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| ntroduction

Solve Einstein’s equations in a domain with timelike boundaries.
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Boundary conditions should

() be compatible with the constraints (constraint-preserving)
(i) be physically reasonable (e.g. minimize reflections)

(i) yield a well posed initial-boundary value formulation

Outer boundary conditions in GR — p.3/2:



| ntroduction

A well posed initial-boundary value formulation was given by

In terms of a tetrad-based Einstein-Bianchi
formulation.

Numerical implementation for related formulation is underway

Less is known for metric-based formulations (although recent
progress by Cornell-Caltech group and S & Tiglio).

Relevant for: Outer/interface boundary conditions; constraint
projection, elliptic gauge conditions,...
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For mulation

Evolution equations can be cast into first order quasilinear form:

£oa = —aK,
£ngij = —2Kj,
1
£nKij = 5 gab (—(’Ldbij + 28(id|ab|j) — 8(idj)ab — 2(’9(1-143-)) + ’ygin + |.C
0€ndkij = —28kK7;j + ngk(iMj) -+ Xgiij + |.0.
£, A = —KA;, — g0, K., + EM; + o

with some parameters v, n, x &.
Constraints: H = 0, M; = 0 (Hamiltonian and momentum),

dkij — (‘9kgij, Az — 81'04/04.
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For mulation

Main evolution system has the form

Oyu = P"(u)0ju + F(u),

where u = (Oé, 9ij, Kz'j, dkija Ak)
The constraint variables v = (H, M, dy;; — 0k gi;, Ai — Oia/a, ...)
satisfy the constraint propagation system

O = Q" (u)0;v + Blu]v,

Provided that the parameters -, 1, x £ satisfy suitable inequalities,
these two systems can be brought into strongly hyperbolic form.
So in the absence of boundaries we have a well posed formulation.

Outer boundary conditions in GR — p.6/2.



For mulation

Main evolution system has the form

Oyu = P"(u)0ju + F(u),

where u = (Oé, 9ij, Kz'j, d]ﬂ'j, Ak)
The constraint variables v = (H, M, dy;; — 0k gi;, Ai — Oia/a, ...)
satisfy the constraint propagation system

v = Q" (u)0jv + Blu]v,

Provided that the parameters -, 1, x £ satisfy suitable inequalities,
these two systems can be brought into strongly hyperbolic form.
So in the absence of boundaries we have a well posed formulation.

Oru = P'(u)0;u + F(u) is called strongly hyperbolic if there exists K > 0 and a
symmetric matrix-valued function H (u,n) which is smooth in w and n such that
K=1'< H(u,n) < K and H(u,n)P*(u)n; is symmetric for all n € S? and all w.
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Constraint-preserving b.c.

Solve equations on domain 2 with (smooth) boundary 0f).

Start with the constraint propagation system,

v = Q" (u)d;v + Blu]v.
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Constraint-preserving b.c.

Solve equations on domain 2 with (smooth) boundary 0f).

Start with the constraint propagation system,
v = Q" (u)d;v + Blu]v.

Require this system to be symmetric hyperbolic, i.e. the
symmetrizer H(u) = H(u,n) is independent of n.
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Constraint-preserving b.c.

Solve equations on domain 2 with (smooth) boundary 0f).

Start with the constraint propagation system,
v = Q" (u)d;v + Blu]v.

Require this system to be symmetric hyperbolic, i.e. the
symmetrizer H(u) = H(u,n) is independent of n.

Specify maximal dissipative boundary conditions:

d

E(t) = /QUTH’U d’x, EE(t) = /({m v HQ(n)vdS + %E(t)

vIHQ(n)v = vi A vin — vl A vy Set v, =0 (3 b.c.).
In this case we have an energy estimate E(t) < et/"E(0).
In particular, this implies that v(¢) = 0 if v(0) = 0.
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Constraint-preserving b.c.

Go back to main evolution system, 9;u = P*(u)0;u + F(u).
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Constraint-preserving b.c.

Go back to main evolution system, 9;u = P*(u)0;u + F(u).

