
Copyright

by

Robert Lee Marsa

1995

Radiative Problems in Black Hole Spacetimes

by

Robert Lee Marsa, B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1995

Radiative Problems in Black Hole Spacetimes

Approved by

Dissertation Comittee:

To Anissa

Acknowledgements

I would like to thank my supervisor, Dr. Matthew Choptuik for his invaluable assistance

throughout my graduate studies. In particular, I would like to thank him for directing me to

study these problems, for help and advice in solving them, for checks of the equations, and for

entertaining and useful discussions.

Special thanks also to Dr. Richard Matzner for his advice, assistance, and hospitality.

Thanks to my parents for all their support, and to my wife for everything. And thanks to many

of my graduate, undergraduate, and high-school teachers who inspired me.

This work was supported in part by the Texas Advanced Research Project TARP-085 to

Richard Matzner, the Cray Research Grant to Richard Matzner, and NSF PHY9318152 (ARPA

supplemented) to the Grand Challenge Alliance.

ix

Radiative Problems in Black Hole Spacetimes

Publication No.

Robert Lee Marsa, Ph.D.
The University of Texas at Austin, 1995

Supervisor: Matthew W. Choptuik

This dissertation investigates finite difference techniques which are useful for solving

radiative problems in spacetimes which contain a black hole. The singularities present in

such spacetimes are avoided by excising the interior of the black hole from the computational

domain. The boundary of the black hole is chosen at the apparent horizon. Spatial derivatives

at this boundary are tipped so that they only reference points outside the black hole. Programs

using this method are used to examine the interaction of a scalar field with a Schwarzschild

black hole in spherical symmetry and with a Kerr black hole in three dimensions.

The main spherically symmetric calculation looks at the scattering of ingoing packets

of massless scalar field. Quasi-normal ringing and power-law tails are observed, along with

interesting coordinate and nonlinear effects. Also examined is the stability of a static solution

found by Bechmann and Lechtenfeld. This solution describes a static configuration of scalar

field with potential outside a black hole.

The three dimensional calculation looks at the scattering of packets of massless scalar

field from a fixed Kerr background. The phenomenon of superradiance is examined.

The programs used in this work were constructed using the new prototyping language

RNPL. This language allows for the fairly simple construction and modification of programs

to solve time-dependent partial differential equations. RNPL and its compiler are discussed

near the end of this dissertation.

