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The classical method of describing a spacetime is through the use of a covariant tensor, g.p, which
specifies the inner product between a pair of vectors in the space. An alternative description is
obtained when one specifies a set of coordinate axes (vectors) at each point of the spacetime,
as well as their inner product. Together, these are called a basis (or frame, or tetrad in four
dimensions).

For the most part, GRTensorII calculations for a basis directly parallel those for a metric and
the two formalisms have been described together wherever necessary in Booklets A—D. However,
to this point most of the examples used in these documents have relied on calculations in metric
coordinates. The goal of this booklet is to supplement the previous descriptions by emphasiz-
ing some of the unique features of symbolic calculations for spacetimes described by a basis in
GRTensorIl.

1 Notation

This section defines some notational conventions that are used to describe bases in this set of
booklets. A concise summary of basis formalisms (using notation consistent with that described
here) can be found in the first part of Chandrasekhar [1].

At each point of an n dimensional space, define a set of n independent vectors,

e(l)“,e@)“, e ,e(n)a.

Following convention, the vectors are labeled using bracketed indices, (1),... ,(n), which we will
call the ‘basis indices’, to distinguish them from the ‘tensor indices’ which are not bracketed. The
basis indices are raised by considering e(a)b to form an n x n matrix whose inverse is given by the
matrix e(a)b.

In addition to the basis vectors, define a symmetric n x n matrix 7(®(®) whose components
determine the ‘inner product’ of basis vectors (a) and (b). The inner product and basis vectors
together can be used to define a 2-index tensor via

1D ®eqem? = g° (1)

This object, along with its matrix inverse, g,s, is used to raise and lower the tensor indices of the
basis vectors:

€(a)b = €(a) Yocbs )’ = €(a)e9”-

Then by defining 7(4)3) to be the matrix inverse of n(®)®) some manipulation of the above
relationships results in the formulae for the raising and lowering of the basis indices:

@, @b = @) b

€(a)b = Ma)(c)€ )

The collection of vectors, e(a)b, and inner product, 7(a)), together form a ‘basis’ which
locally describes the spacetime geometry. The tensor g, is the corresponding spacetime metric
that is calculated from the basis via Eq. (1).

Tensors fields can be projected onto the basis field in order to obtain their basis components:

T(a)v) = Tea(a)’en) Tup = T(eyaye'” ae®s.
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The basis components of a tensor are raised and lowered using the basis inner product,
T(a)(b) — ﬂ(a)(C)T(c)(b), T(a)(®) . T(a)(c)n(C)(b)_

A computational advantage over tensor methods is offered here, since by choosing basis vectors
correctly the inner product 7)) can be constructed so as to have a simple form, most often
with constant coefficients.!

The GRTensorIl notation for the basis vectors e(a)b is e(bdn,up), following the convention
that basis indices are labeled using bdn and bup to indicate covariant and contravariant compo-
nents, respectively. The inner product, 7)), is referenced using the object name e(bdn,bdn).
The creation of bases for GRTensorlI is outlined in Booklet B: Specifying spacetimes.

A particularly useful form of basis (for general relativity) is given by an inner product whose
basis vectors are chosen to satisfy the inner product

01 0 0
o 10 0 o
Y =nawm=| o o o -1
00 -1 0

In this case the vectors forming the basis are seen to be null. By convention, they are labeled
* .= 6(1)a, n® = 6(2)a, m® ;= 6(3)a, me = 6(4)a.

A formalism for studying the geometries specified by such null tetrads was developed by Newman
and Penrose [3]. As such, they are often called ‘NP tetrads’. The standard GRTensorlII library
incorporates the full range of objects defined for the Newman-Penrose formalism, as listed in
Section 4.

Null tetrads can be created using makeg() or automatically from a metric, gqp, using
the nptetrad() command. Rotations of a null tetrad can be performed using the command
nprotate(). These commands are described in Booklet B: Specifying spacetimes.

2 Calculation of basis components

Calculations performed in a basis are carried out using the methods described in Booklet
C: Calculating tensor components. A difference between the calculation of basis components
and tensor components of an object is the use of basis index labels bup and bdn (to indicate
contravariant and covariant components, respectively) rather than the tensor labels up and dn.
For instance, once a basis is loaded, the command

> grcalc ( R(bdn,bdn) ):

requests a calculation of the object R(,)(s), the components of the Ricci tensor projected onto the
basis.