Boundary matrix H(u,n)P*(u)n; has six positive eigenvalues; for
high-frequency plane waves propagating towards the boundary:

three constraint-violating modes; fields ugffm)
(phys)

mn

gauge)

n

two physical modes; fields «
one gauge mode; fields u§
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Constraint-preserving b.c.

Go back to main evolution system, 9;u = P*(u)0;u + F(u).

Boundary matrix H(u,n)P*(u)n; has six positive eigenvalues; for
high-frequency plane waves propagating towards the boundary:

three constraint-violating modes; fields ugff”‘g)
(phys)

mm

gauge)

mn

two physical modes; fields «
one gauge mode; fields uf

cons)

Notice: ufn

differential boundary condition for «
2 u(cons) B

tY%in N

=+ v;,! Rather, the three conditions v;,, = 0 yield a
(cons) at the boundary:

mn
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Constraint-preserving b.c.

Go back to main evolution system, 9;u = P*(u)0;u + F(u).

Boundary matrix H(u,n)P*(u)n; has six positive eigenvalues; for
high-frequency plane waves propagating towards the boundary:

three constraint-violating modes; fields uEfLO”S)
(phys)

m

gauge)

mn

two physical modes; fields «
one gauge mode; fields uE

cons)

Notice: ugn

differential boundary condition for «
2 u(cons) B

tY%in N

=+ v;,! Rather, the three conditions v;,, = 0 yield a
(cons) at the boundary:

mn

We can set ugghw — h, where h is some a priori given boundary
data.
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Constraint-preserving b.c.

Go back to main evolution system, 9;u = P*(u)0;u + F(u).

Boundary matrix H(u,n)P*(u)n; has six positive eigenvalues; for
high-frequency plane waves propagating towards the boundary:
three constraint-violating modes; fields w "

two physical modes; fields u'*"v*

m
(gauge)
m

one gauge mode; fields u.

Notice: u (CO”S) -+ v;,! Rather, the three conditions v;,, = 0 yield a

dlfferentlal boundary condition for u(CO”S) at the boundary:
o u(cons)

tY%in

We can set ugghw — h, where h is some a priori given boundary
data.

Set u (ga’“ge) = 0.

Outer boundary conditions in GR — p.8/2:



Constraint-preserving b.c.

A different way of specifying boundary data is through the Weyl scalars
U, and ¥4, constructed from an adapted NP tetrad at the boundary:

\IJO = C\IJZ —|—h

where |c| < 1.

Notice:

For linear fluctuations about a Schwarzschild black holes and
spherically symmetric outer boundary, ¥, and ¥, are gauge-invariant
guantities.
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Deter minant condition

Consider linear hyperbolic system with constant coefficients
(high-frequency limit),

ou = Au,t >0,z > 0,

where Au = A*0,u + AY0,u + A*0,u with differential boundary
conditions

M (0, 0y,0,)u = h(t,y, 2).
Look for solutions of the form wu(t, z,y, z) = estHi(wyytw=2) (), where
Re(s) > 0, wy, w, real.
Test: If h = 0 there should be no such solutions. Otherwise the system
IS ill posed: Because if there is such a solution for some s, Re(s) > 0,
then there Is also a solution «,, for as, o > 0 and for each fixed ¢

aRe(s)t

(ua (t, z,y, 2)|/|ua (0, 2,y,2)| =€ — 0.

(i.e. the operator s — A is not invertible for all Re(s) > 0.)

Outer boundary conditions in GR — p.10/2:



Deter minant condition

Introducing the ansatz u(t, z,y, z) = e*t T (Wy¥Fw=2) £(g) into the
evolution and boundary equations gives

sf=A%0f +i1(A%w, + A%w,)f, L(s,iw,,iw,)f = 0.

Solution has the form f(z) = PeM-%*0_, Re(M_) < 0 with LPo_ = 0.
Therefore, one has to verify the determinant condition

det(LP)(s,w,,w,) # 0, Re(s) > 0.

One can rule out “candidate” constraint-preserving boundary
conditions
Such ill posed solutions can be constraint-violating or gauge modes!

Outer boundary conditions in GR — p.11/2!



Numerical results

3D numerical finite-difference code

Domain is a cubic box [—1, 1]°.

