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C. Calculating tensor components C2

The goal of the GRTensorll program is the calculation of components of indexed objects, in
particular tensors. This booklet describes the GRTensorII notation by which tensors are referenced
in all calculation commands, as well as the functioning of commands related to determining
components of tensors and expressing the output in a convenient form.

The main method by which calculation is accomplished in GRTensorII is through the grcalc ()
command. Simple calculation is often not the last step, however, in producing interpretable
output. Often large terms result in individual tensor components which need to be simplified
before they can be read. Of greater concern, the presence of large terms in intermediate objects
can seriously affect the ability to carry out later calculations based on these objects. In such
cases simplification at crucial points becomes necessary if any progress is to be made at all.
GRTensorII possesses a number of commands allowing the manipulation of components of tensors,
most notably gralter() and grmap().

The commands described in this booklet assume that a spacetime (metric or basis) has been
loaded (or created) for the current GRTensorII session. For a description of how to do this, see
Booklet B: Specifying spacetimes.

1 Tensor notation

The commands provided with GRTensorlI are designed to calculate and operate on tensors with
any given index configuration. An example of such a command is the grcalc() command which
requests the calculation of the tensors named in its arguments. For instance,

> grcalc ( R(dn,dn), R(up,dn,dn,dn) ):

requests the calculation of the covariant Ricci tensor (R,p) and Riemann tensor in standard form
(R%ecq). This section provides a description of the notation by which tensors are referred to in
GRTensorll commands.!

1.1 Tensor names and indices

In general, GRTensorll commands which act on tensors take the form:
commandName ( tensorSeq, [other_Arguments] )
Here the tensorSeq is a sequence of GRTensorlI objects each of which has the following form:
tensorName ( indexSeq )

The tensorName is a string specifying a name from the GRTensorlII library of predefined
objects.? Examples are:

R — the Riemann tensor (and its index contractions),
G — the Einstein tensor,
g — the metric,

Chr — the Christoffel symbols,

etc.

1For more concrete examples of how these commands operate, the reader may wish to skip past this section or
examine some of the online examples at the GRTensor home page [1].
20r a user-defined object, as can be created via the methods outlined in Booklet D: Defining new tensors.

GRTensorll software and documentation is copyright 1994-1996 by the authors. GRTensorll software and documentation
is provided free of charge and without warranty. The authors retain any and all rights to the software known as GRTensorII
and its documentation. GRTensorIl development has been supported by the Natural Science and Engineering Research
Council of Canada and the Advisory Research Committee of Queen’s University. MapleV is a trademark of Waterloo
Maple Software.



C. Calculating tensor components C3

Section 7 lists objects available in the standard library.
The argument indexSeq is a sequence of names giving the index configuration of the tensor.
Available index types are:

up, dn — covariant/contravariant indices,

pup, pdn — partial derivatives,

cup, cdn — covariant derivatives,

bup, bdn — covariant/contravariant basis indices,
pbup, pbdn  — partial derivatives in a basis,

cbup, cbdn - covariant derivatives in a basis.

The different indices can be divided into two groups: those that refer to components arising
from a metric, gqp, and those arising from a spacetime described by a set of basis vectors, e(a)b.
Either of these types of spacetimes can be created using makeg() or loaded into GRTensorIl
using qload (), as described in Booklet B: Specifying spacetimes.

The indices take the following meanings:

up, dn: These refer to the standard covariant and contravariant indices of tensors calculated from
a metric, gop.- The covariant components of the metric itself are referred to as g(dn,dn).

pup, pdn: These are partial derivatives of the named tensor. Thus R(dn,dn,pdn) refers to the

object:
ORap
Rab,c = 63; )
where z® are the coordinates of the metric.
cup, cdn: These specify covariant derivatives of the named tensor.  The definition of

R(up,dn,cdn) is given by:
RabQC = Rab’c - FZcRad + ngRdCJ

where I'¢. are the Christoffel symbols (see Section 7 for their definition).?

bup, bdn: These indices refer to the basis components of a tensor. They can only be used if the
spacetime has been specified in the form of a set of basis vectors. In this case, the object
R(bdn,bdn) refers to the object

— c d
Ra)v) = Rea(a)en)"
where e(,)? are the n basis vectors.?

pbup, pbdn: These are the corresponding partial derivatives in the basis. Thus R(bdn,bdn,pbdn)
is equivalent to
OR )
Ria o)) = —poa e

with 22 the coordinates of the basis.

3Here and throughout these booklets we make use of the usual summation convention such that if an index is
repeated in both upper and lower positions in a term, then a summation is implied over all values of that index.

4Although the definition given above writes the basis form of the Ricci tensor as a transformation of the
metric component form, in fact the objects in the standard GRTensorII library have alternate definitions which
are optimized for calculation in a basis so that it is not necessary to revert to coordinate components at any point
during a calculation.




C. Calculating tensor components C4

GRTensorIl name Common representation

R(dn,dn) R,y (Ricci tensor)

R(dn,dn,dn,dn) Rapea (Riemann tensor)

R(up,dn,dn,dn) R%ca

R(dn,dn,pdn) R, (= OcRap)

R(dn,dn,cdn) Rapic (= VeRap)

R(bdn,bdn) R(q) ) (basis components of the Ricci tensor)

R(bdn,bdn,pbdn) Rayb),(c)
R(bdn,bdn,cbdn) Ra))i(0)

Table 1: Some examples of index specifications in GRTensorII object names.

cbup, cbdn: These are the covariant derivatives in the basis. The object R(bup,bdn,cbdn) is
defined by
a — a a d d a
R 40 = B0, + 1 @B 0 = 1Py 0B @),

where 'y(“)(b)(c) are the Ricci rotation coefficients. See Booklet E: Bases and tetrads for their
definition.

