT FOR ELECTRODYNAMICS IN CURVILINEAR
AND CURVED SPACETIME

CT also works in curvilinear coordinates and in curved
spacetime, but the method requires iteration. Again,
Maxwell’s equations are

D

xF ¼ 4�J ; dF ¼ 0 ;

Fig. 3.—Same as Fig. 2, but with covariant notation. Note placement of vector components (on hypercube edges) and Faraday tensor components (on
hypercube faces).

1 In this paper Greek indices range from 0 to 3, roman indices i, j, k, . . .
range from 1 to 3, and roman indices a, b, c, . . . will be used to denote a set
of three integers with one of the spatial indices missing [i.e., one of the sets
{0, 1, 2}, {0, 1, 3}, or {0, 2, 3}].
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but the gradient operator is now the covariant derivative
rather than the ordinary derivative

F��
;� ¼ 4�J� ; F½��;�� ¼ 0 ; ð15Þ

where

T��
;� � T��

;� þ ��
l�T

l� þ ��
l�T

�l ;

T��;� � T��;� � �l
��Tl� � �l

��T;�l

are the covariant derivatives of a general second-rank
tensor T,

��
�� � g�l�l�� ; ð16Þ

���� � 1
2 g��;� þ g��;� � g��;�

� �
ð17Þ

are different forms of the connection coefficients, and g�� is
the inverse of the metric g��. However, because the Faraday
tensor is antisymmetric (as is theMaxwell tensor), equations
(15) reduce to

F0��
� ¼ 4�J0� ; F½��;�� ¼ 0 ; ð18Þ

where

F0�� � F�� ffiffiffiffiffiffiffi�g
p

; J0� � J�
ffiffiffiffiffiffiffi�g

p
;

and
ffiffiffiffiffiffiffi�g

p
is the volume element (square root of the negative

metric determinant). Equations (18) involve only simple dif-
ferences and known values for the metric. However, unless
g is a diagonal, the raised version of the Faraday tensor F��

involves the sum of several lowered version components at
different grid locations

F�� � g�lg��Fl� :

Therefore, the time update of the fundamental variables Fl�

will necessarily be implicit, and therefore iterative because it
involves sums over time as well as space.

It is important to realize, however, that even in
curvilinear coordinates and curved spacetime, the Bianchi
identities

F0��
;�� ¼ 0 ð19Þ

will be satisfied to machine accuracy because F0�� is con-
structed before it is differenced and because that differencing
is done in precisely the same manner as in equation (13). It
does not matter that F0�� involves the sum of many tensor
components and products of metric components. It matters
only that the � and � derivatives commute.

4. GENERAL FINITE-DIFFERENCE PRESCRIPTION
FOR CT FOR TENSOR FIELD EVOLUTION

PROBLEMS

Figure 3 suggests the following geometric prescription for
a staggered grid when solving covariant tensor field evolu-
tion problems. This prescription is depicted schematically in
Figure 4 and appears to work for tensors up to at least rank
5. The basic rules are these:

1. Extend and stagger the grid in time as well as in space.
The time extension need not be very deep—only enough
cells to compute the tensor components, derivatives, etc., to
the order of the method. In this paper we use a second-order

differencing scheme, so we need only one additional half
plus one full time slice.
2. Treat time otherwise like a spatial coordinate; that is,

use the same differencing scheme in time as used in space so
that temporal and spatial differences commute.
3. Starting at corner nodes on the four-dimensional

hypercube cell, define the following quantities in the manner
described below. Simply put, a tensor component is located
one-half step away from hypercube cell corners in each
dimension specified by that component’s indices; two
repeated indices are equivalent to no shift at all.

a) Scalars: located on four-cube cell corners (three-
cube corners at whole time steps)

b) Vectors: located on four-cube edges, shifted one-
half cell step in the direction specified by that component,
that is,

i) J0 on three-cube cell corners at half–time steps
ii) J1 centered on three-cube x-edges at whole time

steps
iii) J2 centered on y-edges
iv) J3 centered on z-edges

c) One-forms: defined like vectors
d) Second-ranked tensors of any type

i) R��: defined like scalars, on three-cube cell cor-
ners at whole time steps

ii) R0i: centered on three-cube i-edges at half–time
steps

iii) Rij : centered on ij-faces at whole time steps
e) Third-ranked tensors and connection coefficients

i) ����, ����, ����: defined like J�

ii) �0ij, �i0j, �ij0: centered on three-cube ij-faces at
half–time steps

iii) �ijk: three-cube–centered at whole time steps
f) Fourth-ranked tensors

i) R����, defined like R��

ii) R���	 (� 6¼ � 6¼ � 6¼ 	), located at four-cube body
centers

g) Bianchi identities: defined like third-ranked tensors
(at least one index must be repeated). Examples are
R0023;2 (same as J3) and R0123;2 (centered on the 1-3 face at
half–time steps)
This differencing scheme has a number of properties that

