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ADM eguations|

(9thz-j = —QNKZ']' —+ V(ZNJ),
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equations||

hij = —2NK;; + VN,

Kij — —VivjN + N[gRij (h) + Kij(tI‘K) = 2Kiijm]
—|—[NmeKij + V@Nijm + VijKim]a

BR(h) + tI‘K2 - k,,;jkij = O,




Elnstein’s eqguations

Questions (Mostly answered by I. Choquet-Bruhat 50 years ago using another
system of equations):

™ Given smooth initial data (/;;, /;;) is there a unique solution?

W Causality?

™ Are the evolution equations unigue?

W Which evolutions are stable? (well posed)

W Are the constraints satisfied along time evolution if they are satisfied initially?

W Which evolution equations satisfy the constraint quantities? (Subsidiary
systems)
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Elnstein’s eqguations

™ Given smooth initial data (%, /;,) is there a unique solution?

W No: in terms of metrics: the diffeomorphism freedom implies that if ¢, 1S
a solution to Einstein’s equations, also is ¢, g,, where ¢ iIs any smooth
diffeomorphism.

W Yes: In terms of geometries, the equivalent class of metrics under
diffeomorphisms.
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Elnstein’s eqguations

™ Are the evolution equations unique?
™ No: you can add constraint equations to the evolution equations

W No: you can fix some algebraic or differential relation between some
components (exploit the gauge freedom)
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Elnstein’s eqguations

™ Which evolutions are stable? (well posed)

We know that many systems are well posed and others not, notably the
ADM system is only weakly hyperbolic.

There are many (several parameter families) that are symmetric
hyperbolic.

There are some which are only strongly hyperbolic

There are second orther systems which are well posed (for can be reduced
to first order pseudodifferential systems)

These systems are all linearly degenerated, so, unlike fluids, no shocks
seems to form.

Numerically solutions can behave very bad but even when the system is
well posed.
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Are the constraints satisfied along time evolution if they are satisfied initially?
Yes: at the abstract level and for the initial value problem.

For each particular system one has to check that the subsidiary system has
a unigue (zero) solution.

Numerically there can be which diverge exponentially
from the constraint surface.

In many numerical problems one has a initial-boundary value problem,
very little i1s known in this case, for constraint preserving boundary
conditions must be given and in general they do not result in a well posed
system. More in Sarbach’s talk.
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raint Propagation




raint Propagation

domain lof
dependence



Constraint Propagation

W Which evolution equations satisfy the constraint quantities? (Subsidiary
systems)

Provided the evolution system is strongly hyperbolic, and that the
constraint satisfy certain condition, then the subsidiary system they satisfy
IS also strongly hyperbolic.

Furthermore the characteristics of the subsidiary system are a subset of the
characteristics of the evolution system.

There exist symmetric hyperbolic systems whose constraint propagation is
not symmetric hyperbolic (but strongly hyperbolic).
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Applications:

W ADM-BSSN first-second order systems [Frittelli-R,
Sarbach-Calabrese-Pullin-Tiglio, Kreiss-Ortiz, Nagy-Ortiz-R]

W Constraint propagation. [Hyperbolicity properties of subsidiary systems of
constraints. ]

Banff Workshop on Numerical Relativity — p.14/24



ADM eguations|

»Cnha,b — _2kaba

['nkab — (S)Rab — 254" Kpe 1= Kaphe” Da]l\)[bNa

Gab =0 =
BIR + (k)2 — kapk®® = 0,

Dy, — Dok = 0,
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equations||

(t—ﬁ)hij = _2Nkij

N
(t—ﬁ)kij = ?hkl [—8kalhz'j — 8iajhkl T 28k8(zh3)l] + Bij

Bij = N [’Yz‘kl’ijl — i et — 2kt kKt — Az‘j] :
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ADM equations |11

Hyperbolicity analysis: 1) consider only the principal part, 2) freeze coefficients,
3) substitute all derivatives by Fourier transforms (Oxh;; — jwyhiy), and 4) define
6 zwhw [Kreiss, Ortiz][ Taylor]

The associated first order system is then

0t@ij = w _—QN]A%;J' —|—@kﬁk&j} ,
7 A . [ N /5 ~ ~ 1klp ~k~ » ~ k7
&gkij = 1w —E (fz'j + Wz'wjh Ui — 20w W(i£j)k> + w0 kz’j

with @; = w; /w.
Result:

= ADM equations are only weakly hyperbolic (3 eigenvectors missing).
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ADM eguations|V

N = h @ (h = determinant of h;;)

The associated first order system is then

) . .| N ~ ~ 1 klj ~k~ 5 ~ ki
Oiki; = iw == (&-j + (14 )ow;h gy — 20 w(z'fj)k) + Wk 0" kij
Result:

™ Modified ADM equations for b > 0 still weakly hyperbolic (2 eigenvectors
missing).