If the spacetime has been specified in the form of a basis, then any of the above types of indices
can be used, since the metric is easily calculated via
ab — n(c)(d)

9 e(e)e(a)”-

In such cases it is easy to transform between basis and metric components of a tensor simply by
requesting a different set of indices.? However, if the spacetime is specified in the form of a metric,
Jab, then the basis components of tensors can not be referenced unless a basis is first explicitly
defined (as can be done, for example, using the nptetrad() command described in Booklet B:
Specifying spacetimes).

Finally, we note that the grdef () command (used to define new tensors outside of the standard
GRTensorlI library) necessarily uses a somewhat different notation from that described in this
section to express tensor indices. This command described in Booklet D: Defining new tensors.

1.2 Operators

Certain commonly used tensors require extra information (in addition to the background geome-
try) in order to be calculated. For instance, consider the definitions of the ‘electric’ and ‘magnetic’
parts of the Weyl tensor,

Eab = Cacbd’UCUd, Hab =C* dUC’Ud.

ach

In addition to the Weyl tensor (which can be calculated directly from the metric), they require
the specification of a vector field v®. Naturally, these tensors will have different values if different
vector fields are specified.

5More exotic index permutations than those specified above are also possible. For instance R(up,dn,bdn,bdn)
refers to the object
Ry(o)@) = Rbere() e
which has mixed basis and metric indices.
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In GRTensorll, certain tensor definitions require the specification of such parameters as argu-
ments to the tensor name. The arguments are placed in square braces ‘[1’ before the index list.
For instance, assuming a single-index tensor (a vector field) v(up) had been defined, the electric
and magnetic Weyl tensors would be referenced in GRTensorII using

E[vl(dn,dn), and H[v](dn,dn).

Note that in the definitions of the electric and magnetic Weyl tensors assume that the argument
is a single index object, and so the index does not have to be specified, only the vector name (in
this case ‘v’).

A more general example is the d’Alembertian derivative operator, O := V%V,. The
d’Alembertian defined by GRTensorIl takes a tensor with an arbitrary number of indices as an
argument. We could reference O Ryp.q using

Box[R(dn,dn,dn,dn)]

Objects involving specifiable arguments were originally defined to allow the use of differential
operators in GRTensorll, and so they have come to be called ‘operators’. This terminology will
be used throughout these booklets. A list of operators in the standard GRTensorlI object library
is given in Section 7.

1.3 Alternate spacetimes

Any calculations carried out by GRTensorlIl are done so for a particular background geometry,
specified either by a metric or basis, which has been loaded and assigned a name by qload()
(or created by makeg()). Generally, the last spacetime to be loaded is the default spacetime for
which all calculations subsequent calculations are carried out.® However, it is possible to have
loaded a number of different spacetimes into a single session and still calculate components for
a particular spacetime even if it is not the default. This is done by specifying the name of the
desired spacetime as an argument to the tensor in square braces. For instance, consider the set
of commands:”

> qload ( schw ):

> qload ( kerr ):

> grcalc ( R(dn,dn) ):

> grcalc ( R[schw](dn,dn) ):

The first two commands load the two spacetimes schw and kerr. After the second command,
the default spacetime for which subsequent calculations will refer is kerr. The first grcalc()
command requests the calculation of the covariant Ricci tensor. This command automatically
assumes that the calculation is requested for the default spacetime, ie. kerr. The second
grcalc() command also calculates the Ricci tensor, however in this case the desired spacetime
is given explicitly as an argument to the tensor name. Thus the second command calculates the
Ricci tensor for the schw spacetime.®

6The default spacetime can also be switched through use of the grmetric() command. See Booklet B: Specifying
spacetimes.

"The qload() command is described in Booklet B: Specifying spacetimes, and the grcalc() command is the
subject of Section 2 of this booklet.

8In passing, note that the two grcalc() commands could also have been executed with the single command:

> grcalc ( R(dn,dn), R[schw](dn,dn) ):
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It is currently not possible to specify alternate spacetimes in this way for GRTensorIl opera-
tors. For such objects the grmetric() command must be used to switch the default background
geometry for calculation.

1.4 Composite objects

Certain objects in the standard GRTensorll library have been defined as ‘composite objects’.
These objects are actually simply aliases which refer to some group of standard objects. Every
object in the group will be acted upon when the alias is used. An example is the set of
Newman-Penrose spin coefficients. These objects can be reference individually using the object
names NPsigma, NPepsilon, etc. They can also be referenced as a group using the name NPSpin.
Thus the single command

> grcalc ( NPSpin ):
is equivalent to the set of commands

> grcalc ( NPsigma ):
> grcalc ( NPepsilon ):

etc.

which would have to be issued for each of the twelve spin coefficients.

Other notable examples of composite objects include the Newman-Penrose curvature compo-
nents (WeylSc and RicciSc, described in Booklet E: Bases and tetrads) and the scalar curvature
invariants (see ?grt_invars and Section 7 of this booklet).

