

THE BINARY BLACK HOLE PROBLEM

THE TWO SIDES OF THE PROBLEM:

- Mathematical PDE's
- Geometrical Spacetime picture

BOTH ARE NECESSARY.

BOTH ARE COMPLICATED.

MINKOWSKI SPACE

Spacetime coordinates $x^{\alpha}=(t,x^{i})=(t,x,y,z)$ Proper distance - Minkowski metric

$$ds^2 = \eta_{lphaeta} dx^lpha dx^eta = -c^2 dt^2 + d\ell^2$$
 $d\ell^2 = \delta_{ij} dx^i dx^j$

PDE side: c is speed of the characteristics of Maxwell's equations. The electromagnetic field components satisfy

$$\Box_{\eta} \Phi = \eta^{\alpha\beta} \partial_{\alpha} \partial_{\beta} \Phi = \left(-\frac{1}{c^2} \partial_t^2 + \nabla^2 \right) \Phi = 0$$

Light cone: $\eta_{\alpha\beta}x^{\alpha}x^{\beta} = -c^2t^2 + r^2 = 0$ $r^2 = x^2 + y^2 + z^2$

Standard convention: c = 1

Light cone is chief invariant feature of special relativity - event horizons

SPATIAL DISCRETIZATION

Theorems for the finite difference algorithms for the linearized problem $\phi \approx 1 + u$. We consider

$$W := u_{tt} - 2aD_0u_t - (b - a^2)D_+D_-u = 0$$

$$V := u_{tt} - 2aD_0u_t - bD_+D_-u + a^2D_0^2u = 0$$

W-algorithm: Stable for $b > a^2$ (energy conserving), admits stable Dirichlet or Neumann timelke boundary. Unstable for $b < a^2$

V-algorithm: Stable, admits stable spacelike excision boundary. Problematic at the outer timelike boundary.

Stable blended algorithm for the global excision problem

$$B = W - D_{-} \left((A_{+}(fa^{2}))D_{+}u \right) + D_{0} \left(fa^{2}D_{0}u \right) = 0$$

reduces to W near the outer boundary and to V inside the horizon

Implementation as non-linear code: Discrete version of monopole conservation

$$\partial_t \int \frac{1}{\Phi} g^{t\alpha} \partial_\alpha \Phi dv = 0$$

COMPACTIFIED MINKOWSKI SPACE

Conformally rescaled Minkowski metric

$$d\hat{s}^2 = \frac{1}{r^2} ds^2$$

PENROSE PICTURE: Extension to boundary points at $r = \infty$ along the light rays

Outgoing radiation fields propagate to \mathcal{I}^+

SPACETIME OF GENERAL RELATIVITY

Spacetime of general relativity is locally a curvy version of Minkowski space.

Spacetime metric

$$ds^2 = g_{\alpha\beta}(x^\mu)dx^\alpha dx^\beta$$

Weakly curved spacetimes have Penrose picture similar to Minkowski space

But curvature can lead to drastic global effects

EXCISION STRATEGY

EXCISION GRID STRUCTURE

nr = unit timelike normal to

Gauchy hypersurfaces

th = evolution vector they = 3t

$$t^{M} = \alpha n^{M} + \beta^{M}$$

$$1 \text{ apse shift}$$

PDE

EINSTEIN'S EQUATIONS: $G_{\mu\nu}(g_{\alpha\beta})=0$

Gauge freedom: $x^{\mu} \rightarrow y^{\mu}(t, x^{i})$

Uniqueness - Harmonic coordinates:

$$\Box_g x^{\mu} = \frac{1}{\sqrt{-g}} \partial_{\alpha} (\sqrt{-g} g^{\alpha\beta} \partial_{\beta} x^{\mu}) = 0 \qquad \qquad \partial_{\beta} \chi^{\mu} = \zeta_{\beta}^{\mu}$$

subject to initial and boundary conditions.

