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ADM equations I
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∂thij = −2NKij + ∇(iNj),

∂tKij = −∇i∇jN + N [3Rij(h) + Kij(trK) − 2KimK m
j ]

+[Nm∇mKij + ∇iN
mKjm + ∇jN

mKim],

3R(h) + trK2 − kijk
ij = 0,

∇jKij − DitrK = 0,

g = −(N2 − NiN
i)dt ⊗ dt + Ni(dxi ⊗ dt + dt ⊗ dxi) + hijdxi ⊗ dxj
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ADM equations II

Gab = 0 ⇒
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∂thij = −2NKij + ∇(iNj),

∂tKij = −∇i∇jN + N [3Rij(h) + Kij(trK) − 2KimK m
j ]

+[Nm∇mKij + ∇iN
mKjm + ∇jN

mKim],

3R(h) + trK2 − kijk
ij = 0,

∇jKij − DitrK = 0,

g = −(N2 − NiN
i)dt ⊗ dt + Ni(dxi ⊗ dt + dt ⊗ dxi) + hijdxi ⊗ dxj
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Einstein’s equations

Questions (Mostly answered by I. Choquet-Bruhat 50 years ago using another

system of equations):

Given smooth initial data (hij , Kij) is there a unique solution?

Causality?

Are the evolution equations unique?

Which evolutions are stable? (well posed)

Are the constraints satisfied along time evolution if they are satisfied initially?

Which evolution equations satisfy the constraint quantities? (Subsidiary

systems)

Banff Workshop on Numerical Relativity – p.6/24



Einstein’s equations

Given smooth initial data (hij , Kij) is there a unique solution?

No: in terms of metrics: the diffeomorphism freedom implies that if gab is

a solution to Einstein’s equations, also is φ?gab where φ is any smooth

diffeomorphism.

Yes: in terms of geometries, the equivalent class of metrics under

diffeomorphisms.

(hij ,Kij)

gab
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Einstein’s equations

Are the evolution equations unique?

No: you can add constraint equations to the evolution equations

No: you can fix some algebraic or differential relation between some

components (exploit the gauge freedom)
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Einstein’s equations

Which evolutions are stable? (well posed)

We know that many systems are well posed and others not, notably the

ADM system is only weakly hyperbolic.

There are many (several parameter families) that are symmetric

hyperbolic.

There are some which are only strongly hyperbolic

There are second orther systems which are well posed (for can be reduced

to first order pseudodifferential systems)

These systems are all linearly degenerated, so, unlike fluids, no shocks

seems to form.

Numerically solutions can behave very bad but even when the system is

well posed.
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Einstein’s equations

Are the constraints satisfied along time evolution if they are satisfied initially?

Yes: at the abstract level and for the initial value problem.

For each particular system one has to check that the subsidiary system has

a unique (zero) solution.

Numerically there can be constraint modes which diverge exponentially

from the constraint surface.

In many numerical problems one has a initial-boundary value problem,

very little is known in this case, for constraint preserving boundary

conditions must be given and in general they do not result in a well posed

system. More in Sarbach’s talk.
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Constraint Propagation

evolution space constraint submanifold
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Constraint Propagation
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Constraint Propagation

Which evolution equations satisfy the constraint quantities? (Subsidiary

systems)

Provided the evolution system is strongly hyperbolic, and that the

constraint satisfy certain condition, then the subsidiary system they satisfy

is also strongly hyperbolic.

Furthermore the characteristics of the subsidiary system are a subset of the

characteristics of the evolution system.