2 Calculating tensor components

GRTensorIl’s raison d’etre, is embodied in a single command, grcalc(). This command is
responsible for the calculation of the components of any tensor, scalar, or operator defined for
GRTensorll. Its usage is as follows:

grcalc ( objectSeq )
objectSeq — A sequence of GRTensorll indexed object names.

Example: > grcalc ( R(up,dn,dn,dn), R(dn,dn), Ricciscalar ):

In order to perform any calculation with grcalc(), a background geometry must have been
previously loaded into the current session (see Booklet B: Specifying spacetimes), either as a
metric or set of basis vectors. Calculations of either basis or metric tensor components can be
carried out by specifying the type of index, as outlined in the previous Section 1.3.

The results of a calculation are not displayed automatically because individual terms can often
be inconveniently large before they are simplified using gralter() (see Section 4). A request
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to display the results of a grcalc() command must be given explicitly using the command
grdisplay () (Section 3).

Multiple objects can be calculated at once by separating them with commas in the argument
to grcalc(). The underscore character, ‘> can be used as a short-cut if the object arguments to
a GRTensorlIl command are to be re-used in succession. For instance, in the pair of commands

> grcalc ( R(up,dn), Ricciscalar ):
> grdisplay ( _ ):

the underscore character instructs grdisplay() to substitute the arguments of the previous
grcalc() command (namely R(up,dn) and Ricciscalar) into its own argument list.”

Calculation of intermediate objects: The grcalc() command calculates the requested
objects for the default metric or for any metric specified in square brackets after the tensor name
(see Section 1.3). The internal definition of each tensor also contains a list of tensors which are
required by that definition. Any tensors in this list (for example, the Christoffel symbols in the
case of any of the curvature tensors) will also be calculated automatically. If any of these objects
have already been calculated for the spacetime in question, the results of the previous calculation
are used rather than re-calculating the objects.

Derivatives: The derivatives (partial or covariant) of any tensor or scalar can be calculated
by appending the indices pdn or cdn to the regular index list of the object. Thus the covariant
derivative of the Ricci tensor, Rgp;c, could be calculated using the command

> grcalc ( R(dn,dn,cdn) ):

In the case of curvature tensors defined on a basis, the indices pbdn and cbdn should be used
instead. See the previous section for definitions of the derivative indices.

Operators: Operators defined in the GRTensorII standard library can also be applied to tensors.
The arguments of the operator are specified in square braces before the index list. For instance,
the d’Alembertian of the Ricci tensor could be calculated using the command

> grcalc ( Box[ R(dn,dn) ] ):

See Section 1.2 for a more complete description of how operators are referenced in GRTensorll
commands. Section 7 provides a list of operators defined by the standard library.

2.1 Calculating individual components

An occasional difficulty when working with complicated spacetimes is that individual components
of curvature tensors can expand to a size which MapleV is unable to handle, resulting in an

9 Another short-hand alternative has been included, because the grcalc() and grdisplay() commands are so
often used together. The command grcalcd(), is an alias for the combined grcalc() and grdisplay() applied in
succession. Thus the given command pair could be replaced by the single command

> grcalcd ( R(up,dn), Ricciscalar ):
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‘Object too large’ error. It may happen that this error occurs for only a few components of
a tensor, while many others are well within the limitations of the computer algebra system, and
sometimes in such cases useful information about the tensor can be inferred even if all of the
components are not explicitly calculated.!®

The command grcalcl() exists to perform the calculation of a single component of a tensor:

grcalcl ( object, indexList )

object — The name of the object to be calculated.

indexList — A MapleV list whose entries specify the component to be calculated, either by
indicating the coordinate names or numbers.

Example: > grcalcl ( R(dn,dn,dn,dn), [r,r,theta,phi] ):

Note that since only one component has been calculated, GRTensorIl will not recognize the
entire object as being calculated. Thus, the result of the calculation cannot be displayed using
the grdisplay() command. Instead, the component can be accessed using grcomponent ()
(described in Section 6, below), as in the command sequence:

> grcalcl ( R(dn,dn), [1,1] ):
> £(x,y,2z,t) := grcomponent ( R(dn,dn), [1,1] ):

(where we’ve also demonstrated the use of coordinate numbers as an alternative to coordinate
names.)

2.2 Clearing calculations

Once the components of a tensor are calculated for a given metric the results are saved and
used in any subsequent calculations involving the tensor. Further calls to calculate the same
object will return the already determined components. In order to clear the results of a tensor
calculation, the command grclear () can be used.

10See the Tomimatsu-Sato worksheet, tosa.ms, available from the GRTensorII world-wide-web page [1].
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grclear ( objectSeq )

objectSeq — This argument can be either a sequence of GRTensorII objects or one of the special
parameters:

results — Clears all of the GRTensorII objects which have been calculated for the current
default spacetime. The default spacetime (ie. metric and/or basis vectors) remains
initialized.

metric — Clears all of the objects calculated for the current spacetime, including the
metric components g(dn,dn).

spacetime — Clears all of the objects calculated for the current default spacetime as well
as the components of the metric and basis vectors, if assigned.

If either of the three special parameters are used as the objectSeq argument, then a prompt
asks the user to confirm the use of grclear ().

Example: > grclear ( results ):

3 Displaying tensor components

The command grdisplay() can be used to display the components of GRTensorII objects which
have previously been calculated for a particular spacetime.

grdisplay ( objectSeq )
objectSeq — A sequence of names of previously calculated objects.