Note that because the metric can be calculated from the basis via Eq. (1), if the geometry
is described by a basis, then either basis or tensor components of an object can be calculated.

In GRTensorll it is not necessary that N(a)(b) have constant coefficients. See the demonstration mixmr.ms
available from the world-wide-web page [2].
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That is, having loaded a basis one could also request the calculation
> grcalc ( R(dn,dn) ):

of the ordinary tensor components of the Ricci tensor, Rqp.2

If the basis calculation is requested, the algorithm used by GRTensorII to calculate the basis
components of curvature tensors are chosen so as to take maximal use of the basis formalism, ie.
they avoid the use of the metric.® However, if the tensor components have already been calculated,
the program will recognize this and simply perform the conversion

Ra)v) = Reae(a)®en)”-

(The opposite conversion is used when the basis components are known and the tensor components
are requested.)

The indices pbdn and cbdn specify the calculation of the basis components of partial and
covariant derivatives, respectively. As described in the Booklet C: Calculating tensor components,
the command

> grcalc ( R(bdn,bdn,pbdn) ):
requests the calculation of

OB
Ra)o),0) = 500"

while the command
> grcalc ( R(bup,bdn,cbdn) ):
requests the calculation of the covariant derivative
a —— a d d a
R 40 = Ry, (o) + 10y @B P ) = 7P y) R (a5
defined in terms of the rotation coefficients,
.— d e
V(e)(a)(b) *= €(c) €(a)d;e€(b) -

(See Section 4 for an alternate definition of this tensor.)

2A word of caution should be noted when carrying out such tensor component calculations from a basis. It
is often the case that a metric calculated from a basis via Eq. (1) is not automatically expressed in the simplest
possible from and could benefit from algebraic simplification. Since later calculations strongly depend on the form
of the metric, it is usually worthwhile to perform an explicit simplification of the components of g(dn,dn) using
the gralter() command. See Booklet C: Calculating tensor components, in particular the section on simplification
strategies.

31n the particular case of the Ricci tensor, the definition is in terms of the rotation coefficients:

(e) (e) () (d) () (d)(e) (d)(e)

R(a)v) 7= V(@) ),(e) T @) (2),0) 77 @)@ [1) " 0) = 70)" )] F V@) @) )Y (@) = () (a)(@)Y (®)

See Section 4 for a definition of v(4)(b)(c)-
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3 Bases in grdef ()

Tensors and scalars which are not contained in the standard library can be defined for a basis
using the grdef () command, just as they would in a metric space. The practical difference is that
for indexed objects the basis indices are enclosed in round braces, (). Thus the basis components
of the Ricci tensor, R(,)(s), are referenced using the string

R{(a) (®)}
rather than
R{a b}

which refers to the tensor components, R,,. Some other points are also worth noting to make
the use of grdef () more convenient.

In four dimensions objects corresponding to each of the basis vectors are defined by default
when the spacetime is loaded or created:

e For contravariant null tetrads the objects 1 (up), n(up), m(up), and mbar (up) are assigned
the values of e(1)®...e4)? respectively. The vectors can be displayed as a group using the
object name nullt(up). (For covariantly defined tetrads the dn versions of these vectors
are assigned.)

e For general contravariant bases, the objects el (up), e2(up), e3(up), and e4(up) are as-
signed the values of e(1)® .. . e(4)® respectively. The vectors can be displayed as a group using
the object name basisv(up).

e For general covariant bases, the objects wil(dn), w2(dn), w3(dn), and w4(dn) are assigned
the values of e(1), . .. €(), respectively. The vectors can be displayed as a group using the
object name basisv(dn).

While the information contained in these objects is redundant (in the sense that the com-
ponents of the basis are already stored in the object e(bdn,up)), they are included to facilitate
new object definitions in terms of these vectors. For instance, a ‘purely-electric’ electromagnetic
tensor, Fyy, is defined by

Fop := 4Xl[gng),

which can be defined for GRTensorlII by using the command
> grdef ( ‘F{[a bl} := 4*lambdax1{[a}*n{bl}‘ ):

An important point is that the information contained in these accessory objects (the vectors
of 1(up), el(up), etc.) is copied from e (bdn,up) at the time the spacetime is loaded or created,
but not afterwards. Thus, if the components of e(bdn,up) or e(bdn,dn) are modified (using
gralter (), for example) the modification will not be reflected in the accessory objects. The
opposite is also true: algebraic simplification of the 1(up)... mbar (up), for instance, will not be
carried over to the corresponding components of e(bdn,up).

