(GRTENSORII

GRTensorIl Release 1.50
For MapleV Releases 3 and 4

D. Defining new tensors

Peter Musgrave
Denis Pollney

Kayll Lake

July 1996

Contents

1 Command syntax D2
2 Tensors and tensor expressions D3
3 Index symmetries D7
4 Special cases D10
5 Examples D12
6 Saving and loading definitions D14

Queen’s University at Kingston, Ontario

D. Defining new tensors D2

The GRTensorIl standard library contains the definitions of a number of tensors, scalars, and
other indexed objects whose components can be calculated. The grdef () command is included
to facilitate the specification of new tensors in a simple and natural manner. It allows tensors to
be defined either as an equation in terms of previously defined tensors, or by manual entry of the
component values. Inner and outer products of tensors, symmetrizations, and derivatives can all
be specified as part of the tensor definitions. Furthermore, index symmetries of the newly defined
tensor can be included. A calculation algorithm for the new tensor is created automatically based
on the definition and will automatically take index symmetries into account in order to provide
an efficient calculation.
This booklet outlines the usage and various options available with the grdef () command.!

1 Command syntax

There are two ways to define a new tensor using grdef (). The first method is to simply state

the name of the tensor, including its ‘index structure’ (ie. a list of covariant and contravariant

indices). The second method provides a complete definition in terms of previously defined tensors.
Compare the following two invocations of grdef ():2

> grdef (‘A{a b}):
> grdef (‘G2{a b} := R{a b} - (1/2)*Ricciscalar*g{a b} + lambda*g{a b}‘):

The first form of the command defines a tensor whose component values are arbitrary and
can be manually specified for the background spacetime. Specifically, it creates a definition
of a covariant two-index object, A. The indices are listed in curly braces, {}, and assigned the
labels a and b. This tensor would be accessed as A(dn,dn) in commands such as grcalc() and
grdisplay(). Note, however, that although grdef () creates a definition of the tensor, it does
not calculate its components automatically. The command

> grcalc (A(dn,dn)):

must be given in order to explicitly request the calculation of the components for in current
background spacetime.? In this case, since no prescription for calculating the components of this
tensor has been given, when the grcalc() command is issued the user is prompted to input the
components of A(dn,dn) manually.

The second version of grdef () listed above is somewhat more complicated. In this case the
command once again defines a contravariant two-index tensor, G2, but this time it is explicitly
assigned to an expression involving a number of previously defined tensors. The grdef ()
command uses this information to automatically create a calculation function for the object
G2(dn,dn). Thus, the command

IThe grdef() command replaces the grdefine() command which was the GRTensorlII standard for definitions
of new tensors from Versions 1.00 to 1.21. The grdefine() command is still included for purposes of backwards
compatibility. See ?grdefine for details of its use.

2The specifics of the notation used by these two commands are described in the sections to follow.

3See Booklet C: Calculating tensor components.

GRTensorll software and documentation is copyright 1994-1996 by the authors. GRTensorll software and documentation
is provided free of charge and without warranty. The authors retain any and all rights to the software known as GRTensorII
and its documentation. GRTensorIl development has been supported by the Natural Science and Engineering Research
Council of Canada and the Advisory Research Committee of Queen’s University. MapleV is a trademark of Waterloo
Maple Software.

D. Defining new tensors D3

> grcalc (G2(dn,dn)):

can be used to calculate the newly defined tensor based on its given definition involving R(dn,dn),
Ricciscalar and g(dn,dn).

The argument to grdef () which describes the definition of a new tensor is a MapleV string
(that is, enclosed in back-quotes, ‘‘’). The string specifies a tensor equation which includes
information about the index structure, symmetries, and summations, which are to be carried out
in the calculation of the tensor. This information is parsed by the grdef () command in order to
create a calculation function corresponding to the definition. The grcalc() command uses this
calculation function in order to arrive at the components of the newly defined object in a given
background geometry. The next section of this booklet details the format of the tensor definition
string.

The syntax for the grdef () command is as follows:

grdef (defString, [symSet], [asymSet], [rsumSet])

defString — The definition string (described in Section 2).

symSet — (optional) A set of lists of indices which are symmetric under interchange (described
in Section 3).

asymSet — (optional) A set of lists of indices which are anti-symmetric under interchange (de-
scribed in Section 3).

rsumSet — (optional) A set of ranges over which dummy indices are to by summed (described
in Section 4).

