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"
FOSH Systems with Constraints

Find u(t,z) e R™,z € Q C R",t € |0, T| such that:

w=Au—+ f
(0, z) = up(x) and C := Bu =0 (constraints)
boundary conditions

A= Z?:l A%0; is a first order differential operator, where the m xm matrices
A* are constant and symmetric.

B 1s some k x m first order differential operator. Of course, we assume that
Bug =0, and Bf = 0. Also, that the null space of B is invariant under A.

The question is what boundary conditions make the problem
well posed and preserve the constraints.



" A
Maximal Nonnegative Boundary Conditions

Boundary Conditions: u(t,x) € N(t,z), V(t,z) € [0,T] x 0S2.

These boundary conditions are called maximal nonnegative if the boundary
matrix A, (z) = =Y ni(z)A" is nonnegative over N(t,x)

T 4 VRN N ~ \ 7 ~ T/ \ /n
ul A, (2)u >0, Yu e N(t,z)

and N(t,z) is maximal with this property. Observe that
the dimension of N (¢, x) must be equal to the number of
positive and null eigenvalues counted with their multiplicities.

It is well known that FOSH systems with maximal nonnegative boundary con-

ditions are well posed
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[Friedrichs, Lax, Plillips, Kreiss, Rauch, Majda, Osher, Higdon, Secchi, etc.]



"
Maximal Nonnegative Boundary Conditions

Suppose A, (x) has:

lo null eigenvalues (A1, €ef), ..., (A, ef ),

[ negative eigenvalues (Ajg41,€p 1)+ (Ngri_s€fr 4y ),

[ positive eigenvalues (Aig41_+15€5 417 41)5 -+ (Am,€y)-
Correspondingly:

[— incoming characteristic fields u; = efuq, g =lo+1,...,lo + 1,
[+ outgoing characteristic fields u}L = €U, J=lo+I-+1,....,m.

Theorem: N(t,z) is maximal nonnegative if and only if there exists a [ x {4
matrix M (¢, z) with

[/ VNor1| 0 \\ '/1/\/>\lo+l_+1 0 \\

N ; ; | M(t,z) | 5 =l
\\ O . /|)\1 7 | / \ o 1/ /N ’
V I7YoTt—| / \ U . l/\//\m /

such that N(t,z) ={u € R™ :u™ = M(t,z)u™}. [Kreiss, Lorenz, 1989
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Finding Constraint-preserving BC

Suppose that the constraints satisfy a FOSH system C' = ¥, D;C.

e Write the general form of maximal nonnegative boundary conditions for
the system of constraints.

e Trade the transverse derivatives for temporal and tangential ones using
the main system.

e Equate the expressions with zero.

e Match these conditions with maximal nonnegative boundary conditions
for the main system.

[Stewart, 1998; Friedrich, Nagy, 1999; Calabrese, Lehner, Tiglio, 2002; Bardeen,
Buchman, 2002; Szilagyi, Winicour, 2003; Calabrese, Pullin, Reula, Sarbach,

MNolin 920N2 ('alahroan Qa }\an 27¢MN2- vittallls (Jamor 20002 Halet T indhlam
118110, Z4UVUD, UAlalTdl, Odl valll, 4UUd, L11uL0111, \Ja0U1LIC4, & Uu, 11010V, 101G I01I01L,
a =38 !a!a' e L1 AT araw; R I S DS ~Tae , AT !a!a' T
\_J W N (1 U " (1 D10 ' (] -

maker, Teukolsky, 2004 Alekseenko, 2004 Kidder, Lindblom, SCheel Buchman
Pfeiffer, 2004; Sarbach, Tiglio, 2004; among others.]



Extended System

Theorem: If ug € H3(R™";R™) and f(¢, -) € H*(R™;R™), Vt > 0, for
s > m n/2. then (1[ ) c Ql(Bn % |O ::).Bm—l—k) is a solution of the ]@]ZC]G]E]]Z]

w=Au— B z+ [, Z= Bu, u(0,z)=uq(x), 2(0,z)=0,

if and only if z=0and w e C*(R" x [0, 0); R"") satisfies

uw=Au+f, Bu=0, u(0,x)=up(x).

We are interested in a similar result on bounded domains.



On Bounded Domains

Original IBVP: & = Au+ f, Bu =0, u(0,2) = up(x),
u(t,z) € N(x) (t € [0, T], x € 00Q).

Extended IBVP: & = Au— B*z + f, 2 = Bu, u(0,7) = uo(x), 2(0,2) =0,
(u, 2)(t,x) € N(x) (t € [0, T], = € 09).

Operators: A :=X"  A'9;, B := X" B'9;, B* := - (B")19;.
Boundary matrices: A, (z) := —X" n;(x)A", B,(z) :== —=X"_n;(z)B",

T (o~ [ Anlx) By(x)
Theorem: The boundary subspace N = N x [B,,(N)]* is nonnegative for A,, if

and only if IV is nonnegative for 4,. If both N and N are maximal nonnegative
for A, and A,,, respectively, then u is the solution of the original IBVP if and
only if (u, 0) is the solution of the extended IBVP.