The GRTensorll algorithms for the calculation of curvature tensors rely on the versions of
the basis components stored in the objects e(bdn,up) and e(bdn,dn). Thus, regardless of the
form of the accessory objects, for calculation purposes it should be ensured that the components




E. Bases and tetrads E6

of e(bdn,up) and e(bdn,dn) are in the simplest possible form.

The above discussion applies only to four dimensional spacetimes, since the accessory basis
vectors are not assigned automatically for any other number of dimensions. In such cases, the
Kronecker delta, kdelta, can be used to isolate individual basis vectors. For instance, the
command

> grdef ( ‘e3{"a} := e{(b) ~a}xkdelta{"(b) $3}‘ ):
assigns the third vector in e (bdn,up) to the object e3(up):
e3? := e(,,)“(igb).

The use of kdelta to isolate components is described more fully in Booklet D: Defining new
tensors.
The basis components of derivatives are specified in object definitions just as are the regular

¢ )

tensor derivatives. Thus, a comma, ‘,’, indicates a partial derivative, while a semi-colon, ‘;’,
indicates a covariant derivative. Thus,

T(a)(v)(0) = Bia)d)i(c) + Biv)(e)s(a)

could be defined using the command
> grdef ( ‘T{(a) (®)(c)} := R{(a)(b);(c)} + R{(D)(c);(a)}‘ ):

The form of the following index will indicate which components (either basis or tensor) of the
derivative are to be calculated. The operations specified by each type of derivative are listed in
Booklet D: Defining new tensors.

Finally, note that for null tetrads, a set of derivatives operators are defined corresponding to
partial derivatives along the basis vectors. The operators

D :=1°0,, A :=n0,, 0 1= m®0,, 0% :=m"0,,
are defined by the GRTensorlII operators
D1([], Dn[], Dm[], Dmbar[],

respectively. The operators act on any GRTensorIl object placed in the square braces.? For
example, the right-hand side of the NP equation

0r — Ao — (o + Xp) —7(1+ 8 —a*) + 03y —v*) + kv* — ®g2 =0,

could be defined using the command

> grdef ( ‘NPeql := Dm[NPtau] - Dn[NPsigma] - (NPmu*NPsigma + NPlambdabar*NPrho)
- NPtau*(NPtau + NPbeta - NPalphabar) + NPsigma*(3*NPgamma - NPgammabar) +
NPkappa*NPnubar - Phi02¢ ):

(See Section 4 for definitions of the objects NPtau, NPsigma, etc.)

4GRTensorlI operators are described in Booklet C: Calculating tensor components.
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4 The standard library

The following sections list the objects contained within the standard GRTensorII library which
are defined specifically for use with bases. They can be calculated using grcalc() once a basis
has been created or loaded into the current session (see Booklet B: Specifying spacetimes).

Objects not present in the following lists can be defined using the grdef () command, as
described in the previous section. A further list of tensors calculable from a metric is given in
Booklet C: Calculating tensor components.

General bases

Definitions listed in the following table are for objects which have not already been defined in the
standard library list in Booklet C: Calculating tensor components. Basis definitions of the objects
given in that table can be accessed by choice of indices. For instance, the basis components of
the Riemann tensor, R(“)(b)(c)(d) are calculated using the command

> grcalc ( R(bup,bdn,bdn,bdn) ):

GRTensorIl name Definition

e (bdn,up) basis vectors, e(g)°

eta(bdn,bdn) basis inner product, 7q)(s)

basisv(up) collection of basis vectors, e1)® .. .e4)"

lambda(bdn,bdn,bdn) )\(a)(b)(c) = e(b)[,-vj]e(a)de(c)e
rot (bdn,bdn,bdn) rotation coefficients,

Na)®)(e) = 3 M®)©) + Ao @)B) — Ab)(e)(a))
str(bdn,bdn,bdn) structure constants,

Cla)®)(e) 7= V@) ()(5) ~ Va)(b)(e)

Four dimensional spacetimes which are specified in the form of a set of contravariant basis vec-
tors additionally have the objects el (up), e2(up), e3(up), and e4(up) assigned, corresponding
to the four basis vectors, e(a)b. If the spacetime was specified by a set of covariant basis vectors,
then the objects wi(dn), w2(dn), w3(dn), and w4(dn) are automatically assigned. For display
purposes, the vectors can be accessed as a group using the object basisv(up). See Section 3 for
a description of these objects.
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The Newman-Penrose formalism

In addition to the objects specified above, a number of special quantities can be calculated for
geometries specified by a null tetrad. The following objects are defined in [3].