make it look like a finite implementation of differential cal-
culus. First, the differential operator, which creates a tensor
of 1 higher order (e.g., eq. [11]), naturally places the new ten-
sor on the proper grid if the differencing is centered. This is
also true of the generation of ���� from the metric field g��.
Second, one of the most fundamental properties of a space-
time, that the covariant derivative of the metric (g��;�)
vanishes, is naturally satisfied to machine accuracy because
of this property. Third, the contraction of a mixed tensor is
trivial: for each staggered component of the contracted
tensor the four components of the parent tensor that are
needed for the sum are already located at the same grid
point as the contracted component. No additional averag-
ing is needed. Fourth, as shown below, in a local Riemann
normal coordinate system, the Bianchi identities are satis-
fied to machine accuracy. All terms cancel exactly, so the
constraints are propagated exactly as well.

Certain special tensors also have interesting properties.
The Kronecker delta 	�� , for example, has nonzero elements
(unity) only at hypercube cell corners. This is also true of
other identity tensors (	��
l , 	

���

l� , etc.), which are �1 at cell

corners. The Levi-Civita tensor ����	 and antisymmetric
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symbol ½���	� are just the opposite. They are zero every-
where except at the hypercube body centers. They lookmuch
like the identity tensors but are on a grid that is shifted one-
half step in each dimension. Furthermore, as the Levi-Civita
tensor expresses the volume element

����	 ¼
ffiffiffiffiffiffiffi�g

p ½���	� ;

its placement at the hypercube center creates a natural
scheme for forming volume integrals over those hypercubes.

5. CT FOR NUMERICAL RELATIVITY

5.1. Statement of the Problem

For reasons that are developed more fully below, we will
use mixed tensors to define the problem of numerical rela-
tivity. As noted above, such tensors will lend themselves
easily to contraction.

The classic problem of general relativity is to solve
Einstein’s field equations

G�
� ¼ 8�T�

� ð20Þ

(c ¼ G ¼ 1) for the metric coefficients. The Einstein
curvature tensor is derived from the Ricci curvature tensor

G�
� � R�

� � 1
2 	

�
�R ; ð21Þ

with

R � R�
� ð22Þ

being the Ricci curvature scalar. The Ricci tensor is the con-
traction of the Riemann tensor on the first and third indices

R�
� � Rl�

l� : ð23Þ

The Riemann tensor is the full statement of curvature of the
spacetime. In its mixed form it is given by

R��
�	 ¼ ���

	;� � ���
�;	 þ ��l

	 ��
l� � ��l

� ��
l	 ð24Þ

for a coordinate basis. The doubly raised connection
coefficients are given by

���
� � g����

�� : ð25Þ

We assume that the metric g�� has a unique inverse g
�� such

that

g�lgl� ¼ 	�� : ð26Þ

In this paper we will treat only the vacuum problem (the
source of stress energy T�

� ¼ 0) so that equation (20)
becomes

R�
� ¼ G�

� ¼ 0 : ð27Þ

The Riemann tensor R��
�	 possesses several symmetries,

including algebraic antisymmetry on � and � (and on � and
	) and differential symmetries (Bianchi identities)

R��
½�	;�� � R��

�	;� þR��
��;	 þR��

	�;� ¼ 0 : ð28Þ

The reader will note that the mixed Riemann tensor is
missing one additional symmetry that is possessed by the
covariant version: R���	 ¼ R�	��. (A raised index cannot be
swapped with a lower one.) When contracted on the first

and third indices, the Bianchi identities become simply

R�
�;� � 1

2R;� ¼ G�
�;� ¼ 0 ; ð29Þ

i.e., the divergence-free condition on the Einstein tensor.
These four conditions are responsible for propagating the
four constraints

G0
� ¼ 0 ð30Þ

if the other equations are satisfied:

Gi
� ¼ 0 : ð31Þ

5.2. CT in Riemann Normal Coordinates

At any point P in spacetime one can construct many
transformations L�

�̂�
to locally Lorentz systems such that

g�̂��̂� ¼ Ll
�̂�L

�
�̂�
gl� ¼ ��̂��̂� ð32Þ

in a neighborhood of that point. However, only one of those
systems—the Riemann normal system—also has vanishing
gradients of the metric and, therefore, vanishing connection
coefficients in that same neighborhood.

g�̂��̂�;�̂� ¼ 0 ;