x

Contents

List of Figures . xv

List of Tables . xviii

Chapter 1. Introduction . 1

1.1. Black Holes, Singularities, and Horizon Boundaries 1

1.2. Computer Aided Programming . 3

1.3. Notation and Conventions . 3

Chapter 2. Equations and Methods . 4

2.1. General 3+ 1Equations . 4

2.2. Numerical Analysis . 7

2.2.1. Definitions . 8

2.2.2. Methods . 9

Chapter 3. Spherical Symmetry I: Theory . 11

3.1. Spherically Symmetric Einstein-Klein-Gordon Equations 11

3.2. Minimally-Modified Ingoing Eddington-Finkelstein Coordinates 13

3.3. Regularity at the Origin . 18

3.3.1. Expansions . 18

3.3.2. Geometric Variables . 19

3.3.3. Scalar Field . 21

xi

3.3.4. Summary . 21

3.4. Initial Data . 23

3.5. Tails . 24

3.6. Ringing . 25

3.7. Mass Scaling . 25

Chapter 4. Spherical Symmetry II: Massless Scalar Field . 27

4.1. Finite Difference Equations . 27

4.2. Initial Data . 33

4.3. Tails . 33

4.4. Ringing . 36

4.5. Mass Scaling . 40

4.6. Coordinate Effects . 45

4.7. Nonlinear Effects . 46

4.8. Convergence . 52

Chapter 5. Spherical Symmetry III: Massive Scalar Field . 55

5.1. A Static Solution . 55

5.2. Coordinate Transformation . 55

5.3. Initial Data . 57

5.4. Finite Difference Equations . 61

5.5. Convergence . 62

Chapter 6. Massless Klein-Gordon Equation on a Kerr Background: Theory . . 66

6.1. Evolution Equations . 66

xii

6.2. Kerr Initial Data . 66

6.3. Super Radiance . 68

Chapter 7. Massless Klein-Gordon Equation on a Kerr Background: Numerics 71

7.1. Finite Difference Equations . 71

7.2. Convergence . 73

7.3. Super Radiance . 75

Chapter 8. RNPL: The Language . 79

8.1. Program Structure . 80

8.1.1. Data Objects . 84

8.1.2. Difference Equations . 90

8.1.3. Expressions . 95

8.2. Examples . 97

8.2.1. 3D Wave Equation . 97

8.2.2. “Shifted” Wave Equation . 100

Chapter 9. RNPL: The Compiler . 105

9.1. Compiler Assumptions . 105

9.1.1. Coordinates and Differentials . 106

9.1.2. “Special” Parameters . 107

9.2. Language Modifications . 109

9.3. Equation Solver . 109

9.4. Initial Data Generation . 110

9.5. Parameter Files . 111

xiii

9.6. Output Control . 112

9.7. Check Pointing . 113

References . 114

VITA . 117

xiv

List of Figures

3.1. The Ingoing Eddington-Finkelstein slices in Kruskal-Szekeres coordinates. The

dotted lines are constant t, while the dashed lines are constant r. The dark curves

are the singularity. The diagonal lines are the horizon (r−− 2M). 14

4.1. Sponge filter coefficient function for A−− 1.0 and n−− 2. 32

4.2. Initial data for the scalar field with A−− 3.0× −310 , c−− 10, and σ−− 2. 34

4.3. Initial data for the geometric variables and the mass profile with A−− 3.0× −310 ,

c−− 10, and σ−− 2. 34

4.4. log|φ |at r−− 30verses t for various spatial domains. 35

4.5. log|φ |at r−− 30verses log t. 35

4.6. log|φ |at the horizon verses log t. 36

4.7. φ at the horizon verses time for various pulse widths (A−− 2.0× −410). 37

4.8. log|φ |at the horizon verses time for various pulse widths (A−− 2.0× −410). 37

4.9. log|φ | at the horizon verses time for various pulse amplitudes

(σ−− 2.0, amplitudes are × −410). 38

4.10. log|φ |at the horizon verses time for various pulse widths (A−− 2.0× −810). . . . 38

4.11. log|φ |at r−− 30verses time for various pulse widths (A−− 2.0× −810). 39

4.12. log|φ | at the horizon verses time for various pulse amplitudes

(σ−− 2.0, amplitudes are × −810). 39

4.13. log|φ | at r −− 30 verses time for various pulse amplitudes

(σ−− 2.0, amplitudes are × −810). 40

4.14. Schematic motion of the horizon for various amplitudes of the scalar field. 41

4.15. Final black hole mass verses amplitude of the scalar field pulse (d −− 2). 41

xv

4.16. Final black hole mass verses amplitude of the scalar field pulse (d −− 2) for

super-critical amplitudes. 42

4.17. Final black hole mass verses amplitude of the scalar field pulse (d −− 4). 42

4.18. Final black hole mass verses amplitude of the scalar field pulse (d −− 4) for

super-critical amplitudes. 43

4.19. β at the horizon and the outer boundary for the critical solution with σ−− 2 ,

d −− 2 , and c−− 10. 46

4.20. Evolution of dM
Xdr

for the critical solution with σ−− 2 , d −− 2 , and c−− 10. 47

4.21. Contour plot of dM
Xdr

for the critical solution with σ−− 2 , d −− 2 , and c−− 10. 48

4.22. Evolution of dM
Xdr

for the weak-field solution with A−− .001, σ −− 2 , d −− 2 , and

c−− 10. 49

4.23. dM
Xdr

at t−− 0 for σ−− 2 , d −− 2 , c−− 10, and various amplitudes. 50

4.24. dM
Xdr

at t −− 40M for σ−− 2 , d −− 2 , c−− 10, and various amplitudes (inset shows

1000 times fraction of mass scattered). 50

4.25. dM
Xdr

at t−− 0 for σ−− 2 , d −− 2 , c−− 20, and various amplitudes (× −410). 51

4.26. dM
Xdr

at t−− 8 for σ−− 2 , d −− 2 , c−− 20, and various amplitudes (× −410). 51

4.27. Convergence factors for A−− 2.5× −310 , c−− 10, and σ−− 2. 53

4.28. Convergence factors for A−− 2.5× −310 , c−− 10, and σ−− 2. 53

5.1. Initial data for the scalar field. 58

5.2. Initial data for the geometric variables. 58

5.3. The potential V(φ). 59

5.4. The potential U(r). 59

5.5. Convergence of the scalar field. 63

5.6. Convergence of the geometric variables. 63

xvi

5.7. Convergence of the derived variables. 64

7.1. Convergence of 3D Scalar Field. 74

7.2. Cross-section of the horizon. 74

7.3. Evolution of compact spherical pulse. 76

8.1. RNPL Grammar . 84

xvii

List of Tables

4.1. Two-Level Finite Difference Operators . 28

8.1. RNPL operators in order of precedence . 80

8.2. RNPL Tokens . 86

8.3. RNPL Expression Types . 98

9.1. Special Parameters . 108

xviii

Chapter 1. Introduction

As the title suggests, this dissertation is concerned with solving problems involving

radiation in spacetimes which contain a black hole. Due to the number and complexity of

the equations of general relativity (Einstein’s equations), exact solutions are hard to come by

except in the simplest situations. Thus, relativists turn to computers and numerical methods

to solve more realistic problems. However, computers have difficulty solving these problems

as well.