Example: > grdef (‘G2{(a b)} := G{a b} + lambda*g{a b}‘):

The next sections give details of the use of each of the arguments listed above. However, the
first-time reader may find it instructive to skip ahead to the Examples section (Section 5 of this
booklet) to get some familiarity with the syntax of the grdef () command before reading the more
in-depth descriptions that now follow.

2 Tensors and tensor expressions

The main job of the grdef () command is to parse a string containing a tensor definition. As an
example, consider the argument of the second example given above,

‘G2{a b} := R{a b} - (1/2)*Ricciscalar*g{a b} + lambda*g{a b}*
This is a special case of the general form used for tensor assignments,
‘newObject := objectDef ‘.

The string is interpreted by grdef () as an assignment of an expression involving indexed objects,
objectDef, to a new indexed object, newObject. The format of this defining expression is

D. Defining new tensors D4

outlined in the following paragraphs.*
Indexed objects: Indexed objects (tensors and the like) are specified by their name and index
structure:
Name { indices }
The Name is simply an unassigned MapleV name by which the object is referenced, such as R in

the case of the Riemann tensor and its contractions, and Chr in the case of the Christoffel symbols.?

The index list, indices, is always enclosed in curly braces, {}. Individual indices take the form
of alphabetic characters separated by spaces. Different classes of index are specifiable:

a, b, c,... — covariant indices,
"a, "b, “c, ... — contravariant indices,
(a), (b), (¢), ... — covariant basis indices,
~(a), “(b), “(c), ... — contravariant basis indices.

Thus, within the grdef () command, the Riemann tensor R%.4 is referenced using:
R{"a b c d}
while the basis components of the same tensor are
R{"(a) (b) (c) (D}

The characters used in the index labels (a, b, ...) should be unassigned MapleV names. For
instance, in the above example, none of a, b, ¢, 4, can have been assigned a value. This
notation differs from that used by such commands as grcalc() which uses the generic labels
‘up’, ‘dn’; etc., to indicate index positions. The grdef () notation attaches a unique label to
each index. This additional information is required to be able to specify index summations and
correspondences, as described below. (Scalars are referenced using simply their name without an
index list or curly braces.)

Derivatives of tensors: The special characters ‘,” (comma) and ‘;’ (semi-colon) can be used to
specify partial derivatives and covariant derivatives in the index lists of tensors. Thus the tensor
Rap,e (= VeRap) would be represented as:

R{a b ;c}

The specific action of the derivative operation is controlled by the form of the index (tensor
or basis) which immediately follows the derivative indicator, as in the following examples:
R{"a b ,c}: R%.:= —85;‘?
R{"a b ;c}: R%,:=R%.—T{.R*;+ ¢ R,

(a)
R{“(a) () ,(0)}: R@ g (= Zie

R{"(@)) ;(}: R0 = R4) = YDty B @) + 7 5y) B o)

4 As noted in the previous section, the objectDef expression does not need to be specified. In this case, the tensor
is created without assigning it a definition, and the components must be manually entered using the command
grcalc().

5See Booklet C: Calculating tensor components for a list of objects in the standard GRTensorlII library.

D. Defining new tensors D5

These correspond to the actions of the index labels pdn, cdn, pbdn, and cbdn in commands such
as grcalc() (see Booklet C: Calculating tensor components).

Tensor sums and products: The exterior product of a pair of tensors is indicated by the ‘*’
symbol. It is also possible to specify the product of a scalar function and a tensor using the same
operator. Addition and subtraction of tensors is carried out as usual by the ‘+’ and ‘-’ operators.
Round braces, (), can be used to group terms. Thus, the tensor expression

1

5 (Rabcd + f(x)gabgcd)

would be represented as:
(1/2) *» (R{a b c d} + £(x)*g{a b}*g{c d})

The index names and configurations of each term must be consistent with each other and
with the left-hand side of a tensor assignment.

Inner products (summations over indices): A summation over the range of an index can
be specified by repeating the index name, once in the covariant and once in the contravariant
position. Thus, the expressions

> R, and) Ri’Ri
b b
would be represented, respectively, as

R{"a b b c}, and R{a “b}*R{b c}.

By default the summation is carried out over all index values, however restricted summa-
tions (say over three dimensions out of four) can also be specified, as described in Section 4, below.