��̂��̂��̂� ¼ 0 :

In this coordinate system in the neighborhood of P
covariant derivatives become ordinary derivatives and the
Riemann tensor and its Bianchi identities become

R�̂��̂�

�̂�	̂	
¼ ��̂��̂�

	̂	;�̂�
� ��̂��̂�

�̂�;	̂	
; ð33Þ

R�̂��̂�

½�̂�	̂	;�̂�� ¼ ��̂��̂�

	̂	;�̂��̂�
� ��̂��̂�

�̂�;	̂	�̂�
þ ��̂��̂�

�̂�;�̂�	̂	
� ��̂��̂�

�̂�;�̂�	̂	
þ ��̂��̂�

�̂�;	̂	�̂�
� ��̂��̂�

	̂	;�̂��̂�
¼ 0 :

ð34Þ

In the proposed staggered grid scheme in the previous sec-
tion, each of the terms of R�̂��̂�

½�̂�	̂	;�̂�� would be evaluated at the
same grid point, because they each have the same five indi-
ces. So the sum can be accomplished without additional
averaging from other grid points. We further note that each
term has a duplicate with the opposite sign, differing only in
the order of the derivatives (e.g., ��̂��̂�

	̂	;�̂��̂�
� ��̂��̂�

	̂	;�̂��̂�
). We can there-

fore draw the following conclusion: If a numerical scheme is
constructed such that derivatives commute (both space-space
and space-time), then in Riemann normal coordinates the
equation for the Bianchi identities (eq. [34]) will be satisfied
to machine accuracy, resulting in the propagation of the
constraints to machine accuracy. We note that the scheme
proposed in x 4 possesses the required properties.

How does satisfying the Bianchi identities propagate
the constraints numerically? This is easy to show in
Riemann normal coordinates. For the vacuum problem, the
constraints are given by

R0̂0
�̂�
¼ 0 ; ð35Þ

and we seek a scheme in which the constraints propagate to
machine accuracy

R0̂0
�̂�;0̂0

¼ Oð�rÞ : ð36Þ

However, satisfying the Bianchi identities (eq. [34]) will
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mean that the contracted identities are also satisfied to
machine accuracy:

R�̂�
�̂;�;�̂�

¼ Oð�rÞ ð37Þ

or

R0̂0
�̂�;0̂0

¼ �Rîi
�̂�;̂ii

þOð�rÞ : ð38Þ

All that needs to be shown is that Rîi
�̂�;̂ii

¼ Oð�rÞ also. For
the three momentum constraints (�̂� ¼ ĵj) this is
straightforward because Rîi

ĵj
¼ 0 are the field equations being

computed, so Rîi
ĵj
is Oð�rÞ by definition.2 Thus, the spatial

gradients Rîi
ĵj ;̂ii

will be Oð�rÞ, thereby propagating R0̂0
ĵj
to

machine accuracy.
For the Hamiltonian constraint (�̂� ¼ 0) we require satis-

faction of the momentum constraints on the hypersurface,
i.e., Rîi

0̂0;̂ii
¼ Oð�rÞ. Therefore, as long as the momentum con-

straints propagate to machine accuracy on each hypersur-
face, which we have shown above to be the case, the
Hamiltonian constraint will propagate also. Note, however,
that if the gradient of the momentum constraints has a con-
stant bias, then the Hamiltonian constraint will grow. On
the other hand, if the divergence fluctuates randomly, the
Hamiltonian constraint will fluctuate only randomly as
well.

5.3. CT in a General Coordinate Basis

Because a Riemann normal coordinate system is local
only and cannot be used to cover the entire spacetime, we
are forced to deal with nonzero connection coefficients.
However, we still will attempt to propagate the constraints
in the same manner—with a scheme that enforces the
Bianchi identities by employing temporal and spatial
differences that commute.

5.3.1. Propagation of the Constraints

It is important to note that the Bianchi identities are never
explicitly calculated in the CT method. Instead, we develop
a scheme in which

R0
�;0 ¼ 0

is satisfied to at least truncation accuracy for all time. (We
will find that machine accuracy may be an unattainable
goal.) However, in a general coordinate system the update
of R0

� will depend on an ‘‘ advection ’’ of curvature from
surrounding cells, because of the covariant derivative con-
nection terms. Thus, we equivalently seek a scheme in which

R0
�;0 ¼ 0 ð39Þ

to at least truncation accuracy. If we set up a grid in which

R��
½�	;�� ¼ Oð�trÞ ; ð40Þ

then we can proceed in much the same manner as in Rie-
mann normal coordinates, but with covariant derivatives. If
the Bianchi identities are satisfied to truncation accuracy,
then their contracted form also will hold,

R0
0;0 ¼ �Rj

0;j þOð�trÞ ;

R0
i;0 ¼ �R

j
i;j þOð�trÞ :

Thus, if the momentum constraints are satisfied on each
hypersurface, the Hamiltonian constraint will propagate,
albeit along geodesics, not coordinate lines. And the
momentum constraints will propagate if the field equations
are satisfied to at least truncation accuracy.