There exist symmetric hyperbolic systems whose constraint propagation is

not symmetric hyperbolic (but strongly hyperbolic).
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Applications:

ADM-BSSN first-second order systems [Frittelli-R,

Sarbach-Calabrese-Pullin-Tiglio, Kreiss-Ortiz, Nagy-Ortiz-R]

Constraint propagation. [Hyperbolicity properties of subsidiary systems of

constraints.]
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ADM equations I

Gab = 0 ⇒
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Lnhab = −2kab,

Lnkab = (3)Rab − 2ka
ckbc + kabkc

c − DaDbN
N ,

(3)R + (kc
c)2 − kabk

ab = 0,

Dbkba − Dak = 0,
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ADM equations II

L(t−β)hij = −2Nkij

L(t−β)kij =
N

2
hkl

[

−∂k∂lhij − ∂i∂jhkl + 2∂k∂(ihj)l

]

+ Bij

where

Bij := N
[

γiklγj
kl − γij

kγkl
l − 2ki

lkjl + kijkl
l − Aij

]

,

γij
k :=

1

2
hkl(2∂(ihj)k − ∂khij),

Aij := aiaj − γij
kak − 2γiklγj

(kl) + ∂i[(∂jN)/N ],

ai := (∂iN)/N.
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ADM equations III

Hyperbolicity analysis: 1) consider only the principal part, 2) freeze coefficients,

3) substitute all derivatives by Fourier transforms (∂khij → iωkĥik), and 4) define
ˆ̀
ij = iωĥij . [Kreiss, Ortiz][Taylor]

The associated first order system is then

∂t
ˆ̀
ij =̂ iω

[

−2Nk̂ij + ω̃kβk ˆ̀
ij

]

,

∂tk̂ij =̂ iω

[

−N

2

(

ˆ̀
ij + ω̃iω̃jh

kl ˆ̀
kl − 2ω̃kω̃(i

ˆ̀
j)k

)

+ ω̃kβkk̂ij

]

with ω̃i = ωi/ω.

Result:

ADM equations are only weakly hyperbolic (3 eigenvectors missing).
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ADM equations IV

N = hbQ (h = determinant of hij)

The associated first order system is then

∂t
ˆ̀
ij =̂ iω

[

−2Nk̂ij + ω̃kβk ˆ̀
ij

]

,

∂tk̂ij =̂ iω

[

−N

2

(

ˆ̀
ij + (1 + b)ω̃iω̃jh

kl ˆ̀
kl − 2ω̃kω̃(i

ˆ̀
j)k

)

+ ω̃kβkk̂ij

]

Result:

Modified ADM equations for b > 0 still weakly hyperbolic (2 eigenvectors

missing).

Adding Hamiltonian constraint does not change hyperbolicity, but does

change characteristics.
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BSSN equations I

fk = hijγij
k+dhklγlm

m = hkl(hij∂ihjl + ∂l lnh)

L(t−β)hij = −2Nkij

L(t−β)kij =
N

2
hkl [−∂k∂lhij − b ∂i∂jhkl] + N∂(ifj) + Bij

L(t−β)fi = N [−(2 − c)Dkkki + (1 − c)Dikk
k] + Ci
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BSSN equations II

Hyperbolicity Analysis:

∂t
ˆ̀
ij =̂ iω

[

−2αk̂ij + ω̃kβk ˆ̀
ij

]

∂tk̂ij =̂ iω
[α

2

(

−ˆ̀
ij − b ω̃iω̃jh

kl ˆ̀
kl + 2ω̃(if̂j)

)

+ ω̃kβkk̂ij

]

∂tf̂i =̂ iω
[

α
(

(−2 + c)k̂ikω̃k + (1 − c)ω̃ih
klk̂kl

)

+ ω̃kβk f̂i

]

Result: [Nagy-Ortiz-R]

Modified BSSN equations for b > 0 c > 0 strongly hyperbolic.

Eigenvalues: (0,±1,±
√

b,±
√

c/2)
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Constraint Propagation

Evolution System:

∂tu
α = A(u, t, x)αa

β∂auβ + B(u, t, x)α,

Constraints:

CA = K(u, t, x)Aa
β∂auβ + L(u, t, x)A,

Integrability condition (subsidiary system):

∂tC
A = S(u, t, x)Aa

B∂aCB + R(u, ∂u, t, x)A
BCB ,

Want to study what can we say about the properties of the subsidiary system

from what we know from the evolution system.
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Constraint Propagation II

Problem: In general S(u, t, x)Aa
B is not unique if the constraint themselves

satisfy certain identities.