Operators: Operators can be used in grdef () just as they are used in calculations using
grcalc(). The argument of the operator is placed in square braces. Thus, the command

> grdef (‘X := R{"a "b}*Box[R{a b} 1¢):

serves to define the scalar
X := R®0OR,,,

A limitation on the use of operators, however, is that they can only be used on individual GRTen-
sorIl objects, not functions of objects. To define, for instance, the object

Top = D(RacdbRCd);

a two stage definition is needed. First an intermediate 2-tensor corresponding to the argument
of the operator, in this case Rqc.qR°?, is defined:

> grdef (‘Ti{a b} := R{a ¢ d b}*R{"c ~d}‘):

D. Defining new tensors D6

The final object, Ty, is then defined as an operator acting on T'14:
> grdef (‘T{a b} := Box[Ti{a b}1¢):
Nested operators, to define objects such as

DDRabcda

are handled in a similar fashion, defining intermediate objects which correspond to the action of
an operator on a single object and building upon these.
New operators can not be defined using grdef ().

Symmetrizations: A short-hand notation can be used to indicate symmetrizations over a set
of indices. The notation corresponds to the common usage of round and square braces to denote
symmetrization and anti-symmetrization, respectively. Specifically, define

1
Tabc...(sl...sm)...de = E E Tabc...s,(l)...s,,(m)...de;
T
T o 1 1 sign(ﬂ')T
abe...[s1...5m]...de *— % (_) abc...Sx(1)-+-Sn(m)---d€>
om

where the summations are taken over all permutations, 7, of the numbers 1...m, and sign(n)
represents the sign (odd or even) of the permutation.

The tensor 1
To(beay = 5 (Tabed + Tacas + Tagve + Tapde + Tades + Thac) ,

could be represented in grdef () by the string®7”
T{a (b c d)},
while the tensor
Talbea) == é (Tabed + Tacas + Taabe — Tabde — Tades — Thac) »
could be represented by
T{ a [b c dl}.
Symmetrizations can also be carried over tensor products. Thus
R%caReyy
could be written

R{"a b c (d}*R{e) f}

6 A technical point arises from the fact that round braces are used to indicate both symmetrizations as well as
basis indices. However, it is always possible for the parser to determine from the context which is intended. If the
braces surround a single index, then the index is regarded as a basis index, otherwise a symmetrization is assumed.

7Spaces are not needed between indices where braces occur. The example given here could also be entered as
T{a(b ¢ d)}, omitting the space between the a and b.

D. Defining new tensors D7

Braces are determined to be ‘covariant’ or ‘contravariant’ based on the index which immedi-
ately follows an open-brace, (, [, and the index which precedes a close-brace,),]. Braces enclose
only indices of the same character. Thus the name

T{(a "b c)}

indicates that the symmetrization is to be performed only over the covariant indices within the
round braces, ie. a and c.

Finally, indices can be excluded from symmetrizations by placing them between vertical bars,
‘|’. Thus if a symmetrization were to be carried out over the second and fourth index of a four
index tensor, this could be written as

1
To(blelay == 2 (Tabea + Tadcs)

which in grdef () notation is

T{a (b | c | d)}.

3 Index symmetries

Symmetries among tensor indices can be used in calculation programs to significantly reduce the
time taken for a calculation by recognizing redundant components. The grdef () command can
not determine on its own when such index symmetries exist. However, symmetries can be listed
explicitly in the tensor definition so that the resulting calculation function is as efficient as possible.

The notation used to indicate symmetric and anti-symmetric index groups is identical to that
used for symmetrizations, described in the previous section. Thus if braces are placed within the
index list of the new tensor (on the left-hand side of the tensor assignment) these are interpreted
as index symmetries rather than symmetrizations.

To give some explicit examples, round braces, (), indicate that a tensor is symmetric in the
enclosed indices. The assignment

> grdef (‘A{(a b)} := R{a b}‘):
assigns a calculation function to the tensor A, which assumes that it is symmetric in its indices,

ie.,
Aab = Aba,-

The calculation algorithm called by the command
> grcalc (A(dn,dn)):

then calculates only the components in the upper diagonal and cross-assigns the components in
the lower diagonal. By the same token, the command

> grdef (‘A{(a b)(c dA)}‘):

D. Defining new tensors D8

assigns to the object A(dn,dn,dn,dn) a calculation algorithm which assumed the tensor is sym-
metric in its first two and last two indices,?