5.3.2. Cancellation of the @2� Terms

To demonstrate cancellation of terms in the Bianchi iden-
tities, we choose the following form for the mixed Riemann
tensor,

R��
�	 ¼ 1

2

�
���
	;� � ���

�;	 � ���
	;� þ ���

�;	

�
þ
�
��l
	 ��

l� � ��l
� ��

l	 þ ��
l	�

�l
� � ��

l��
�l
	

�
; ð41Þ

with the singly raised connection coefficient recomputed
from the doubly raised ones and the gradient of the inverse
metric

��
l� ¼

gl�
2

�
���
� � ���

� � g��;�
�
: ð42Þ

This form has the following properties:

1. R��
�	 possesses explicitly all the algebraic symmetries

discussed in x 5.1.
2. When the Bianchi identities3

R��
�	;� þ ��

l�R
l�
�	 þ ��

l�R
�l
�	 þR��

��;	 þ ��
l	R

l�
� � þ ��

l	R
�l
��

þR��
	�;� þ ��

l�R
l�
	� þ ��

l�R
�l
	� ¼ 0 ð43Þ

are formed and equation (42) is inserted, the ���
�;	� terms will

cancel to machine accuracy, as described before in x 5.2.

5.3.3. Cancellation of the �@�Terms

In equation (43) the ��
l��

l�
	;� terms will cancel explicitly

algebraically. Will they cancel numerically also? The answer
is yes, if we apply the following numerical procedure:
1. Use linear interpolation (averaging) to determine

quantities at intermediate grid points.
2. When forming a product, such as gl��

��
� , first average

the factors to the grid point in question, then form the
products and finally the sum. Do not form the products on
different grid points and then average.
Consider, for example, the two following Bianchi identity
terms:

��l
	;��

�
l� � ��

l��
�l
	;� : ð44Þ

Algebraically, of course, the two terms cancel. However, in
a staggered grid scheme they are not computed in the same

2 This statement requires a little clarification. Of course, the solution of
Rîi

ĵj
¼ 0 is accurate only to Oð�trÞ. However, if we use this truncation-

accurate solution to recompute Rîi
ĵj
, using exactly the same mathematical

definition of terms that we used in the evolution equation, then that
recomputed Rîi

ĵj
will be zero to machine accuracy. (It will not be so only if we

use a different differencing scheme than the one used in the original
evolution equation.) As a simple example, consider a line of code that
computes y ¼ axþ b. Then, if we later compute the function
f ¼ y� ax� b, by definition, fwill be zero to machine accuracy.

3 Note that, because of the antisymmetry in the last two indices of R��
�	

and the symmetry in the last two indices of ��
�� , the connection terms

involving � and 	 will cancel, just as they did for the antisymmetric Faraday
tensor Bianchi identities in eq. (18).
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manner. The first term comes from differencing a �� term in
the first term of equation (43), while the second comes from
the connection of one of the @� terms in the last term of that
same equation. One is the difference of an average, while the
other is the average of differences. But with linear averaging
we see that under these conditions the chain rule is satisfied
to machine accuracy:

0 ��l
	 ��

l�

h i
;�
¼ 1

Dx�
�
1=2

�
��l
	 ��

l�

�
� 1=2

�
��l
	 ��

l�

��
;

¼ 1

Dx�
�
1=2�

�l
	 � 1=2�

�l
	

� 1

2

�
1=2�

�
l� þ 1=2�

�
l�

�� 	
 �

�


þ 1=2

1

2
1=2�

�l
	 þ �1=2�

�l
	

� �� 	

�
�
1=2�

�
l� � �1=2�

�
l�

��
;

¼ 0

�
��l
	;��

�
l�

�
þ 0

�
��l
	 ��

l�;�

�
; ð45Þ

where the leading subscript 1
2 signifies the spatial node

position at which that quantity is evaluated, e.g.,

1=2x� ¼ 1
2 1x� þ 0x�ð Þ, and the quantities 1=2�

�l
	 are

themselves averages:

1=2�
�l
	 ¼ 1

2

�
1�

�l
	 þ 0�

�l
	

�
: ð46Þ

Thus, the differencing of a �� term will produce two
averaged �@� terms. In addition, averaging factors before
forming products causes the average and difference opera-
tors to commute, so that the second term in (44) becomes