W Adding Hamiltonian constraint does not change hyperbolicity, but does
change characteristics.
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equations|

fE=nYy* 0 =h*(RYOhy; + 6 1nh)

t—gyhij = —2Nki;

n
(t-pki; = Th" [0k0ihi; —b0,0;hr] + NOGfj) + By

,C(t_g)fi = N[—(2 — C)Dkkki + (1 — C)Dzkkk] + CZ



BSSN equations | |

Hyperbolicity Analysis:

&5&3- = w _—2&]%@' -+ a)kﬂkém}
2 R e A . A A ~ 2
atkij = 1w 5 (_gij — bwiwjhklfkl -+ QW(zfj)> + Wkﬂkkij}

O, f; = iw o ((—2 + o)kgo® + (1 — C)‘Dz’hk%kl) + @kﬂkﬁ,}

Result: [Nagy-Ortiz-R]
™ Modified BSSN equations for b > 0 ¢ > 0 strongly hyperbolic.
W Eigenvalues: (0,41, £v/b, £+/c/2)
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Constraint Propagation

Evolution System:
ou® = A(u,t, x)aagaauﬁ + B(u,t,x)“,

Constraints:
O — K(U, t, x)AaﬁaaUB =+ L(uv t x)A7

Integrability condition (subsidiary system):

0,C* = S(u,t,z)**50,CP + R(u,0u,t,z)*gCP,

W Want to study what can we say about the properties of the subsidiary system
from what we know from the evolution system.

Banff Workshop on Numerical Relativity — p.21/24



Constraint Propagation ||

M Problem: In general S(u,t,x)“?p is not unique if the constraint themselves
satisfy certain identities.

For instance, if there is an L 4 (w) such that:

LA(w)KA" qw, =0

we could add to S(u, ¢, )45

MACLLB

W With this addition there are easy examples where one can get any sort of
badly posed systems!
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raint Propagation |11

me: For any w;, K4™,w,, is surjective.

neral this is not satisfied, but in examples of interest one finds subset of
raints which do satisfy it. [IMaxwell, EC].



Constraint Propagation |1V

Integrability condition implies:

KA, glelb) , _ gAGe 5B, _

W Lemma 1: Given any fixed non-vanishing co-vector w,. If (o, u“) is an
eigenvalue-eigenvector pair of A%?gw, then (o, v* = K49 w,u®), if v2 is
non-vanishing, is an eigenvalue-eigenvector pair of S4¢ gw,.
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Constraint Propagation |1V

Integrability condition implies:

[KAaawaAo‘bgwb = SAanaKBbgwb]uﬁ =0

W Lemma 1: Given any fixed non-vanishing co-vector w,. If (o, u“) is an
eigenvalue-eigenvector pair of A%?gw, then (o, v* = K49 w,u®), if v2 is
non-vanishing, is an eigenvalue-eigenvector pair of S4¢ gw,.
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Constraint Propagation |1V

Integrability condition implies:

KA“awaAo‘b@wbuﬁ — S w08 =0

W Lemma 1: Given any fixed non-vanishing co-vector w,. If (o, u“) is an
eigenvalue-eigenvector pair of A%?gw, then (o, v* = K49 w,u®), if v2 is
non-vanishing, is an eigenvalue-eigenvector pair of S4¢ gw,.
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Constraint Propagation |1V

Integrability condition implies:

K4 w,ou® — S gw, 02 =0

W Lemma 1: Given any fixed non-vanishing co-vector w,. If (o, u“) is an
eigenvalue-eigenvector pair of A%?gw, then (o, v* = K49 w,u®), if v2 is
non-vanishing, is an eigenvalue-eigenvector pair of S4¢ gw,.
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Constraint Propagation |V

Integrability condition implies:

ov?t — S 5w, 0B =0

W Lemma 1: Given any fixed non-vanishing co-vector w,. If (o, u“) is an
eigenvalue-eigenvector pair of A%?gw, then (o, v* = K49 w,u®), if v2 is
non-vanishing, is an eigenvalue-eigenvector pair of S4¢ gw,.

W Corollary 1: If the evolution system is strongly hyperbolic then so is the
subsidiary system. [It does not work symmetric — symmetric].

W Corollary 2: The characteristics of the subsidiary system are a subset of the
characteristics of the evolution system. The domain of dependence of the
subsidiary system is at least as large as the domain of dependence of the
evolution system.
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