Note: $g = \det(g_{\alpha\beta})$ and $g^{\alpha\beta}g_{\beta\mu} = \delta^{\alpha}_{\mu}$

Reduced Einstein equations:

$$g^{\alpha\beta}\partial_{\alpha}\partial_{\alpha}(\sqrt{-g}g^{\mu\nu}) = S^{\mu\nu}$$

Harmonic constraints:

Einstein equations:
$$g^{\alpha\beta}\partial_{\alpha}\partial_{\alpha}(\sqrt{-g}g^{\mu\nu}) = S^{\mu\nu}$$

$$\partial_{\alpha}(\sqrt{-g}g^{\alpha\beta})=0$$

Principle part is wave operator - Well-Posed Flux conservative form:

$$\partial_{\alpha}(g^{\alpha\beta}\partial_{\beta}\sqrt{-g}g^{\mu\nu}) = \hat{S}^{\mu\nu} \qquad \qquad \partial_{\alpha}F^{\prime} = \partial_{\beta}F^{\dagger} + \widehat{\nabla}\cdot\widehat{F}$$

- D. Garfinkle, *Phys. Rev.*, **D65**, 044029 (2002)
- B. Szilágyi and J. Winicour, Phys. Rev., D68, 041501 (2003).
- F. Pretorius, Class. Quant. Grav. 22, 425 (2005)

GAUGE WAVE TEST

Standardized tests: www.appleswithapples.org

In harmonic coordinates, there exists pure gauge solutions (flat metrics)

$$ds^{2} = \left(1 + A\sin 2\pi(t - x)\right)(-dt^{2} + dx^{2}) + dy^{2} + dz^{2},$$

describing traveling waves with periodic boundary conditions.

Their simulation is complicated by the existence of exponentially growing gauge waves

$$ds_{\lambda}^{2} = e^{\lambda t} \bigg(1 + A \sin 2\pi (t - x) \bigg) (-dt^{2} + dx^{2}) + dy^{2} + dz^{2},$$

which solve the same equations. For $\lambda \approx 0$, they have approximately the same Cauchy data as the test gauge wave

Accurate long term simulation requires suppressing the exponential mode by using a semi-discrete conservation law, e.g. flux conservative form or SBP

"Some mathematical problems in numerical relativity", M. Babiuc, B. Szilágyi and J. Winicour, gr-qc/0404092

CONVERGENCE, STABILITY

of Constraint Propagation

IS NOT ENOUGH FOR GOOD

LONG TERM ACCURACY IN THE

NONLINEAR REGIME

THE SCHWARZSCHILD EXCISION PROBLEM

Wave equation on Schwarzschild background: in Eddington-Finkelstein coordinates

$$- (1 + \frac{2M}{r})\Phi_{tt} + \frac{4M}{r}\Phi_{tr} + (1 - \frac{2M}{r})\Phi_{rr}$$

+
$$\frac{1}{r^2}(\Phi_{\theta\theta} + \frac{1}{\sin^2\theta}\Phi_{\phi\phi}) = lower\ order\ terms.$$

Well-posed for r > 0

Complications for numerical treatment:

- Mixed derivative Φ_{tr} due to *shift*
- Sign change in $(1-2M/r)\Phi_{rr}$. Evolution with r=const grid points is superluminal inside horizon.
- Conserved energy $E = \int \mathcal{E}dv$ on t = constCauchy hypersurfaces where

$$\mathcal{E} = \frac{1}{2\sqrt{1 + \frac{2M}{r}}} \bigg((1 + \frac{2M}{r})\Phi_t^2 + (1 - \frac{2M}{r})\Phi_r^2 + \frac{1}{r^2}\Phi_\theta^2 + \frac{1}{r^2\sin^2\theta}\Phi_\phi^2 \bigg)$$

 \mathcal{E} is positive-definite only for r > 2M

THE MODEL EXCISION PROBLEM

1D system with all the geometric features of the Schwarzschild problem.

In
$$0 \le x \le 1$$
, we consider
$$-\partial_t(\frac{1}{\Phi}\partial_t\Phi) + \partial_t(\frac{a}{\Phi}\partial_x\Phi) + \partial_x(\frac{a}{\Phi}\partial_t\Phi) + \partial_x(\frac{b-a^2}{\Phi}\partial_x\Phi) = 0$$
 where a and b are smooth and give picture

The non-linearity models gauge wave problem: Growing waves $\Phi = e^{\lambda t} f(x - t)$.

Proof of the stability of a finite difference algorithm for the IBVP in the linearized case.

The system is treated as second differential order. Main complication: Shift term inside horizon.

Calabrese, *Phys. Rev.* D **71**, 027501 (2005) Modeling the Black Hole Excision Problem, B. Szilagyi, H-O. Kreiss, J. Winicour gr-qc/0412101

NONLINER WAVE