GRTensorIl name

Definition

1(up), n(up), m(up), mbar (up)
nullt (up)

testNP (bdn,bdn)

NPkappa, NPsigma, NPlambda, NPnu
NPrho, NPmu, NPtau, NPpi,
NPepsilon, NPgamma, NPalpha,
NPbeta

NPkappabar, NPsigmabar,
NPlambdabar, NPnubar, NPrhobar,
NPmubar, NPtaubar, NPpibar,
NPepsilonbar, NPgammabar,
NPalphabar, NPbetabar

Phi00, PhiO1, PhiO2, Philo0,
Phill, Phil2, Phi20, Phi21
Phi22, Lambda

Psi0O, Psil, Psi2, Psi3, Psi4
Petrov

NPspin

NPspinbar

RicciSc

WeylSc

basis vectors,®

1, n* m* m®.

collection of basis vectors,
{l*,n*, m®, m*}.

confirms NP inner product,
testNP(a)(b) = €(a)c€(h)

spin coefficients,
K,0,...,0

spin coefficients
(complex conjugates)
K,5,...0

Ricci scalars,

@00, o1, - .- , P2, A
Weyl scalars, ¥y, ..., ¥y
Petrov type

collection of spin coefficients,

{Kky..., B}
collection of spin coefficients
{k,..., B}

collection of Ricci scalars,
{(1)007 R 5(1)22a A}
collection of Weyl scalars,
{Wo,..., Ty}

A set of four derivative operators, corresponding to partial derivatives along the basis vectors,
are also defined for the Newman-Penrose formalism. In the following example the argument

5 As explained in Section 3, the components of these basis vectors are copied from e (bdn,up) when the spacetime

is loaded.
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‘object’ represents an arbitrary GRTensorIl object on which the operator is to act.

GRTensorll name Definition

D1 [object] D :=1°0,
Dn[object] A :=n°0,
Dm[object] d :=m°0,
Dmbar [object] 0* :=m°0,

Alternate NP definitions

An alternate set of definitions for the Newman-Penrose coefficients is provided by Allen, et al.
[4]. The definitions aim to gain a computational advantage by avoiding the inversion of the
basis vectors (that is, only the covariant components are needed). These algorithms have been
incorporated into GRTensorIl and tested with results presented in [5]. It was found that no
consistent computational advantage was gained through use of the alternative formulas, though
in certain cases the covariant definitions do outperform the standard NP formulas. The alternate
NP algorithms can be accessed by requesting the calculation of the objects listed in the table
below. These names of these objects correspond to the NP names listed in the previous section
prefixed by a ‘C’. Thus the command

> grcalc ( WeylSc ):

requests the calculation of the Weyl curvature coeflicients using the formulas defined by
Newman-Penrose, while the command

> grcalc ( CWeylSc ):

calculates the same objects using the alternate ‘covariant’ formulas.®

GRTensorIT name Definition
Ckappa, Csigma, Clambda, Cnu spin coefficients,
Crho, Cmu, Ctau, Cpi, K,0,...,03

Cepsilon, Cgamma, Calpha, Cbeta

Ckappabar, Csigmabar, spin coeflicients
Clambdabar, Cnubar, Crhobar, (complex conjugates)
Cmubar, Ctaubar, Cpibar, R,0,...0

Cepsilonbar, Cgammabar,
Calphabar, Cbetabar

6Note that if one of the above commands is executed in a given session, then GRTensorII will recognize the Weyl
coefficients as having been calculated. Thus the use of the second command will return the previously calculated
results. In order to compare the results of each command, they must be issued individually in separate GRTensorll
sessions.
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CPhi0O0, CPhiO1, CPhi0O2, CPhilo0,
CPhill, CPhil2, CPhi20, CPhi21
CPhi22, CLambda

CPsiO, CPsil, CPsi2, CPsi3,

Ricci scalars,
@00, Po1,- .., Pa2, A

Weyl scalars, ¥, ... , ¥y

CPsi4d

Cspin collection of spin coefficients,
{Kk,..., 8}

Cspinbar collection of spin coefficients
{R,...,B}

CRicciSc collection of Ricci scalars,
{@00, P 7¢227 A}

CWeylSc collection of Weyl scalars,
{Tg,..., 0y}
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