�0

�
��
l��

�l
	;�

�
¼ � 1

2

�
1=2�

�
l� þ �1=2�

�
l�

� 1
2

�
1=2�

�l
	;� þ �1=2�

�l
	;�

�

¼ � 1

2

�
1=2�

�
l� þ �1=2�

�
l�

�

� 1

2Dx�
��

1�
�l
	 � 0�

�l
	

�
þ
�
0�

�l
	 � �1�

�l
	

��

¼ � 1

2

�
1=2�

�
l� þ �1=2�

�
l�

�

� 1

Dx�
1

2

�
1�

�l
	 þ 0�

�l
	

�
� 1

2

�
0�

�l
	 þ �1�

�l
	

�� 	

¼ � 1

2

�
1=2�

�
l� þ �1=2�

�
l�

�

� 1

Dx�
�
1=2�

�l
	 � �1=2�

�l
	

�
¼ � 0�

�
l� 0�

�l
	;� ;

which exactly cancels the first term on the right side of equa-
tion (45). A similar process with another ��@� term will
cancel the second term on the right side of that equation.

5.3.4. Noncancellation of the �3 Terms

While we are reasonably confident that, with these mea-
sures, �@� terms in the Bianchi identities will cancel, it is
clear that the �3 terms will not cancel to machine accuracy.
These are all produced by connection of the double C-terms
in the Riemann tensor. However, when forming the Bianchi
identities, the connection takes place on an already multi-
plied and summed �� product. One cannot undo the sums
and products, form averages, and then re-form the triple C-
product. The product of averages does not commute with
the average of products. The Bianchi identities, therefore,

will be left with terms proportional to the truncation error
and ð@gÞ3. Unless some clever averaging scheme can be
found to allow the triple C-terms to also cancel to machine
accuracy, any CT scheme developed along these lines will be
subject to truncation error. The hope, then, is that cancella-
tion of second- and first-order derivatives of the connection
(third- and second-order derivatives of the metric coeffi-
cients) will be sufficient to improve the stability of the
discrete evolution scheme.

Therefore, while the staggered grid CT method clearly
works in Riemann normal coordinates, detailed numerical
experiments will be needed to see whether it maintains its
desirable properties when applied in a general coordinate
basis.

5.4. Numerical Implementation

5.4.1. General Iterative Approach

The goal of this CT scheme is to produce an interlocking,
staggered four-dimensional grid of g�� tensor values by suc-
cessively adding new half- and whole temporal hyper-
surfaces. Because interpolation is in time, as well as space,
the scheme necessarily will be an implicit one and, therefore,
iterative. Our approach then will be first to produce an ini-
tial guess for g�� on the next level of hypersurfaces by using
an existing explicit scheme. This solution will not satisfy the
interlocking staggered grid equations, so it will be iterated
using the latter until it does. The exact iterative scheme is
still under development, but one possible implementation is
a multigrid technique in which the variables are the spatial
gij and the equations are the Ri

j ¼ 0 field equations.
This method appears similar to recently suggested

approaches in which the constraints are solved again at each
time step. There are, however, two key differences. First, the
constraints are not solved explicitly. Instead, the evolution
equations are solved in such a way that they are implicitly
enforced. This ensures a scheme in which the evolution and
constraints are fully compatible and not tracking different
numerical solutions to the differential equations. Second,
the equations being iterated are implicit hyperbolic, not
elliptic. In addition to information on the new hypersurface,
at each iteration these equations utilize information from
the previous hypersurface—information that constraint
equations do not have. With this added information, if
implemented properly, the iterative scheme should exhibit
faster convergence than a regular constraint solver would
have.

Figure 5 shows implementation of a simple 1þ 1 space-
time problem. Comparison of this figure with Figure 4 will
give insight into implementation of the full four-
dimensional interlocking grid. The quantities ng00 and

ng11
are known from the previous time step, the first being a
gauge condition and the second being the solution.
nþð1=2Þg10 and nþ1g00 are gauge conditions on the new
hypersurfaces, and nþ1g11 is the new solution that will be
determined by the iterative numerical scheme.

5.4.2. Using Gauge Conditions and Time Stepping

Specification of the coordinate gauge is similar to doing
so in classic 3þ 1 schemes: g00 is freely specified at cube cor-
ners on whole hypersurfaces, and g0i is freely specified at
cube edge centers on half-hypersurfaces; g0i is related to the
shift vector �i ¼ g0i, and both are properly located at half–
time steps vector points. Also g00 ¼ ��2 þ gij�

i�j is related
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to the lapse � and is properly located in this scheme at scalar
points. The gij are the six unique gravitational potential
fields that we intend to solve.