Third order Runge-Kutta time-discretization.

Second-order accurate finite differencing for spatial operators.

Some artificial dissipation.

Outer boundary conditions in GR — p.12/2:



CALTECH

Numerical results

CPBC without Weyl control (completely ill posed case)
Random data

[2)
i}
=

@®©
]

0

c

o

(&)

)
e
=

—

o
w—

>

(@)

hust

)

c
L

0.6 0.8
Crossing times

Outer boundary conditions in GR — p.13/2:



CALTECH

Numerical results

CPBC without Weyl control (determinant condition satisfied)
Random data
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CALTECH

Numerical results

CPBC without Weyl control (determinant condition satisfied)
Strong Brill waves
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CALTECH

Numerical results

Comparison with non-constraint-preserving boundary conditions

CPBC without Weyl Control (determinant condition satisfie Maximally dissipative
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10°

n n
= =
= =
@ @
=] =]
%2} %2}
c c
o o
o o
() ()
e e
=] =]
— —
=] =]
u— u—
P P
(2 (2
= =
] ]
c c
L L

1.5 2
Crossing times Crossing times

Outer boundary conditions in GR — p.16/2:



CALTECH

Numerical results

CPBC with Weyl Control (determinant condition satisfied)
Random data

0
]
=

@®
=

n

[

@)

o

Q
e
)

S

@)
Y

>

(o))

S

Q

c
Ll

30 40
Crossing times

Outer boundary conditions in GR — p.17/2:



A related toy model in ED

Fat Maxwell (Az — Gij, Ej — Kz'j; Wij — dkij):

OA; = LB+ V;o,
875Ej — VZ(WZ] — W]Z) + oz5ijC’k7;j,
B
oW,; = V,E;+ §5z’j,0 +V.:V;0,

with the constraints p = VXE, = 0, Cy;; = Vi W;; — VW = 0.
Strongly hyperbolic if a3 > 0 (Cauchy problem well posed in L?).
If boundaries are present, impose the boundary conditions

V*EL, =0 preserves the constraints

E|| = Wy — W) + controls normal component of Poynting vecto

Outer boundary conditions in GR — p.18/2!



A related toy model in ED

Choose the gauge condition ¢ = 0 (temporal gauge « fixed shift).

Well pOSEd in L2 (’LL == (AZ, Ej, WZJ))’?

t
futt, ey < ae [0,z + [ 1)12(om |

Outer boundary conditions in GR — p.19/2!
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The system passes the determinant condition for all a3 > 0
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A related toy model in ED

Choose the gauge condition ¢ = 0 (temporal gauge « fixed shift).

Well pOSEd in L2 (’LL == (Au Ej, I/Vw))’7

t
futt, gz < ae 0.z + [ 1)z2(om ds|

The system passes the determinant condition for all a3 > 0

However, consider solutions of the type
Ay =V E; =V,;f, Wi =tV;V,f,

where f Iis a smooth, time-independent, harmonic function.
Evolution and constraints equations are satisfied. Initial and
boundary data only depend on first derivatives of f whereas the
solution depends on second derivatives of f.

Outer boundary conditions in GR — p.19/2:



A related toy model in ED

This is due to a bad gauge choice at the boundary!
(physically one has an electrostatic solution with nontrivial electric
charge density at the boundary)

This motivates the following gauge condition:
A¢p = —V*Ey, on boundary: 9,6 = —F,, .

Using this gauge condition, one can show that the problem is well
posed in a Hilbert space that controls the L? norm of the fields
and the constraint variables Solution
flux in this space Is given by a semigroup.

Current work with G. Nagy for generalization to Einstein (maximal
slicing and minimal strain).

Outer boundary conditions in GR — p.20/2:



Conclusions

At the end of the day ?7??

Matching to a characteristic code

time

~Characteristic code

Cauchy code

o o e e e e e e e

> space
initial data
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Conclusions

At the end of the day ?7??

Matching to a characteristic code _ _
Conformal field equations

time

time

<Characteristic code

Cauchy code

T Tt TTTTTTT

initial data

> space

o o e e e e e e e

> space
initial data
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