Example: > grdisplay ( R(bdn,bdn) ):

The grdisplay() command displays the components of all of the tensors named in its argu-
ment.'! Only the non-zero components are displayed, and only the independent components up
to index symmetries (thus only the components in the upper diagonal of a symmetric 2-tensor
would be displayed).

Components whose size exceeds the value of the grOptionDisplaySize variable will have only
their length displayed rather than their value. This limit can be increased by assigning a larger
value to this variable. It is preferable to attempt to reduce the size of the components by applying
simplifications via gralter () or grmap() as described in Section 4, below.

For 1- and 2-index objects, the output will be in the form of a matrix unless the size of one
of the individual tensor components (as measured in MapleV words) exceeds the value of the
grOptionTermSize variable. If so, then the regular display of individual components is used.

11Recall that if grcalc() or gralter() have been used immediately prior to this command, then the short-cut
underscore character can be used to indicate the arguments of the previous command are to be carried over (see
the discussion in Section 2).
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The display of coordinate names over coordinate numbers can be toggled using the global
variable grOptionCoordNames.

For descriptions of the grOption variables, see Booklet F: Installation and setup or the
7groptions online help page.

3.1 Derivative aliases

Large numbers of derivatives in an expression can confuse the appearance of the output.
It is often desirable to express partial derivatives in a variable by a special symbol or ab-
breviation. A set of commands are included in GRTensorIl to perform such substitutions to
each component of a result returned by grcalc () with the aim of producing more readable output.

The most useful of these commands is autoAlias(), which specifies shorthand notation for
partial derivatives to be used throughout the session.

autoAlias ( expressionName )

expressionName — The name of an expression which contains functions whose derivatives are to
be aliased.

Example: > autoAlias ( diff(g(r,t),t)/r + diff(f(r,t),r)/t ):

The autoAlias() command automatically creates aliases for partial derivatives functions
named in its argument. The form of the shorthand notation is to represent derivatives in a
coordinate by placing the coordinate in a subscript. Thus, for example

Of(r,t)
—_ becomes .
or Ir
The autoAlias () command is given a single expression as an argument. It automatically creates
derivative aliases (up to third order) for each function contained in the expression. Thus, if f(r,t)
is defined by

Oh(r,t) + g(r,t)
or ot

and is given as an argument to autoAlias (), then derivative aliases will be automatically created
for the functions h(r,t) and g(r,t). Derivative aliases created with autoAlias() will be active for
the entire MapleV session.

Note that in order to apply autoAlias() to all functions contained in the components of a
particular tensor, the command gralter() (or grmap()) must be used, as in:

f(rt) := h(r,t) +

> gralter ( R(dn,dn), autoAlias ):

This command ensures that derivatives of all functions in all component of the Ricci tensor are
assigned an alias of the form specified above. (See Section 4 for a description of the gralter()
command.)
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The command diffAlias() can be used to perform a similar task. The main differences are
that diffAlias() allows the user to specify exactly which functions are to be aliased.

diffAlias ( varList, functionList )2

varList — A MapleV list of variables (coordinates) for which the shorthand alias is to be applied
(eg. [r,thetal).

functionList — A set of names of functions in the above specified variables for which the short-
hand is to be applied (eg. [£, g]).

Example: > diffAlias ( [r,t], [f,g] ):

As with autoAlias(), the aliases take the form of subscripts of the relevant variable.
Returning to the above example, the command

> diffAlias ( [r,t], [h,g]l ):
would be equivalent to the command
> autoAlias ( f(r,t) ):

diffAalias() commands can also be placed in metric files (see Booklet B: Specifying
spacetimes) to assign the aliases automatically when the metric is loaded.

The final form of derivative aliasing available with GRTensorIl allows more general repre-
sentations of the derivatives than either the diffAlias() or autoAlias() commands. The
grDalias() command allows users to specify a character representation of the derivative in a
particular coordinate, such as an apostrophe (?). The syntax of the command is:

grDalias ( function, varl, strl, var2, str2, ... )
function — A function for which derivative aliases are to be created.
var — The variables on which the function is dependent.

str — Strings which should represent derivatives of the function in terms of the preceding named
variable.

Example: > grDalias ( f(r,t), r, ‘’¢, t, “*‘ ):

The grDalias() command replaces derivatives in the listed variables with a corresponding
string which is specified by the user. Thus, after issuing the command

> grDalias ( f(r,t), r, °¢, t, ‘% ):

12The code for diffAlias() was contributed by Roberto Sussman.
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the functions
of(r,t)  0*f(r,t)  Of(r,t) & f(rt) 0*f(rt)
or ’ or2 ’ ot ’ o2’ orot ’
would appear, respectively, as

fI, II, f*7 f**7 fl*-

grDalias() commands can also be placed in metric files (see Booklet B: Specifying spacetimes)
to assign the aliases automatically when the metric is loaded.

4 Modifying tensor components

The large number of summations involved in the calculation of curvature tensors often results in
individual components consisting of enormous numbers of terms. Only with the aid of symbolic
simplification functions can one hope to extract useful information from the expressions.

Two functions are provided with GRTensorII which allow the application of MapleV functions
to individual tensor components: gralter () and the more general grmap ().

gralter ( objectSeq, [functionl], [function2], ... )

objectSeq — A sequence of GRTensorlIl indexed object names.

function — Single-argument functions to be applied in turn to each component of the objects
named in the objectSeq argument.