Again, because of the complexity of the equations, and in particular, because of their

nonlinear behavior, the Einstein equations are difficult to code in an error free and stable

manner. Further, calculations involving strong fields are likely to develop black holes—and

with black holes come singularities. It is important to note that these singularities are physical

singularitiesnear which the curvature scalar quantitiesexperience unbounded growth. Assuch,

they can not be removed by coordinate transformations or other methods typically used to deal

with singular points in differential equations.

1.1. Black Holes, Singularities, and Horizon Boundaries

As can be expected, computers, with their finite precision, have great difficulty treating

singularities. Thus, the only hope of numerically solving relativistic problems involving

generic strong fields or initial black holes is to find some way to “avoid” the singularities which

are either present initially or likely to develop.

A common method of avoiding singularities in gravitational collapse is to make use

of the coordinate freedom allowed by general relativity to let time elapse at different rates

in different parts of the spacetime. In particular, a coordinate system can be chosen so that

time slows rapidly as one nears the singularity, stopping before it is reached. This prevents

the region of spacetime covered by the chosen coordinate system from ever encountering the

1

2 Chapter 1. Introduction

singularity. Unfortunately, this method introduces its own problems. In order to remain at

rest (at a fixed coordinate location) near the singularity, an observer will have to experience

an unbounded acceleration as proper time progresses. This acceleration term appears in the

Einstein equations and will cause the numerical evolution to eventually halt. The space-like

physical singularity has been avoided by introducing a time-like coordinate singularity caused

by unbounded growth in the field variables. What is needed is a way to avoid the physical

singularity without introducing any coordinate singularities.

By definition, black-hole-spacetimes contain event horizons. In fact, the Cosmic

Censorship Conjecture states that any singularity will always be hidden within such a horizon.

Although it is possible to construct certain collapse situations which result in the formation of

a “naked” singularity, that is, one not hidden inside a horizon, such situations are unlikely to

develop during a generic calculation. Thus we can reasonably expect any singularity that forms

during a calculation will be hidden inside an event horizon. This horizon is a closed surface

out of which no information can pass. This gives rise to the idea of avoiding singularities by

black hole excision. We simply confine our numerical evolution to only those events outside

the horizon, ignoring the region of spacetime inside the horizon altogether.

Unfortunately, this method is not without its problems either. Location of the event

horizon requires knowledge of the entire spacetime—knowledge not available until the

calculation is complete. But apparent horizons can be found from information about the

curvature of a single space-like slice. Like an event horizon, an apparent horizon is a trapped

surface—a surface through which no light can escape. Further, apparent horizons always lie

within the event horizon. Thus, if we stop our numerical domain at the apparent horizon, we

may evolve part of the interior of the black hole, but will still avoid any singularities that lie

within. Seidel and Suen have used such a scheme with encouraging results (see [22] and [1]).

For the research in this dissertation, I use the same approach, though without the causal

differencing used in the previous works. I look at the interactions of a massless scalar field

with an existing black hole in one and three spatial dimensions. In the 1D case, I evolve the

geometric variables along with the scalar field using the full Einstein-Klein-Gordon equations,

while in the 3D case, I evolve the scalar field on a fixed Kerr background.

1.2. Computer Aided Programming 3

1.2. Computer Aided Programming

Even with a good coordinate system and an apparent horizon boundary, solving the

Einstein equations is still no simple task. Finding a stable differencing scheme—especially at

the boundaries—is a time consuming, iterative task. When a given implementation is unstable,

it is often difficult to determine if the problem is due to a coding error or the differencing

scheme. Every time the differencing scheme is changed, there is a new opportunity for

introducing errors. What is needed is a computer program to assist the numerical physicist.

This program should allow difference schemes to be easily changed without introducing errors.

It should also assist in other ways by providing robust facilities for check-pointing and output

and parameter control.

I have constructed such a system which I call RNPL—Rapid Numerical Prototyping

Language. The system includesboth the language and a compiler which takesRNPL programs

and converts them to C or FORTRAN which can then be compiled and executed on a variety

of machines. I used RNPL to write all the programs used in this research.

