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Introduction

Solve Einstein’s equations in a domain with timelike boundaries.

t=0

time-like boundary

domain of dependence

t=T>0

Boundary conditions should

(i) be compatible with the constraints (constraint-preserving)

(ii) be physically reasonable (e.g. minimize reflections)

(iii) yield a well posed initial-boundary value formulation
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Introduction

A well posed initial-boundary value formulation was given by
Friedrich & Nagy, 1999 in terms of a tetrad-based Einstein-Bianchi
formulation.

Numerical implementation for related formulation is underway
(Reula, Bardeen, Buchman, S,...?)

Less is known for metric-based formulations (although recent
progress by Cornell-Caltech group and S & Tiglio).

Relevant for: Outer/interface boundary conditions; constraint
projection, elliptic gauge conditions,...
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Formulation

Evolution equations can be cast into first order quasilinear form:
Frittelli & Reula, Anderson & York, Hern, KST,..., S & Tiglio

£nα = −αK,

£ngij = −2Kij ,

£nKij =
1

2
gab

(

−∂adbij + 2∂(id|ab|j) − ∂(idj)ab − 2∂(iAj)

)

+ γ gijH + l.o.

£ndkij = −2∂kKij + η gk(iMj) + χ gijMk + l.o.

£nAi = −KAi − gab∂iKab + ξMi + l.o.

with some parameters γ, η, χ ξ.
Constraints: H = 0, Mj = 0 (Hamiltonian and momentum),
dkij = ∂kgij , Ai = ∂iα/α.
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Formulation
Main evolution system has the form

∂tu = P i(u)∂iu + F (u),

where u = (α, gij , Kij , dkij, Ak).
The constraint variables v = (H, Mj , dkij − ∂kgij , Ai − ∂iα/α, ...)

satisfy the constraint propagation system

∂tv = Qi(u)∂iv + B[u]v,

Provided that the parameters γ, η, χ ξ satisfy suitable inequalities,
these two systems can be brought into strongly hyperbolic form.
So in the absence of boundaries we have a well posed formulation.

∂tu = P i(u)∂iu + F (u) is called strongly hyperbolic if there exists K > 0 and a
symmetric matrix-valued function H(u, n) which is smooth in u and n such that
K−1 ≤ H(u, n) ≤ K and H(u, n)P i(u)ni is symmetric for all n ∈ S2 and all u.
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Constraint-preserving b.c.
Solve equations on domain Ω with (smooth) boundary ∂Ω.

Start with the constraint propagation system,

∂tv = Qi(u)∂iv + B[u]v.

Require this system to be symmetric hyperbolic, i.e. the
symmetrizer H(u) = H(u, n) is independent of n.

Specify maximal dissipative boundary conditions:

E(t) ≡

∫

Ω

vT Hv d3x,
d

dt
E(t) ≤

∫

∂Ω

vT HQ(n)v dS +
1

τ
E(t).

vT HQ(n)v = vT
inΛ+vin − vT

outΛ−vout. Set vin = 0 (3 b.c.).
In this case we have an energy estimate E(t) ≤ et/τE(0).
In particular, this implies that v(t) = 0 if v(0) = 0.
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Constraint-preserving b.c.

Go back to main evolution system, ∂tu = P i(u)∂iu + F (u).

Boundary matrix H(u, n)P i(u)ni has six positive eigenvalues; for
high-frequency plane waves propagating towards the boundary:
three constraint-violating modes; fields u

(cons)
in

two physical modes; fields u
(phys)
in

one gauge mode; fields u
(gauge)
in

Notice: u
(cons)
in 6= vin! Rather, the three conditions vin = 0 yield a

differential boundary condition for u
(cons)
in at the boundary:

∂tu
(cons)
in = ....

We can set u
(phys)
in = h, where h is some a priori given boundary

data.

Set u
(gauge)
in = 0.
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Constraint-preserving b.c.