Example: > gralter ( R(dn,dn), expand, factor ):

The gralter () command is the standard means of applying simplification routines to GRTen-
sorll object components. The command recognizes any of the following strings in its function
arguments:

1. simplify — Applies the MapleV simplify() command to each component of the named
objects. See 7simplify.

2. trig — Applies trigonometric simplification to each component. See 7simplify[trig].

3. power — Simplifies terms containing exponents, exponentials, and logarithms. See
p g g
?7simplify[power].

4. hypergeom — Simplifies terms containing hypergeometric functions. See
?simplify[hypergeom].

5. radical — Converts radicals, logarithms, and exponentials to their MapleV canonical form.
See 7simplify[radicall].

6. expand — Applies the routine expand () to expand individual terms in each component. See
7expand.

7. factor — Applies the routine factor () to factorize each component. See ?factor.
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8. normal — Applies the routine normal () to convert each term to its MapleV ‘factored normal
form’. See 7normal.

9. sort — Applies the routine sort () to sort the terms of polynomials into descending order.
See 7sort.

10. sqrt — Simplifies expressions involving square roots of symbolic quantities. This has the
effect of forcing MapleV to recognize that, for instance, vVr2 =r. See ?simplify[sqrt].

11. trigsin — Applies trigonometric simplification (as Option 2, above), however in this case
biased towards introducing sine functions.

12. cons — This option will apply any constraint equations that have been specified with the
metric. See Booklet B: Specifying spacetimes.

13. consr — Like the previous option, this option applies any constraints on the spacetime.
However, in this case the constraints are replied repeatedly until there is no change in the
expression to which they are being applied.

14. other — Any other single-argument MapleV function can be specified (eg. radsimp()). The
function will be applied to each component of the listed GRTensorlII objects.

Note that each of the above options are numbered, and in fact any of the numbers (except
14) can be used as a substitute for the corresponding names. Thus,

> gralter ( R(dn,dn), 6, 7 ):
is equivalent to the command
> gralter ( R(dn,dn), expand, factor):

Alternatively, the user may choose not to specify any form of simplification in the command
arguments. In this case, a menu of the above options is presented and the user asked to choose
from the above numbers. In this case Option 14 is available, and the user will be prompted for
the MapleV command which is to be applied.

The gralter () command can apply any single-argument MapleV function to the components
of a tensor. In order to make use of MapleV functions which possess more than one argument,
the grmap() command can be used. This command can apply any MapleV function to each
component of a GRTensorlI object.

As an example, consider the case in which one wishes to give a particular value to some
constant, say ( = 0, in each component of R,;. In order to perform this substitution for a single
function, we would use the standard MapleV command subs(), as in

> subs ( Q=0, F(x,y,z) ):
where F(z,y,2) is some complicated function containing () as a parameter. Note that in this

case subs () takes two arguments, and thus could not be applied to R(dn,dn) using gralter().
We could, however, use grmap () to perform the substitution for each component of R(dn,dn) as
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follows:
> grmap ( R(dn,dn), subs, Q=0, ’x’ ):

Here the first argument specifies the object to which the command is to be applied, the second
is the command itself (‘subs’), and the third and following arguments specify the arguments that
should be passed to the given function. A place-holder, ’x’, is used among these arguments to
indicated where the tensor component is to be inserted in the command. As the above command
is executed the components R;1, Rj2, - .., are substituted into the location of  in the command:

> subs ( Q=0, z ):

The general format of the grmap () command is as follows:

grmap ( objectSeq, function, fnArgl, ..., ’x’, ..., fnArgN )
objectSeq — A GRTensorll indexed object name, or sequence of object names.
function — The name of a function to be applied to each component of a tensor.
fnArgl ... fnArgN — The arguments of the function named above.

’x? — A place-holder indicating where the components of the tensors listed in objectSeq are to
be slotted into the arguments of the function.

Example: > grmap ( R(dn,dn), Ricciscalar, subs, b(r)=B, c(r)=C, ’x’ ):

Finally, we note that simplifications carried out by the gralter () and grmap() command are
carried out only after the use of grcalc() to calculate the components of a particular tensor. In
general, however, the calculation of a tensor requires the calculation of a number of intermediate
objects, which might also benefit from some simplification in order to allow the later calculations
to proceed more smoothly.

For example, if one requests a calculation of the Riemann tensor immediately after loading a
metric then the program must first calculate the Christoffel symbols and then perform summations
and take derivatives of their components. For very complicated metrics, if the Christoffel symbols
are left in ‘unsimplified’ form, this can cause problems for the subsequent calculation of the
Riemann tensor.

In this trivial example the most obvious solution is first to calculate and simplify the
Christoffel symbols, then proceed to calculate the Riemann tensor. However, occasionally one
comes across calculations with large numbers of such intermediate calculations in which it might
be desirable to apply some form of simplification universally to each. The grcalcalter()
command can perform this operation automatically, effectively performing a grcalc() followed
by a gralter () command for each intermediate object in a calculation.
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grcalcalter ( objectSeq, [functionl], [function2], ... )

objectSeq — A sequence of GRTensorll indexed object names.

function — Single-argument functions to be applied in turn to each component of the objects
named in the objectSeq argument.

Example: > grcalcalter ( R(dn,dn), expand, factor ):

The arguments to grcalcalter() are identical to those of gralter() given above. Simpli-
fication routines can be specified either by name or number, and if no simplification routine is
specified a menu will be presented and the user prompted to supply one. The simplification rou-
tine which is chosen will then be applied to the calculation of each intermediate object required
of the calculation of objects listed in objectSeq.