Aabcd = Abacd = Aabdc = Abadc-

Since in this case Agpcq Was not given a defining expression, a call to grcalc() would prompt
the user to enter its components explicitly. However, it would only be necessary to input the
independent components (up to the specified index symmetries).

Square braces act similarly, indicating indices in which the newly defined object is anti-
symmetric. Thus

> grdef (‘A{[a b c] d}¢):

defines a tensor for which it is assumed that
Aabcd = Abcad = Acabd = _Aacbd = _Abacd = _Acbad-

The ‘covariant’ or ‘contravariant’ character of the braces is determined as for symmetriza-
tions, described in the previous section. Also as above, indices which are to be excluded from a
symmetrization can be enclosed in vertical bars, ¢|’.

Note that the symmetries need to be stated explicitly on the left-hand side of the assignment.
Although in the definition of A,; above the index symmetry is obvious from the properties of the
Ricci tensor, the grdef () command does not search for such properties. It must be instructed as
to which index symmetries to include in the calculation function for the tensor.

Another important consequence of this is that the symmetries which are stated explicitly will
be incorporated into the calculation function regardless of whether the listed symmetry is an
actual property of the tensor which is being defined. Thus the definition

> grdef (‘A{[a bl} := R{"c a c b}‘):

will assign a calculation function to A, which assumes that the tensor is anti-symmetric, which
it clearly is not. If the grcalc() command is subsequently used to calculate A, for a particular
metric, it will always arrive at the result

Aab =0,
which is incorrect in general.

Finally, the different role of braces on the left-hand side and right-hand side of a ten-
sor assignment are emphasized: On the left-hand side, braces are informational, describing
the symmetries of the newly defined object. On the right-hand side, the braces specify that
the operation of symmetrization is to be carried out over the enclosed indices. Thus the command

> grdef (‘A{(a b)} := B{(a b)}‘):

8 A calculation function satisfying the required symmetries is created automatically if such a function does not
already exist among the existing GRTensorII object definitions.

D. Defining new tensors D9

defines the tensor .
Agp = 5 (Bab + Bba)

(as indicated by the ()-braces on the right-hand side), which is assumed to be symmetric in its
indices (as indicated by the ()-braces on the left-hand side). If the braces on the left of the
grdef () command are omitted, the calculation function assigned to the new object would not
take into account the symmetry inherent in A, and, for example, the components A5 and Asg
would be calculated independently, even though by examining the right-hand side of the definition
it is clear that they are equal.

Alternate specification of index symmetries

The notation used to specify tensor indices in grdef () has been chosen to mirror as closely as
possible the standard notation of textbooks of classical tensor analysis. However, because the
text typed onto an input line is linear (lacking visual super-scripts and sub-scripts) the presence
of a large number of braces among covariant and contravariant indices can serve to obscure the
contents of an index list. Not only can this make the worksheet difficult to read later on, it also
increases the chance of an error being introduced into the tensor definition.

To alleviate this problem somewhat, an alternate method exists for specifying symmetries
among the tensor indices. The grdef () command possesses optional extra arguments which can
be used to enter symmetry and anti-symmetry lists. This can be used instead of the placing of
braces among the tensor indices in the left-hand side of the definition string.

In these optional arguments, symmetries are expressed as lists of index numbers: The list
[2,3,5] indicates that the second, third and fifth indices are involved in a symmetry (or anti-
symmetry). To specify symmetries, include the argument

sym={symLists}
to the grdef () command. Thus,

> grdef (‘A{a b c d}¢, sym={[1,2],[3,41}):

indicates that the new tensor A,p.q should be considered to be symmetric in its first two and last
two indices:
Aabcd = Abacd = Aabdc = Abadc-

(Note that this invocation of grdef() has an identical effect as one of the examples of the
previous section.) Alternatively,

> grdef (‘A{a b c d}¢, sym={[2,3,41}):
defines a tensor which is symmetric under interchange of its second third and fourth indices:
Aabcd = Aacdb = Aadbc = Aabdc = Aacbd = Aadcb-

Anti-symmetries are specified the same way using the argument

asym={asymLists}

D. Defining new tensors D10

The tensor defined by

> grdef (‘A{a b c}‘, asym={[1,2]}):

is assigned a calculation function which assumes it is anti-symmetric in its first two indices,
Aabe = —Abac;

while the command

> grdef (‘A{a b c d}¢, sym={[1,3]}, asym={[2,41}):

assigns a calculation function which is symmetric in indices 1 and 3 and anti-symmetric in indices
2 and 4.