" A
Model Problem

We are interested in finding a solution (w;, v;, u,;) for the following FOSH system
in RV: |
W = v +gi, U =du+ fi, Wiy =0+ hij,

with initial data

and subject to the constraints
C:= 5’%7; — O, Cj = 5’Zuw = 0.
The initial data and forcing terms satisfy the compatibility conditions:

vy =0, duy; =0, 8f;=0, 0hy=0.

1

Since |C' = 97C;, C; = 9;,C'|, C(0) = 0, and C;(0) = 0 the constraints are
satisfied for all time for the pure Cauchy problem.




-

Boundary Conditions on Polyhedral Domains

A set of maximal nonnegative constraint-preserving boundary conditions is

fn

g ~ ~ 4 ~ /\Illl
(o — (4 —
n'n’u;; = U, TV = U,

where n' are the components of the unit normal and |7¢:=§

— n"nj is the

projection operator orthogonal to the unit normal.

Theorem: Given initial conditions w;(0), v;(0), u;;(0) and forcing terms g;,
Ji, hi; satistying the compatibility conditions, define w;, v;, u;; for positive
times by the evolution equations and the above boundary conditions. Then, the
constraints C' := 9%v; = 0 and C; = 8iuz~j — 0 are satisfied for all time.




Strategy

e Write the general form of maximal nonnegative boundary conditions for
the system of constraints:

C=0C;, C; =9;C

e Equate the expressions with zero.

e Match these conditions with maximal nonnegative boundary conditions
for the main system.



" B
|dea of Proof

First, suppose that the forcing terms g;, f;, and h;; vanish
w; = v;, U = (9juij, Ui = 0j;.

e C and C; satisfy the FOSH system C' = 0’C;, C; = 0,C.

e (/(0)=0, C;(0)=0.

e (' = (0 on the boundary due to the boundary conditions:
C = 0'v; = 6 0;v; = (n'n? + 7%7)0;v; = n'n? 0;v; + 7 0;v;
= n'n’i,;; + TliTkjajU@' = n'n’u,;; + Tkjﬁj (Thv;) — ki (0,71 )v;
= [nindug;+(N |+ 7%19;(tiv;) = 0.

e Thus, C and C; vanish for all time.



"
|dea of Proof

To extend to the case ol general g;, [;, and h;; we use Duhamel’s principle.
Define

S(t)(wi(0),v:(0),u;(0)) = (wi(t), vi(t), wiz(t)),

where (wj, v;,u;;) is the solution of the homogenecous evolution equations
’U)? = V;, ’U? = 8“"’11,?;5;? ’ll?;j — 8j’U?;,

satisfying the boundary conditions and assuming the given initial data.
The solution of the inhomogeneous initial boundary value problem is

=

(wi(t), vi(t), uij(t)) = S(t)(wi(0),v:(0), ui; (0))+ |

oJ

t
S(t-5)(9i(5), fi(s) hig(s)ds.

)

The integrand satisfies the constraints by the result for the homogeneous case, as
does the first term on the right-hand side, and thus the constraints are satisfied.
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[Arnold, Wang, 2003]
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"
BC for the Extended System

Wi = Vi + gi, Vi = Puig+0ip+fi, Uiy = 05vi40;qi+hig, p = 0'vi, ¢ = 0'uyy

n'n'u;; =0, T1;0,=0, p=0, 7;¢ =0,

where n* ar Mponen unit normal and 7; 1= 07 = n'n; i
projection operator orthogonal to the unit normal.

Theorem: Given initial conditions w;(0), v;(0), u;,;(0) and forcing terms g;, f;,
h;; satisfying the compatibility conditions,

e set p(0) =0, ¢;(0) =0

e ecvolve w;, v;, u;;, p, ¢; with boundary conditions

Then, p and g; vanish for all time and w;, v;, u;; satisty the original problem.



" S
The ADM Decomposition

The initial metric g;; is partitioned into the lapse (a scalar) N, the shift (3D-
vector) [3;, and the 3 X 3 spatial metric ~;;

ds® = —N?dt? + ’,vJ(dfrZ + ,Bidt)(da?j + ,Bjdt)

O
F2

// goo goi Ygoz2 gos \\ I/ B2 = N*| 61 B2 B3 )
| gio 911 gi2 913 | _ | @1 Y11 Y12 Y13

| 920 921 G222 9ga23 | | P2 Y21 Y22 Y23 |
\ 93 931 932 933 /) \  Ds Y31 Y32 V33 /

This partitioning divides Einstein’s equations into two parts (Arnowitt, Deser,
Misner '62):




" S
The ADM Decomposition

Twelve evolution equations:% Gij =0

fy — _2NK7’7 +v757 +v 57
K = N(R;; — ZKMKZ + KKyj) + 'V Ki; —V;V;N + Ky V; 68 + KV 3

The Hamiltonian constraint: R+ K* — KYK;; =0 — Goo =0
The momentum constraints: V(K U ~yUK) =0 — G 0

Here, R;; is Ricci’s tensor, R is the scalar curvature, V; is the covariant
derivative, £{;; 18 the extrinsic curvature, and K = " I{;; 1S 1ts trace.