A typical time step then begins with g�� components
known on hypersurfaces n�1t, n�ð1=2Þt, and nt. One then
specifies the g0i vector on hypersurface nþð1=2Þt and the g00
scalar at nþ1t. The explicit predictors for nþ1gij at t then com-
plete the new g�� field, and the iteration on the gij can then
begin. If the g0� are dependent on the gij field (which gener-
ally will be the case here), then the gauge conditions need to
be updated at each iteration for a consistent solution.

5.4.3. Constructing the InverseMetric

The inverse of g�� is often needed to raise the connection
coefficients for use in the evolution equations. In principle
these g�� should also be located at second-ranked tensor
grid points. In practice, however, we never need the actual
staggered g�� fields. Instead, we need their interpolated
averages �gg�� at third-ranked tensor points. Furthermore,
for the raising and lowering of connection coefficient indices
to commute, the staggered field of g�� values must be con-
structed in such a way that its average and that of g�� are
orthogonal at those third-ranked tensor points

�gg�l�ggl� ¼ 	�� : ð47Þ

Thus, construction of the index-raising tensor �gg�� is a
straightforward matter of averaging g�� to places where the
���� are computed and then inverting that average locally at
those grid points. The actual staggered fields of g�� values,
whose averages should give us these �gg�� at third-ranked
tensor points, never need to be determined. This procedure
is fast, gives us raising and lowering operators that com-
mute, and follows the aforementioned rule of averaging first
and then multiplying and summing second.

5.4.4. Initial Data Problem

The initial data problem for a staggered grid will be a little
more complicated than that for a nonstaggered scheme. In
the latter case, there are 12 unknowns (gij and gij;0) and four
equations (R0

� ¼ 0) on the initial hypersurface at t ¼ 0t, for
a net total of 8 degrees of freedom. In the staggered case,
R0

0 is computed at t ¼ 0t, but the R0
j are computed at

t ¼ �ð1=2Þt.
Solution of the momentum constraints, given gij at t ¼ 0t,

is fairly straightforward in the staggered case. They are not
functions of second-order time derivatives of the metric
(e.g., gij;00), so the placement of those constraints at
t ¼ �ð1=2Þt allows them to directly relate �1gij to

0gij . All C
quantities can be computed in a staggered manner. The
momentum constraint solution at �1=2t, then, would have
six unknowns (0gij) and three constraints, leaving three
degrees of freedom, just like the nonstaggered grid case.

The Hamiltonian constraint, however, presents a
problem. While R0

0 also does not involve any second-order
time derivatives, nevertheless it does involve first-order time
derivatives gij;0. Those still are defined on half-hypersurfa-
ces, and therefore need to be interpolated to 0t; that is, we
need the gij;0 at both �1=2t and 1=2t anyway, even if we are
not going to compute gij;00. At first glance there does not
appear to be a method of providing an accurate gij;0ðtÞ field
to properly compute this interpolation. Of course, one sim-
ply could extrapolate gij;0 at

�1=2t forward to 0t (i.e., assume
gij;00 ¼ 0) and then solve R0

0 ¼ 0 there. The Hamiltonian
constraint solution then would have the six gij unknowns
and one constraint—5 degrees of freedom—just like the
nonstaggered case.

However, a serious problem still remains. There is no
means of enforcing the Hamiltonian constraint at t ¼ 1t.
While the staggered grid is, in principle, capable of doing

n+½tnt

n+1t

n −−−−½t
n −−−−1tt

x
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× ×

× ×
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Fig. 5.—Illustration of a 1þ 1 field evolution, including the initial data problem at 0t and a one-point boundary data problem at 0x. Bold quantities on the
grid are solutions to the initial data and evolutionary problems. The computation begins by using gauge conditions to specify g00 at

�1t, 0t, and 1t, and g01 at
�1=2t and 1=2t. Then R0

1, R
0
0, and R1

1 are solved for g11 at
�1t, 0t, and 1t. At the 0x boundary g11 may be specified, but at the �1x boundary g11 must be consistent

with R1
0 ¼ 0. Similarly, the g11 at Nþ1x are obtained by solving R1

0 ¼ 0 at Nþð1=2Þx. The evolution from nt to nþ1t proceeds by specifying g01 at
nþð1þ2Þt and g00

at nþ1t. Also g11 is computed by solving R1
1 ¼ 0. The boundary conditions R1

0 ¼ 0 also must be applied at [nþð1þ2Þt, �1=2x] and [nþð1þ2Þt, Nþð1=2Þx] to obtain g11
at �1x and Nþ1x on the new hypersurface.
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that, it can do so only through the evolution equations
Ri

j ¼ 0. However, at this stage we have not yet begun to
enforce the evolution. One possible method of solving this is
to do nothing. Just accept the fact that at t ¼ 1t, R0