Finally, note that a limitation of this notation (and the use of braces as described in the
previous section) is that some more complicated index symmetries such as those involving groups
of indices, can not be specified. An important example is the index pair symmetry of the Riemann
tensor,

Rapea = Redap-

Although grdef () can not currently automatically create such symmetry functions, the Riemann
symmetry function has been pre-programmed, and can be assigned to newly defined objects using
the optional argument symfn. This argument has the form

symfn = objectName

where objectName is the name of a pre-defined object with the same symmetries as the object to
be newly defined. Thus a new object with Riemann index symmetries can be created using the
definition

> grdef (‘T{a b c d}‘, symfn=R(dn,dn,dn,dn)):

Symmetry functions assigned in this way overide any other index symmetry specifications (using
braces or the sym= or asym= parameters) for the newly defined object.

4 Special cases

Defining vectors

Single index objects form a special case within grdef (). They can be defined as usual by the
means given in the previous section. Alternatively, however, they can also be assigned a value
directly by specifying the components as a list. For example, the command

> grdef (‘v”a := [0,0,0,1]¢):
defines a single index object, v, whose four components are assigned the values [0,0,0,1]. This

form of the grdef () command alleviates the need to run grcalc() after the definition in order to
assign values to the components. However, if the default spacetime is changed (either by creating

D. Defining new tensors D11

or loading a new background®), then grcalc() would still be required in order to assign the
components of the vector in the new geometry.

The Kronecker delta

A special object, kdelta{"a b}, allows single components of tensors to be isolated in tensor
definitions. For example, if the coordinates of the background spacetime are (r, theta, phi,t), the
t-component can be selected using the object

kdelta{"a $t}.

The ‘$’ character preceding the coordinate name ¢ indicates that that the kdelta object is to take

the form
50, — 1, if a=t,
71 0, otherwise.

Thus a vector in the ¢-direction could be defined using the command
> grdef (‘v{"a} := f(t)*kdelta{"a $t}*):
(which is equivalent to the command
> grdef (‘v{"a} := [0,0,0,£(t)]‘):
in the given coordinates). Another example is a 2-index tensor,

Top := P(r,t)gap + (P(r,t) + p(r,t))6" 26",
which could be defined using the command

> grdef (‘T{(a b)} :=
P(r,t)*g{a b} + (P(r,t) + rho(r,t))*kdeltafa $t}*kdelta{b $t}*):

Multiple metrics

The grdef () command allows the definition of objects which depend on multiple background
geometries. Such objects arise, for instance, when one considers the junction between two
spacetimes described by different metrics. In a tensor definition, objects which are to use
alternate background geometries are indexed using angle braces, <>. For example, the following
definition can be used to define a tensor, Dg, which is the difference of two metrics:

> grdef (‘Dg{a b} := g<1>{a b} - g<2>{a b}‘):
In this definition, the indices <1> and <2> in the objects g{a b} indicate that the components of

g(dn,dn) should be taken from metrics specified by the user at calculation time. To calculate
the object Dg, the command

9See Booklet B: Specifying spacetimes.

D. Defining new tensors D12

> grcalc (1=ssym, 2=schw, Dg(dn,dn)):

would be used, where in this example ssym and schw are the names of spacetimes that have been
previously loaded in the session. In the calculation of Dg, the objects in its definition that are
labeled with the index <1> would be taken from the ssym spacetime, while objects labeled by <2>
would use components from the schw spacetime.

Restricted summations

A further optional argument to the grdef() command allows summations over indices to be
restricted to a certain range of index values. Consider the definition of the scalar

¢ = Tabuauba

where, for some reason, we wish to restrict the implied summation over the dummy indices a and
b to the range 2...4. The grdef () command creating such a definition is:

> grdef (‘phi := T{a b}*u{"a}*u{"b}‘, restrict={a=2..4, b=2..4}):
The restrict={} argument is a set specifying the ranges over which summations over dummy

indices are to be performed. Any indices not listed in the set are assumed to be summed over
their entire range.

5 Examples

In this section, a number of grdef () commands are listed, summarizing the use of the command. A
number of the following examples are mirrored from the previous sections where they are described
in more detail. The grdef () command is also used in a number of the demonstration worksheets
available from the GRTensorIl world-wide-web site, http://astro.queensu.ca/ grtensor/.