A different way of specifying boundary data is through the Weyl scalars
Ψ0 and Ψ4, constructed from an adapted NP tetrad at the boundary:

Ψ0 = cΨ∗
4 + h.

where |c| < 1.
Notice:
For linear fluctuations about a Schwarzschild black holes and
spherically symmetric outer boundary, Ψ0 and Ψ4 are gauge-invariant
quantities.
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Determinant condition
Consider linear hyperbolic system with constant coefficients
(high-frequency limit),

∂tu = Au, t > 0, x > 0,
where Au ≡ Ax∂xu + Ay∂yu + Az∂zu with differential boundary
conditions

M(∂x, ∂y, ∂z)u = h(t, y, z).
Look for solutions of the form u(t, x, y, z) = est+i(wyy+wzz)f(x), where
Re(s) > 0, wy, wz real.
Test: If h = 0 there should be no such solutions. Otherwise the system
is ill posed: Because if there is such a solution for some s, Re(s) > 0,
then there is also a solution uα for αs, α > 0 and for each fixed t

|uα(t, x, y, z)|/|uα(0, x, y, z)| = eαRe(s)t → ∞.

(i.e. the operator s −A is not invertible for all Re(s) > 0.)
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Determinant condition

Introducing the ansatz u(t, x, y, z) = est+i(wyy+wzz)f(x) into the
evolution and boundary equations gives

sf = Ax∂xf + i(Aywy + Azwz)f, L(s, iwy, iwz)f = 0.

Solution has the form f(x) = PeM
−

xσ−, Re(M−) < 0 with LPσ− = 0.
Therefore, one has to verify the determinant condition

det(LP )(s, wy, wz) 6= 0, Re(s) > 0.

One can rule out “candidate” constraint-preserving boundary
conditions (Calabrese, OS, J. Math. Phys. 44, 3888 (2003)).
Such ill posed solutions can be constraint-violating or gauge modes!
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Numerical results

3D numerical finite-difference code (Lehner, Nielsen, Tiglio)

Domain is a cubic box [−1, 1]3.

Third order Runge-Kutta time-discretization.

Second-order accurate finite differencing for spatial operators.

Some artificial dissipation.
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Numerical results
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Numerical results
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Numerical results

Comparison with non-constraint-preserving boundary conditions
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Numerical results
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A related toy model in ED

Fat Maxwell (Ai ↔ gij , Ej ↔ Kij , Wij ↔ dkij):

∂tAi = Ei + ∇iφ,

∂tEj = ∇i(Wij − Wji) + αδijCkij ,

∂tWij = ∇iEj +
β

2
δijρ + ∇i∇jφ,

with the constraints ρ ≡ ∇kEk = 0, Ckij = ∇kWij −∇iWkj = 0.
Strongly hyperbolic if αβ > 0 (Cauchy problem well posed in L2).
If boundaries are present, impose the boundary conditions

∇kEk = 0 preserves the constraints

E|| = (Wn|| − W||n) + h|| controls normal component of Poynting vector
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A related toy model in ED
Choose the gauge condition φ = 0 (temporal gauge ↔ fixed shift).

Well posed in L2 (u = (Ai, Ej , Wij))?

‖u(t, .)‖L2(Ω) ≤ aebt

[

‖u(0, .)‖L2(Ω) +

∫ t

0

‖h(s)‖L2(∂Ω) ds

]

.

The system passes the determinant condition for all αβ > 0

However, consider solutions of the type

Ai = t∇if, Ej = ∇if, Wij = t∇i∇jf,

where f is a smooth, time-independent, harmonic function.
Evolution and constraints equations are satisfied. Initial and
boundary data only depend on first derivatives of f whereas the
solution depends on second derivatives of f .
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A related toy model in ED

This is due to a bad gauge choice at the boundary!
(physically one has an electrostatic solution with nontrivial electric
charge density at the boundary)

This motivates the following gauge condition:

∆φ = −∇kEk, on boundary: ∂nφ = −En .

Using this gauge condition, one can show that the problem is well
posed in a Hilbert space that controls the L2 norm of the fields
and the constraint variables (Reula, S, gr-qc/0409027) Solution
flux in this space is given by a semigroup.

Current work with G. Nagy for generalization to Einstein (maximal
slicing and minimal strain).
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Conclusions

At the end of the day ???

Matching to a characteristic code
(Bishop, Winicour, d’Inverno, ...)

initial data

Cauchy code

Characteristic code

time

space

Conformal field equations
(Friedrich et al.)

initial data

time

space
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