The grcalcalter () command should, however, be used with caution. Only rarely is it help-
ful to apply powerful simplifications universally. More often this will result in a large number
of redundant attempts at simplification which increase the calculation time without noticeable
benefit. These matters are the topic of the next section.

5 Simplification strategies

A brief experience with tensor calculation using computers makes clear the importance of selecting
a correct simplification strategy for calculations. By choosing not to perform a simplification at a
crucial step, one risks allowing components to become too large to be tractable by the computer
algebra package. Alternatively, simplifying at each stage of a calculation often results in needless
or redundant expansions and contractions of terms which can use up a great deal of time with
little or no benefit.

Unfortunately, the choice of which simplification routines should be applied, and at what
stages, is a fairly non-algorithmic problem, and thus difficult to automate in a software package.
A number of widely held generalizations, such as the idea that simpler components will result
from the proper use of tetrads, have proven to be inaccurate in practical situations.'?

Though the problem of finding the best simplification strategy can be considered to be non-
algorithmic, it certainly is often solvable. If a number of general rules are kept in mind while
performing a calculation, it is possible within a reasonable amount of time to determine a solution
to a given problem, whenever such a solution exists at all given the memory limitations of the
computer algebra system/platform. Summarized here are some general rules of simplification
appropriate to GRTensorIl running under MapleV.

e There should be some default simplification procedure applied to every step of a calculation.
Failure to do this can make a simple calculation intractable. The MapleV routine normal ()
is the best starting point for the default. If the calculation involves exponentials (e.g. the
Bondi metric) the routine expand () may be more appropriate. Only if very general functions
are involved is it appropriate to consider no default simplification. In general cases this may
be the optimal choice. The choice of default simplification can be altered through the use of

13For an analysis of the efficiency of different formalisms in calculating tensor components, see [2].
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the global variable grOptionDefaultSimp (see ?groptions, or Booklet F': Installation and
setup) or by using the grcalcalter() command.

e Simplification of the metric tensor (or basis components) before further calculation will
improve performance.

e In the null tetrad formalism, pre-calculation and further simplification of the spin coeffi-
cients (and their complex conjugates) will improve performance only in more complicated
cases. The same holds for the Christoffel symbols in the coordinate approach. (Note that
these objects represent ‘first derivatives’ of the metric. Generally, a good point to apply
simplifications is after any derivatives or covariant derivatives of intermediate objects are
taken.)

e For further simplification after an object has been calculated, the MapleV routine
simplify () is seldom a good first choice. The routine expand() followed by factor()
is often more appropriate. If the spacetime is sufficiently general there will be no further
reduction in component size if normal () has been used as default.

o If complicated functions are involved, it can be advantageous to substitute the explicit
forms of the functions after a more general calculation is completed. For both coordi-
nate and tetrad calculations the removal of trigonometric and like functions via elementary
transformations (such as u(6) := cos#) will often improve performance.

e Experience shows that component calculations most often tend to finish quickly (within a
few minutes at most) or not at all. When a calculation is proceeding slowly, it should be
halted, the simplification strategy altered, and the worksheet re-executed. (This is more
easily done in the ‘windows’ based interfaces to MapleV than in the text based interface.)

For most situations these general rules will give adequate performance, and reduce the cal-
culation of curvature for even complex spacetimes to an essentially trivial exercise. That is to
say, if after applying these methods an answer is still not forthcoming (most likely because of the
size of intermediate expressions), then it is quite possible that no answer is attainable given the
limitations of the computer algebra platform, and that the problem is not solvable without some
more sophisticated analysis.*

6 Accessing tensor components

Results obtained by use of the grcalc() are stored in a data structure which contains the com-
ponents of the particular tensors as well as a great deal of other information regarding the tensors
including index configuration, index symmetries and calculation algorithms. Generally, the user
is not interested in the additional information, and thus the commands grdisplay (), gralter (),
grmap(), etc., have been provided to allow users to display and operate on the components of
tensors without dealing with the more complicated data structure in which they are stored.
Often, however, it is useful to be able to perform more complicated operations with the
components of tensors, in which case the grmap() command can become unwieldy. For instance,
a user might like to solve the individual Einstein equations calculated for a given metric. It would
be most convenient, then, to extract the tensor component values from the GRTensorIl data
structure and place them in some user defined variables which can be more easily manipulated.

14See the Tomimatsu-Sato example, tosa.ms, available from the GRTensorII world-wide-web site [1].
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The main means of extracting tensor components is through the command grcomponent ():

grcomponent ( object, component )

object — The indexed object name of the tensor whose components are to be extracted.

component — A MapleV list specifying the particular component, either by giving the index
names (eg. [t,r,theta,phi]) or their corresponding numbers (eg. [1, 2, 3, 4]). In
the case of GRTensorlII scalars, this parameter can be omitted, or an empty list, ‘[]1’, used.

Example: > £(x) := grcomponent ( R(up,dn,dn,dn), [t,r,r,r] ):

Unlike most other GRTensorII commands, grcomponent () returns a value (a function, usually)
which can be assigned to some other MapleV name.

While grcomponent () extracts individual components of tensors, the command grarray()
can be used to place all of the components of an n-index tensor into an MapleV array. For
example, using the command

> Riem := grarray ( R(dn,dn,dn,dn) ):

the components of the covariant Riemann tensor are stored in the array Riem and can be
accessed as Riem[1,2,1,2], etc. The specification of the grarray() command is as follows:

grarray ( object )
object — The indexed object from which the array is to be created.