0 ¼ 0 is
good only to truncation accuracy. Choosing a very small Dt
(a ‘‘ thin sandwich ’’) would keep this error small. A second
approach would be to also explicitly enforce the constraint
on t ¼ 1t, which would reduce the number of degrees of
freedom of the Hamiltonian problem from 5 to 4. While
producing a more constrained problem, this solution would
result in two successive hypersurfaces on which the
Hamiltonian constraint is satisfied. Yet a third alternative
would be to locate R0

j on the 1=2t hypersurface and extrapo-
late quantities like gij;0 forward to 1t. The problem with this
approach is that, while the Hamiltonian constraint is satis-
fied for the extrapolated gij;0 field, when the evolution is
begun the Hamiltonian constraint that is implicit in the evo-
lution equations will use fields that are interpolated in time
between �1=2t and 1=2t. There will be, therefore, an implicit
constraint violation injected into the evolution at the outset.

The elegant and proper method of solving this problem is
to solve all 10 of the Einstein field equations simultaneously
on the initial hypersurfaces. There will be 18 unknowns (gij
at �1t, 0t, and 1t) and 10 equations, leaving 8 degrees of free-
dom, just like the nonstaggered case. The resulting fields will
be properly staggered, and the C quantities will be properly
staggered and interpolated. The Hamiltonian constraint
will be satisfied at 0t by using the correctly interpolated
fields, and it will be satisfied at 1t (and even �1t as well,
because the evolution equations (and therefore the Bianchi
identities) are fully enforced. Similarly, the momentum con-
straints will be satisfied at �1=2t and 1=2t for the same reason,
regardless of whether they are actually applied at �1=2t or at
1=2t. The reader will, of course, recognize that this is more
than solving an initial data problem; in actuality the pro-
posed scheme solves the initial data problem plus the first
file evolutionary time step simultaneously. This is done to
ensure that the initial data on the first three hypersurfaces
are solutions of the discrete staggered evolutionary field
equations. No constraint violation will be introduced
implicitly other than what is naturally present in the
evolutionary method already.

5.4.5. Boundary Conditions

One-point boundary conditions.—When g and n x

D

g are
specified on the same boundary, where n is the boundary
normal, the boundary data problem is similar to the initial
data problem. In all such cases, the boundary constraints
are given by

nlR
l
� ¼ 0 ; ð48Þ

and for rectilinear grids with the boundary normal being a
coordinate unit 1 form n ¼ wðiÞ, this yields

R
ðiÞ
� ¼ 0 ; ð49Þ

where the symbol ðiÞ is a label indicating the boundary
direction in question, not strictly a coordinate index. The
equation R

ðiÞ
i (no sum) is located at three-cube corners and

plays the role of boundary constraint in much the same
manner as the Hamiltonian constraint does at 0t. Similarly,
the equations R

ðiÞ
a ¼ 0 (a 6¼ i) play the same role as the

momentum constraints did earlier. By analogy, then, the

boundary problem is as follows. There are 12 unknowns [gab
(a 6¼ i, b 6¼ i) at xðiÞ ¼ 0xðiÞ and at xðiÞ ¼ �1xðiÞ, i.e., on the
ith boundary and one ghost node beyond the boundary],
and there are four equations (49). This leaves 8 degrees of
freedom again, which must be specified with additional
boundary conditions. The diagonal constraint R

ðiÞ
i ¼ 0 is

applied at 0xðiÞ at three-cube corners.
Two of the off-diagonal constraints [R

ðiÞ
j ¼ 0 ( j 6¼ i)] are

applied on whole hypersurfaces at �1=2xðiÞ, and the final con-
straint R

ðiÞ
0 ¼ 0 is applied also at �1=2xðiÞ but on time half-

hypersurfaces. The reader will note that this latter set of
equations is related to the set of momentum constraints

R
ð0Þ
i ¼ 0, but the momentum constraints are defined at

1=2xðiÞ, 3=2xðiÞ, 5=2xðiÞ, . . . , Nþð1=2ÞxðiÞ and propagated for-
ward by the evolution equations. The constraint at �1=2xðiÞ

must be explicitly enforced in most cases, along with the
three others and the eight freely specified g�� at �1xðiÞ and
0xðiÞ.