1.3. Notation and Conventions

Like most numerical relativists, I will be using a metric with signature (−, +, +, +) so

that the 3-metric is positive definite. Latin indices (i, j, k, . . .) on tensors range over {1, 2,

3}while Greek indices (α,β, γ, . . .) range over {0, 1, 2, 3}. I observe the Einstein summation

convention in which repeated indices indicate a sum over the repeated index. ∇α represents

covariant differentiation with respect to the four-metric, Dα represents covariant differentiation

with respect to the three-metric, and ∂α represents ordinary partial differentiation. I adopt

geometricized units in which G−− c−− 1.

As is usual when discussing numerical analysis, discretized functions use su-

perscripts for the time index and subscripts for the spatial indices. For instance,

f
n

i,j,k
≡ f (n∆t, i∆ 1x , j∆ 2x ,k∆ 3x). Further, in discussions of finite difference equations, n will re-

fer to the time level, while i, j, and k will refer to the spatial grid location.

Chapter 2. Equations and Methods

2.1. General 3+ 1Equations

The derivation of the 3 + 1 form of the Einstein equations has been carried out in detail

many times (see for example [24] and [18]). Here, I will simply give a brief description of

the 3+ 1 method and state the equations in a coordinate independent form as given in [13].

However, I will show the derivation of the Klein-Gordon equation.

In order to write the equations in 3 + 1 form, we must break the coordinates into one

“time” coordinate and three “space” coordinates. To do this, we choose a “time” function t

and use it to “slice” spacetime into a set of hypersurfacesΣ
t
of constant t. We also choose a

“time flow” vector field µ
t satisfying µ

t ∇µt−− 1. If µ
n is a unit vector field normal to theΣ

t
, we

can decompose µ
t into parts normal and tangential toΣ

t
.

µ
t −− α µn +

µ
β . (2.1.1)

Equation (2.1.1) defines the lapse function α and the shift vector
i
β . Given the normal µ

n , we

can define the three-metric by:

hµν−− g
µν

+ nµnν. (2.1.2)

The extrinsic curvature is defined as:

K
ij
≡ 1

X2
£

n
h

ij
, (2.1.3)

where £
n

is the Lie derivative along µ
n . Written in 3+ 1form, the line element is:

2
ds −− − 2α 2

dt + h
ij

(i
dx +

i
β dt
)(j

dx +
j
β dt
)

. (2.1.4)

4

2.1. General 3+ 1Equations 5

The metric and its inverse in matrix notation are:

g
µν
−−

(

− 2α +
i
β β

i

β
i

β
j

h
ij

)

, (2.1.5)

and

µν
g −−

(

− 1
X2α
j
β

X2α

i
β

X2α

ij
h −

i
β

j
β

X2α

)

. (2.1.6)

The covariant form of the Klein-Gordon equation is

µ∇ ∇µφ−− ∂φV(φ), (2.1.7)

where V(φ) is an interaction potential. This reduces to

1
X
√

X−g
∂µ
(
√

X−g
µν

g ∂νφ
) −− ∂φV

(

φ
)

, (2.1.8)

where g is the determinant of the metric. If we multiply by
√

X−g then the right hand side is

simply α
√

Xh ∂φV, where h is the determinant of the three-metric. From the left hand side, we

get

∂
t

(

α
√

Xh
tν

g ∂νφ
)

+ ∂
i

(

α
√

Xh
iν

g ∂νφ
) −−

∂
t

[

α
√

Xh
(tt
g ∂

t
φ + ti

g ∂
i
φ
)

]

+ ∂
i

[

α
√

Xh
(it
g ∂

t
φ + ij

g ∂
j
φ
)

]

−−

∂
t

[

√
Xh

Xα

(i
β ∂

i
−∂

t

)

φ
]

+ ∂
i

[

√
Xh

Xα
i
β
(

∂
t
− j
β
)

φ + α
√

Xh
ij

h ∂
j
φ
]

−−

∂
t

[

√
Xh

Xα

(i
β ∂

i
−∂

t

)

φ
]

−∂
i

i
β
[

√
Xh

Xα

(j
β −∂

t

)

φ
]

+ ∂
i

(

α
√

Xh
ij

h ∂
j
φ
) −− α

√
Xh ∂φV . (2.1.9)

6 Chapter 2. Equations and Methods

If we define four auxiliary variables by

Π ≡
√

Xh

Xα

(

∂
t
− i
β ∂

i

)

φ , (2.1.10)

and

Φ
i
≡ ∂

i
φ , (2.1.11)

then we can write (2.1.9) as an evolution equation forΠ, namely

∂
t
Π −− ∂i

(

i
β Π + α

√
Xh
(ij
h Φ

j

)

)