Example: > Riem := grarray ( R(dn,dn,dn,dn) ):

For both the grcomponent () and grarray() commands, it is important that the names to
which the extracted components are assigned are not the same as the names of any standard
GRTensorlII object. Thus, the assignment

> R := grarray ( R(dn,dn,dn,dn) ):

will result in error messages in later attempts to use R(dn,dn,dn,dn) since the name ‘R’ has been
assigned.

7 Standard object library

A number of commonly used curvature tensors are defined automatically within GRTensorII
along with optimized algorithms for their calculation. This section lists the objects (tensors and
operators'®) which can be calculated once a metric g, is specified (see Booklet B: Specifying
spacetimes). Objects which are calculated from a set of basis vectors are listed in Booklet E:

15For a definition of the GRTensorII use of the word ‘operator’, see Section 1.2.
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Bases and tetrads.

In addition to the objects listed in this section, new tensors can be defined using the command
grdef (). For a description of this command, see Booklet D: Defining new tensors.

7.1 Curvature tensors

While only a single index configuration is given in each of the following definitions, alternate
configurations as well as their derivatives can be specified via the means described in Section 1.

Note that the definitions given in this section do not necessarily specify the algorithm used
for calculation. For instance, generally the Ricci tensor will be calculated directly from the
Christoffel symbols, even though the definition below is given in terms of a contraction of the
Riemann tensor. Within GRTensorlIl, algorithms often make a choice of calculation method
based on criteria such as which intermediate objects have already been calculated.

GRTensorIl name Definition
g(dn,dn) covariant metric, gqp
ds line element form of the metric
detg metric determinant, g := det(gas)
dimension spacetime dimension,
sig spacetime signature,
x (up) coordinates, z*
kdelta(up,dn) Kronecker delta,
5oy e 1, if a =0,

0, otherwise.
LevCS(dn,dn,dn,dn)!® Levi-Civita alternating symbol,

1 for (a,b,c,d) in even order,

la,b,c,d] :== ¢ —1 for (a,b,c,d) in odd order,
0 otherwise.
LevC(dn,dn,dn,dn) Levi-Civita tensor, €,pcq := (—9)'/?[a, b, ¢, d]
Chr(dn,dn,dn) Christoffel symbol of the first kind,'”

Lo = %(gab,c + Gac,b — gcb,a)

16 Three dimensional versions of the Levi-Civita symbols also exist as LevCS(dn,dn,dn), etc.
17Note that this index ordering differs from that of Misner-Thorne-Wheeler [3]. We retain this ordering for
consistency with earlier versions of GRTensor.
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Chr(dn,dn,up) Christoffel symbol of the second kind, T'¢, := g%Tyeq
R(dn,dn,dn,dn) Riemann tensor,
arg arg

Ryea 1= & — 5 + Tecla — Tealse
R(dn,dn) Ricci tensor, Ryp := Rcp
Ricciscalar Ricci scalar, R := R,
S(dn,dn) trace-free Ricci tensor, Syp := Rgp — %Rgab
C(dn,dn,dn,dn) Weyl tensor,

Cuabed = Raped — %(ga[csd]b - gb[ch]a) - ﬁRQa[ng]b

Cstar(dn,dn,dn,dn) obed 1= %eabefcefcd

G(dn,dn) Einstein tensor, Gop := Rap — 1 Rgap
C2(up,up,dn,dn) c2eb, ., = Cabefcefcd

S2(up,dn) 528 .= 5°.5%

S3(up,dn) S3%, :=522%,.5%

S4 (up,dn) S4%, .= 532,.5%

CS(dn,dn) CSab = CacdbSCd

CSstar(dn,dn) cSyy = ;‘deSCd

7.2 Scalar polynomial invariants

GRTensorII includes the definitions of eighteen scalar polynomial invariants of the Riemann tensor.
This includes the set of Carminati and McLenaghan [4], which constitutes sixteen invariants and
has been proven to be complete for perfect fluid as well as Maxwell-type Ricci tensors. It consists
of the invariants

CM :={R,r1,72,r3, w1, W2, M1, M3, M3, M4, M5}

defined in the table below.

As indicated by Zakhary and McIntosh [5], more general Ricci types may require at least an
extra invariant (here labeled mg) to ensure completeness. They suggest that if the CM set is
augmented by this additional invariant, the resulting set is complete for all Ricci and Petrov
types. It is certainly true that none of the invariants in the resulting set can be constructed
from invariant polynomials of equal or lower order. It is also true that any invariant of less than
sixth order which is not within this set can be constructed identically from members of this set [6].
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GRTensor name Range Definition!®
Ricciscalar Real R :=R%,
R1 Real T o= CI>ABABCI>ABAB
= 150,55,
R2 Real ry = @ABAB@BCBOQCACA
= —35%5".5¢%
R3 Real rg = @A 8B B 80 Y@L 4L
= =58%,8%.5¢,54,
wi Complex w; = IIIABCD\I'ABCD
= §(Cavea +iCyeq)C*?
w2 Complex wy = UABpUCD LGB
= _%(Cade + iC:de)Ccdefoefab
M1 Complex m; := lIlABCDq)ABAB@CDAB
= 188U Cheap + iClhogy)
M2a Real Maa = 755°°SesCapeaCl?
M2b Real map = 155% 8 Cy O ocTd
M2 Complex my = UapopUAB pp@CPABREE
= (maq — map) + 58 Se; Cly g O
M3 Real ms = Uapop¥ 4 pepdABABSODOD
= Maq + M2y
Mda Real Mg = — 8998 824C0BChe,
M4b Real My = —355%98%5°4Cr. " Cy
M4 Real my = Capep¥ i pep@ABCESCEABGD LD
= M4q + Mayp
M5a Real msq = %SCdSefCagthacdngefh
M5b Real msy = 355°48e I CUhCr L Cr Ly
Mbc Real mse = ;—QSCdSefC*agthacdngefh
M5d Real msa = 35548 Cr by W Co o
M5 Complex ms := ‘I’ABCD‘I’CDEF‘i’ABEF‘I’ABAB‘I’EFEF