" S
Linearized ADM

Look for solution as a perturbation of Minkowski’s spacetime, unit lapse, and
zero shift:

—

Yij =0ij +Yij, Kij=04+Ky, N=1+N, Bi=0+0;.
In vector/matrix notation, to first order, v, K, N , B satisty:
7 = 2K+ 20
K = Ry— S
divj\;fz — g= -

MA

K
The initial data y(0) = v¢ and K(0) = Ky is given.

1
e8:=3[VB+(VP)'], Ry:=edivy—5Ay—5VViry, My:=divy—Viry



" S
FOSH Formulation (Arnold)

[
|
[\
=
_|_
~
@

5 Use: Rry = curlccurlr'y + %(din\_/-f ’_Y)Q ;
[m'g = Ry—VVN Rﬁﬁ =0,

curl, K = curl. K = curl, K it MK = 0.

I;( = —curlscurls K — YYN

Introduce Vo= [z( and poi= lil [z(
cvdt, 7 =700)+ [ (2K +2¢p) dt).

= —Clil‘ls/i - zYN

— curl.v
Pe)

AN

~— FOSH

P
T

173

v(0) = Ry(0) — VVN(0), p(0) = curl, K (0).

"=



" A
Constraints and Initial Data

—Clirl,q;i — ZYN /;L = Clil‘lgz

v

v(0)

Ry(0) — VVN(0), p(0) = curl, £(0)

It the initial data v(0), p(0) is derived from ADM initial data which satisfies
the Hamiltonian and momentum constraints, then they satisfy the constraints:

/ ] —l » |
V p scurlg, ¢ = jcurlp

S

Theorem: If the initial data satisfy the constraints Mv(0) = Myu(0) = 0, and
v and Iz satisfy the evolution, then the constraints M V= M p= 0 are satisfied
for all time.



" A
Solution Procedure

7 =—curly—YVN
o= curlsy
My =0
Mp =0
v(0) = Ry(0) = VVN(0), u(0) = curl, K(0)

Theorem: Given initial data v(0), K(0) satisfying the constraints,

e define initial data for v,

"=

e cvolve v,

o get K = K(0) + [y v, 7 =7(0) — 2 [{(K — ¢f)

Then ~, K satisty the ADM.



" A
On Bounded Domains

Consider now the problem posed on a polyhedron Q C R3. Our goal is to find
well-posed boundary conditions such that the analog of the previous theorem is

UL UL

Theorem: Given initial data 7(0), K(0) on { satisfying the constraints,

e define initial data for v, u
e evolve v, u with boundary conditions

ﬂf/--

o get K = K(0)+ [y v, v=17(0) — 2 [, (K — €f)

Then v, K satisfy the ADM.



" S
Constraint Preserving Boundary Conditions

On any face of €2, let n be the unit normal, and complete tTO an orthonormal
n

tetrad n’, m¢, I°.
n

Q

One set: | n'm’v;; = n'Vv;; = (m'm? — U )iy = m' U pi; =0

or, equivalently,

n'‘ri*u; =0, (2r%pIt — Ry =0, (where 7Y = §Y — n'n?)

Another set: nimjpz-j = nilju,?;j = (m'm/ — lilj)uij = miljz/ij =0

or, equivalently,

n'riF i =0, (2rF0Ih - Ry =0



Strategy

e Write the general form of maximal nonnegative boundary conditions for
the system of constraints:

1

p=—5curlg, ¢ = geurlp

l\Dlr—k

e Trade the transverse derivatives for temporal and tangential ones using
the main system.

e Equate the expressions with zero.

e Match these conditions with maximal nonnegative boundary conditions
for the main system.



Extended System

Z — _CEI‘ISH_]_W*Z_?_YYN
— ~11ve] AM* o

poo=eary =g

a =My

b =Mp

Two sets:

niTjkI/ij = O, (2Tik7jl

TR =0, a; =0, n'b; =0

nszkﬂ'ij — O’ (2T1k7-jl

— 7Ry =0, b; =0, n'a; =0




Solution Procedure

Theorem: Given initial data 7(0), K(0) on 2 satisfying the constraints,

_ 1. .. 2 4 1 ..+ € . ., o1 4L N0 N LN N
e define initial data for v, u, and set a(0) =0, b(0) =0
e evolve v, i, a, b with boundary conditions

Then a =0, b =0 for all time, and v, K satisfy the ADM.

(K = K(0) + fyv. 7 =2(0) =2 (K ~ ep))
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