For instance, if there is an LA(ω) such that:

LA(ω)KAn
αωn = 0

we could add to S(u, t, x)Aa
B

MAaLB

With this addition there are easy examples where one can get any sort of

badly posed systems!
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Constraint Propagation III

Assume: For any ωi, KAn
αωn is surjective.

In general this is not satisfied, but in examples of interest one finds subset of

constraints which do satisfy it. [Maxwell, EC].
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Constraint Propagation IV

Integrability condition implies:

KA(a
αA|α|b)

β − SA(a
BK|B|b)

β = 0

Lemma 1: Given any fixed non-vanishing co-vector ωa. If (σ, uα) is an

eigenvalue-eigenvector pair of Aαa
βωa then (σ, vA = KAa

αωauα), if vA is

non-vanishing, is an eigenvalue-eigenvector pair of SAa
Bωa.

Corollary 1: If the evolution system is strongly hyperbolic then so is the

subsidiary system. [It does not work symmetric → symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the

characteristics of the evolution system. The domain of dependence of the

subsidiary system is at least as large as the domain of dependence of the

evolution system.
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Constraint Propagation IV

Integrability condition implies:

[KAa
αωaAαb

βωb − SAa
BωaKBb

βωb]u
β = 0

Lemma 1: Given any fixed non-vanishing co-vector ωa. If (σ, uα) is an

eigenvalue-eigenvector pair of Aαa
βωa then (σ, vA = KAa

αωauα), if vA is

non-vanishing, is an eigenvalue-eigenvector pair of SAa
Bωa.

Corollary 1: If the evolution system is strongly hyperbolic then so is the

subsidiary system. [It does not work symmetric → symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the

characteristics of the evolution system. The domain of dependence of the

subsidiary system is at least as large as the domain of dependence of the

evolution system.
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Constraint Propagation IV

Integrability condition implies:

KAa
αωaAαb

βωbu
β − SAa

BωavB = 0

Lemma 1: Given any fixed non-vanishing co-vector ωa. If (σ, uα) is an

eigenvalue-eigenvector pair of Aαa
βωa then (σ, vA = KAa

αωauα), if vA is

non-vanishing, is an eigenvalue-eigenvector pair of SAa
Bωa.

Corollary 1: If the evolution system is strongly hyperbolic then so is the

subsidiary system. [It does not work symmetric → symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the

characteristics of the evolution system. The domain of dependence of the

subsidiary system is at least as large as the domain of dependence of the

evolution system.
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Constraint Propagation IV

Integrability condition implies:

KAa
αωaσuα − SAa

BωavB = 0

Lemma 1: Given any fixed non-vanishing co-vector ωa. If (σ, uα) is an

eigenvalue-eigenvector pair of Aαa
βωa then (σ, vA = KAa

αωauα), if vA is

non-vanishing, is an eigenvalue-eigenvector pair of SAa
Bωa.

Corollary 1: If the evolution system is strongly hyperbolic then so is the

subsidiary system. [It does not work symmetric → symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the

characteristics of the evolution system. The domain of dependence of the

subsidiary system is at least as large as the domain of dependence of the

evolution system.
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Constraint Propagation IV

Integrability condition implies:

σvA − SAa
BωavB = 0

Lemma 1: Given any fixed non-vanishing co-vector ωa. If (σ, uα) is an

eigenvalue-eigenvector pair of Aαa
βωa then (σ, vA = KAa

αωauα), if vA is

non-vanishing, is an eigenvalue-eigenvector pair of SAa
Bωa.

Corollary 1: If the evolution system is strongly hyperbolic then so is the

subsidiary system. [It does not work symmetric → symmetric].

Corollary 2: The characteristics of the subsidiary system are a subset of the

characteristics of the evolution system. The domain of dependence of the

subsidiary system is at least as large as the domain of dependence of the

evolution system.
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