18Definitions are given in terms of Ricci and Weyl spinors, ® aBAip) ¥YaBcop and the corresponding expression

in terms of the trace free tensors, Sup, Coped-
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= (m5a + m5b) + i(m5c + m5d)

M6 Complex  mg = U 4pop®ABABGOPCDGAB | & . .
= 5550°5:°S7 S (C% g +iC* q)
W1R, W2R, etc. Real Re(w1), Re(ws), Re(my), etc.
W1I, W21, etc. Real Im(w), Im(wy ), Im(ms), etc.
invars — {Ricciscalar, R1, R2, R3, Wi, W2, Mi,

M2, M3, M4, M5, M6}

Rinvars — { Ricciscalar, R1, R2, R3}

Winvars — {w1, w2}

Minvars — { M1, M2, M3, M4, M5, M6}

CMinvars — {Ricciscalar, R1, R2, R3, Wi, W2, M1,
M2, M3, M4, M5}

SSinvars!® — {Ricciscalar, R1, R2, R3, WiR, M1R, M2a,
M5a}

7.3 Operators

As discussed in Section 1.2, operators in GRTensorII are objects which require the specification
of some additional information in order to be calculated. For instance, they can be tensors whose
definition involves other user-specifiable tensors, or derivative operators which act on a specifiable
tensor.

The standard library of GRTensorII defines a number of operators which can be divided into
two classes: vector operators, which calculate tensors associated with vector fields, and derivative
operators, which differentiate their argument. These are listed in the following tables.

For concreteness, the tables use the names
f(x) to represent scalars,
v(up) to represent single-index objects, and
T(up,dn) to represent tensors with an arbitrary number of indices.

These names do not have to be entered literally into the arguments of the operator, but rather
any tensor of a similar type may be substituted.

191n spherical symmetry (and its specializations to plane symmetry, etc.), this subset of the invariants constitutes

a complete set [7].
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GRTensorIl name Definition

LieD[v,T(up,dn)] Lie derivative,
L,T% :=v°V /T% — T V.u®+ T Vyv®

Box [T (up,dn)] d’Alembertian, OT%, := V°V . T%
Dsq[f (x)] 0af ()0 f (z)
CDsq[f (x)] Vaf(@)V° f(2)

GRTensorlIl name Definition [8]

vnorm[v] vector norm, v,v®

h[v] (dn,dn) projection tensor, hgp := gap — (Va0%)VaUp
acc[v] (up) acceleration, a® := v*V ,0°

expsc[v] expansion scalar, © := V,v*

shear[v] (dn,dn) shear tensor,

Tab 2= V(aVp) + a(aVp) — %G)hab
shear[v] shear scalar, o := (0%0%,)/?
vor[v] (dn,dn) vorticity tensor,

Wab = A[aVs] — V[aVs]

vor [v] (up) vorticity vector,
Wo = % eabedyy,
vor [v] vorticity scalar, w := (w%w’,)/?
RayEqn[v] Raychaudhuri’s equation,
—Rapv®0® = 02V,0 — Vaa® + 0% + (02 — w?)
E[v] (dn,dn) electric part of the Weyl tensor,

— d
Eab = Cacbd'UCU

H[v] (dn,dn) magnetic part of the Weyl tensor,
Hyp := CF o0t

KillingTest[v] determines if v® is a Killing vector (see also 7killing).
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Commands described in this booklet:

grcalc ( objectSeq ) ... C6
grcalcd ( objectSeq ) ....oooiiiii c7
grcalcl ( object, indexList ) ........ ... ... .. ... C8
grclear ( ODJECESEq ) ..ooouue C9
grdisplay ( objectSeq ) ......oooiiiiiii C9
autoAlias ( function ) ) ... C10
diffAlias ( varList, functionList ) ........ .. .. . . . . C11
grDalias ( function, varl, strl, var2, str2, ... ) ....ccccoeiiiiiiiiiion... C11
gralter ( objectSeq, [functionl], [function2], ... ) ..., C12
grmap ( objectSeq, function, fnArgl, ..., ’x’, ..., fmArgN ) .......... C14
grcomponent ( object, component ) ...l C17
grarray ( Object ) ..o i C17

The information contained in this booklet is also available from the following
online help pages:

?grt_objects, 7grt_operators, grt_invars, 7groptions, ?grcalc, 7grcalcl,
?grclear, 7grdisplay, 7diffAlias, 7autoAlias, 7grDalias, ?gralter 7grmap,
7?grcomponent, 7grarray, 7killing, ?grt_basis.




