JEFF WIN[|CoLR



THE BINARY BLACK HOLE PROBLEM
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THE TWO SIDES OF THE PROBLEM:
e Mathematical - PDE’s

e Geometrical - Spacetime picture

BOTH ARE NECESSARY.
BOTH ARE COMPLICATED.

1



MINKOWSKI SPACE

Spacetime coordinates z® = (¢, z') = (¢, z, y, 2)
Proper distance - Minkowski metric

ds?® = napdzdz’ = —2dt? + de?

dEZ = 5szIL‘zd£U'7
PDEside: cis speed of the characteristics of Maxwell’s
equations. The electromagnetic field components
satisfy

L
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Light cone: 7,32%z° = =2t + 12 =0
r? =g? 4 % + 22
Standard convention: ¢ = 1
Light cone is chief invariant feature of special rel-
ativity - event horizons

0,9 = n*0,05® = ( 82 + V2)<I> =0
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SPATIAL DISCRETIZATION

Theorems for the finite difference algorithms for
the linearized problem ¢ =~ 1 + u. We consider

W = uy — 2aDyu; — (b — a2)D+D_u =0
V i=uy — 2aDyu; — bD D_u + azDSu =0
W-algorithm: Stable for b > a? (energy conserv-

ing), admits stable Dirichlet or Neumann timelke
boundary. Unstable for b < a?

~ V-algorithm: Stable, admits stable spacelike exci-
sion boundary. Problematic at the outer timelike
boundary.

Stable blended algorithm for the global excision

problem

B=W-D_ ((A+( faz))D+u) +D, ( fazDou) =0

reduces to W near the outer boundary and to V
inside the horizon

Implementation as non-linear code: Discrete ver-
sion of monopole conservation

at/égtaa,,(bdv =0

y W

e .
N
T F=1 o~

£

3



COMPACTIFIED MINKOWSKI SPACE
Conformally rescaled Minkowski metric
ds® = --1-2-al.s2
r

PENROSE PICTURE: Extension to boundary points at r = 0o along
the light rays
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Outgoing radiation fields propagate to Z+

SPACETIME OF GENERAL RELATIVITY

Spacetime of general relativity is locally a curvy version of Minkowski
space.
Spacetime metric

ds? = gop(z*)dz®dz’

Weakly curved spacetimes have Penrose picture similar to Minkowski
space

But curvature can lead to drastic global effects






£xcl/sioN STRATEGY
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EXclIS/oN GRID STRUCTVRE
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PDE
EINSTEIN'S EQUATIONS: G, (gag) = 0

Gauge freedom: z# — y(t, z%)
Uniqueness - Harmonic coordinates:

1
Dga# = —\/?—5 (V=99 Bpz*) = 0 9,374“: Jp

subject to initial and boundary conditions. i
Note: g = det(gqap) and g*?gs, = o | m

cpal'”
Reduced Einstein equations:
~/d

gaﬂaaamg;w) = g 5‘F_A eh«”f, |

Harmonic constraints: 3z hid-nen?
aa(\/—_g-gaﬂ) =0

Principle part is wave operator - Well-Posed
Flux conservative form:

8a(9*%05v/—gg™) = ™ AF% ALF 4 VF

D. Garfinkle, Phys. Rev., D65, 044029 (2002)

B. Szildgyi and J. Winicour, Phys. Rev., D68,
041501 (2003).

F. Pretorius, Class. Quant.Grav. 22, 425 (2005)



GAUGE WAVE TEST

Standardized tests: www.appleswithapples.org

In harmonic coordinates, there exists pure gauge
solutions (flat metrics)

ds® = (1 + Asin2n(t — x)) (—dt® + dz®) + dy? + d2?,

describing traveling waves with periodic boundary
conditions.

Their simulation is complicated by the existence
of exponentially growing gauge waves

ds? = eM (1 + Asin2m(t — x)) (—dt? + dz?) + dy® + d2?,

which solve the same equations. For A = 0, they
have approximately the same Cauchy data as the
test gauge wave

Accurate long term simulation requires suppress-
ing the exponential mode by using a semi-discrete

conservation law, e.g. flux conservative form or
SBP

“Some mathematical problems in numerical rela-
tivity”, M. Babiuc, B. Szilagyi and J. Winicour,
gr-qc/0404092



CaNVER GEN c&-’/ STABILITY
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THE SCHWARZSCHILD EXCISION PROBLEM

Wave equation on Schwarzschild background: in
Eddington-Finkelstein coordinates

2M 4M 2M

- (]. )(I)tt + @tr + (1 = ;’I“:>q)w
1 1
+ ;‘—(@99 - sy 0<I>¢¢) lower order terms.

Well-posed for r > 0

Complications for numerical treatment:
e Mixed derivative ®;,. due to shift

e Sign change in (1 —2M/r)®,,. Evolution with
r = const grid points is superluminal inside
horizon.

e Conserved energy £ = [Edv on t = const
Cauchy hypersurfaces where

1 2M 2M 1 1
£= 1 @+ (1= Z2)07 + 58+ —r 2)
2,/1+3¥(( - T ) gt r2sin 06‘*

€ is positive-definite only for r > 2M

e Proper boundary conditions <




THE MODEL EXCISION PROBLEM
1D system with all the geometric features of the }

Schwarzschild problem. .,e;o«:f‘ p

In 0 <z <1, we consider ,, 9‘ 5
1 a a 5 b— 2‘

—8t(50t<1>) + Bt(ac'?x@) + 533(5@@) + Oy( 3 3 (D)

where a and b are smooth and give picture

Horaon
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The non-linearity models gauge wave problem: Grow-
ing waves ® = eM f(z — t).

Proof of the stability of a finite difference algorithm
for the IBVP in the linearized case.

The system is treated as second differential order.
Main complication: Shift term inside horizon.

Calabrese, Phys.Rev. D 71, 027501 (2005)
Modeling the Black Hole Excision Problem, B.
Szilagyi, H-O. Kreiss, J. Winicour gr-qc/0412101



Now LinER WAVE
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