1. A generic contravariant single indexed object (vector):
> grdef (‘u{”a}‘):

2. A generic covariant single indexed object (1-form):
> grdef (‘v{a}‘):

3. A generic 2-index tensor, anti-symmetric in its indices:
> grdef (‘A{[a b]}‘):

4. The covariant derivative of the Weyl tensor, Copegse:

> grdef (‘dC{[a b] [c d] e} :=C{a b c d ;e}‘):

D. Defining new tensors D13

5.

10.

The component of the Ricci tensor measured along a particular vector, ¢ := Rgpu®u’:

> grdef (‘phi := R{a b}xu{"a}xu{"b}‘):
The Einstein tensor with cosmological constant:
> grdef (‘G2{(a b)} := G{a b} + lambda*g{a b}‘):

(Note the use of braces on the left-hand side to indicate the index symmetry. Although the
tensors g, and G4 have a clear index symmetry, the grdef () command will only apply
symmetries explicitly stated on the left-hand side of the definition.)

Basis components of the Einstein tensor with cosmological constant:
> grdef (‘G2{((a) (b))} := G{(a) (b)} + lambdaxeta{(a) (b)}‘):

(This command is redundant if the previous definition of G2(dn,dn) is already created, since
the basis components could be calculated automatically using grcalc (G2(bdn,bdn)).
See also the note at the end of this section.)

The Bel-Robinson tensor, Tabcd = Caecfcbedf — %ga[ijk]chjkdf.

> grdef (‘T{(abcd)} := C{a e ¢ £}*C{b "e d "f} - (3/2)*g{a [b}*C{j k] c
£1%C{"j "k d “£}*):

(An alternate definition of the Bel-Robinson tensor is an example in Booklet A: Introduction
and overview.)

A timelike vector field, v* := [0, 0,0, f(r,t)]:
> grdef (‘v{"a} := [0,0,0,f(r,t)]¢):
. and a corresponding perfect fluid energy-momentum tensor:

> grdef (‘T{(a b)} := P(r,t)*g{a b} + (rho(r,t) + P(r,t))*v{a}t*xv{b}‘):

An object with Riemann symmetries:

> grdef (‘T{a b c d} := (1/6)*g{alc}*g{dlb}*Ricciscalar’,
symfn=R(dn,dn,dn,dn)):

Object names can not be used twice. If an object with the same name already exists (either in
the standard library or as a result of a previous use of grdef ()), its definition must be removed
before it can be re-used. The grundefine() command performs this task:

D. Defining new tensors D14

grundefine (objectName)
objectSeq — A sequence objects whose definitions are to be removed.

Example: > grundefine (G(dn,dn)):

6 Saving and loading definitions

Definitions created with grdef() can be saved to a file using the grsavedef() command,
allowing them to be used in other sessions and applications. In this way, collections of objects
not in the standard GRTensorlII library can be maintained.

grsavedef (objectSeq, fileName)

objectSeq — A sequence of objects whose definitions are to be saved to a file.

fileName — The name of a file where the object definitions are to be saved.

Example: > grsavedef (G2(dn,dn), T(dn,dn,dn,dn), ‘newdefs.mpl‘):

For instance, the Einstein and Bel-Robinson tensors defined in the previous section could be
saved to the file ‘newdefs.mpl’ using the command:

> grsavedef (G2(dn,dn), T(dn,dn,dn,dn), ‘newdefs.mpl‘):

If the newly created file is to reside in a directory other than the one in which the MapleV session
was started, then the full path name must be used. Note also that grsavedef () makes use
of the MapleV write() command, which does not check for the existence of the file which is
being written. Thus if a file of the same name already exists in the specified directory it will be
overwritten.

Files created by the grsavedef () command can be read into a new GRTensorII session using
the command grloaddef ():

grloaddef (fileName)
fileName — The name of the file (containing definitions created by grsavedef ()) to be loaded.

Example: > grloaddef (‘newdefs.mpl‘):

D. Defining new tensors D15

Commands described in this booklet:

grdef (defString, [symSet], [asymSet], [rsumSet]) D3
grundefine (objectName) D14
grsavedef (objectSeq, fileName) D14
grloaddef (fileName)o i i D14

The information contained in this booklet is also available from the following
online help pages:

?grdef, 7grundefine, 7grsavedef, 7grloaddef, 7kdelta, 7grt_objects,
7?grt_basis, 7grt_operators, 7grcalc, ?grdefine.