Two-point boundary conditions.—Any number of addi-

tional boundary data problems are possible. R
ðiÞ
a ¼ 0 could

be specified at the upper ðiÞ boundary, while RðiÞ
i ¼ 0 could

be specified at the lower ðiÞ boundary, for example. Also,
some of the eight free g�� could be specified on opposing
boundaries as well.

For periodic boundary conditions, the six unknown g��
at �1xðiÞ are set to those near NxðiÞ, and those at Nþ1xðiÞ are
set to those near 0xðiÞ. No constraints are applied explicitly,
only implicitly through the wrapping conditions and the
evolutionary solution of the field equations.

5.4.6. Implementation Summary

It is useful to summarize how a complete problem will
proceed. The computation begins by using gauge conditions
to specify g00 at

�1t, 0t, and 1t and g0i at
1=2t and �1=2t. The

full initial data plus time step problem, including the field
equations, is then solved for gij on

�1t, 0t, and 1t, applying
eight freely specified gij (or eight functions thereof) in the
process. Appropriate boundary constraints also need to be
applied to obtain a consistent solution.

The field equations are generated as follows. An initial
guess for the gij is obtained by some means, perhaps using
conformal or other existing initial value methods or, for the
evolution, an explicit forward integration scheme. The full
g�� field values then are differenced onto third-rank tensor
grid points, and the ���� are formed. The g�� values are also
averaged to those same third-rank tensor points, and an
inverse of that average �gg�� is used to raise the connection
coefficients (eqs. [16] and [25]). The C quantities, in turn,
then are differenced and averaged to second-rank tensor
points for the Riemann tensor calculation. (Note that there
will be no need for values at other fourth-rank tensor points
[hypercube body centers], as Riemann will be immediately
contracted into Ricci.) Equation (24) should suffice for the
Riemann calculation (i.e., the explicit version, eq. [41]
should not be needed), because our raising and lowering
operators commute, rendering the results of equations (16)
and (42) the same to machine accuracy. Contraction to
Ricci is trivial, as it sums Riemann components already
computed at second-rank tensor points, and the Ri

j are then
tested to see if they are zero. If not, the local values of gij are
modified in an appropriate manner, and the computation of
the Ricci components is repeated until convergence. It is
important to remember that at grid boundaries the boun-
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dary constraints (which are evolutionary equations in their
own right) must be applied and iterated on as well, and the
freely specified boundary conditions must be applied. When
the iterative solution is acceptable, the computation
continues to the next hypersurface, first specifying the gauge
conditions and then solving the field equations.

6. DISCUSSION

The largest uncertainty in the proposed method is
the effect of the truncation errors introduced by non-
cancellation of the triple C-terms. Analytically we can be
sure of exact constraint propagation only if the Bianchi
identities are satisfied exactly, and that is not the case in a
general coordinate basis. On the other hand, the fact that
the method does work in a local Riemann normal system
and has some attractive properties of a finite differential
calculus is encouraging. Furthermore, most of the time-
dependent derivatives of g do cancel in the general case, and
this should enhance stability. Analytical investigation of the
stability of this method is difficult, so we have chosen to do
so numerically.

Two numerical implementations of this scheme are being
developed currently. The first assumes symmetries in two
spatial dimensions, rendering the scheme explicit and avoid-
ing the need for iteration. The second is a full implementa-
tion using staggered grids in four dimensions. Results of
these studies will help in determining the stability of the
method.

At best, the method is expected to be conditionally stable.
The Evans-Hawley and Yee methods have this property
and are subject to a Courant-like condition on the time step
(De Raedt et al. 2002). With c ¼ 1, this implies Dt < Dx,
which is a typical condition applied in most numerical
relativity implementations.

If it can be shown that such techniques provide stable
constraint transport for finite-difference implementations of
numerical relativity, then other implementations might ben-
efit from similar schemes that use four-dimensional grids
and that have temporal and spatial derivatives that com-
mute. In the finite-element case, this would begin by extend-
ing the elements into the time direction, rather than simply
time-stepping a three-dimensional finite-element grid. How-
ever, some additional features would have to be introduced,
analogous to grid staggering, to ensure commutation of
spatial and time derivatives across element boundaries.

The pseudospectral implementation may be intractable at
the present time. As spatial derivatives are computed using
the full spatial extent of the grid, to create amethod in which
these commuted with time derivatives, one could imagine
using many, if not all, previous and future time hyper-
surfaces to compute the latter. This would be a truly four-
dimensional grid method and involve solving the entire
spacetime structure in one giant iterative procedure.
Present-day computers still struggle with three-dimensional
explicit schemes, so a four-dimensional implicit one is
clearly beyond current technology. However, in the not too
distant future such codes might begin to be feasible.
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