−α
√

Xh ∂φV. (2.1.12)

Differentiating (2.1.10) gives us evolution equations for the three Φ variables

∂
t
Φ

i
−− ∂i

(

α

X
√

Xh
Π +

j
β Φ

j

)

. (2.1.13)

The Einstein equations in 3+ 1form are

R + 2
K −K

ij

ij
K −− 16πρ

H
, (2.1.14)

D
i

i
K

j
−D

j
K −− 8πS

j
, (2.1.15)

∂
t

i
K

j
−− − i

D D
j
α + α

[

i
R

j
+ K

i
K

j
−8π i

S
j
+ 4π i
δ

j

(

S− ρ
H

)

]

, (2.1.16)

∂
t
h

ij
−− −2αK

ij
+ D

i
β

j
+ D

j
β

i
, (2.1.17)

where
i

R
j

is the Ricci tensor and R is the Ricci scalar. The source terms for the scalar field

are

ρ
H
−− 1

X2
ij

h Φ
i
Φ

j
+ 1

X2h

2
Π + V

(

φ
)

(2.1.18)

i
S −− − Π

X
√

Xh

ij
h Φ

j
(2.1.19)

2.1. General 3+ 1Equations 7

ij
S −− ij

h
(

− 1
X2

kl
h Φ

k
Φ

l
+ 1

X2h

2
Π −V

(

φ
)

)

+
ik

h
jl

h Φ
k
Φ

l
(2.1.20)

S−− − 1
X2

ij
h Φ

i
Φ

j
+ 3

X2h

2
Π −3V

(

φ
)

. (2.1.21)

Substituting the source terms into equation (2.1.16), we get

1
Xα

(

∂
t
− k
β ∂

k

) i
K

j
−− K

i
K

j
− 1

Xα
ik

h
(

∂
j
∂

k
α− l
Γ

jk
∂

l
α
)

+
i

R
j

−8π
(

ik
h Φ

k
Φ

j
+

i
δ

j
V
(

φ
)

)

+ 1
Xα

(i
K

k
∂

j

k
β − k

K
j
∂

k

i
β
)

. (2.1.22)

Similarly, equation (2.1.17) becomes

1
Xα

(

∂
t
− k
β ∂

k

)

h
ij
−− −2K

ij
+ 1

Xα

(

h
ki
∂

j

k
β + h

kj
∂

i

k
β
)

. (2.1.23)

The Hamiltonian constraint (2.1.14) becomes

R + 2
K −K

ij

ij
K −− 16π

(1
X2

ij
h Φ

i
Φ

j
+ 1

X2h

2
Π + V

(

φ
)

)

(2.1.24)

and the momentum constraints (2.1.15) become

D
i

i
K

j
−D

j
K −− −8π Π

X
√

Xh
Φ

j
. (2.1.25)

2.2. Numerical Analysis

There are many problems that can occur when trying to solve a set of partial differential

equations numerically. As mentioned in Section 1.2, when an attempted solution method

proves unstable, it is often difficult to determine the cause of the problem. Is it a programming

error or is it the finite difference scheme?

More importantly, if the solution method appears to be stable, we need rigorous methods

for deciding if it really is stable, and if so, is it in fact solving the correct set of equations.

8 Chapter 2. Equations and Methods

Following [6] and [8], I will give some methods for rigorously determining the correctness and

stability of a finite difference scheme.

2.2.1. Definitions

We are concerned with numerically solving a set of continuum partial differential

equations using finite differencing. This means that we apply finite difference approximations

of the differential operators to discretized versions of the functions. I will represent the

discretized versions of functions and operators by hatted quantities, while using unhatted

quantities for the continuum versions.

Given a function u and a differential operator L satisfying the equation

Lu−− 0, (2.2.1.1)

we define the truncation error by

^τ ≡ ^
Lu (2.2.1.2)

and the solution error by

^
e ≡ u− ^

u. (2.2.1.3)

We say that the finite difference operator is pth-order accurate if ^τ −−O
(p
h
)

, when acting on a

function discretized on a grid with spacing h. The schemes I will be using in this dissertation

are all 2nd-order accurate, so for the remaining discussion I will assume p−− 2.

If
^
L is made up of centered difference operators, then as the grid spacing goes to zero, we

get the following continuum expansion for the discretized function [21]:

^
u−− u− 2

h e2−
4

h e4−· · ·, (2.2.1.4)

where e
i
is an h-independent error function. Similarly, if

^
L is not completely centered, we will,

in general, get the following continuum expansion for the discretized function:

2.2. Numerical Analysis 9

^
u−− u− 2

h e2−
3

h e3−
4

h e4−· · ·. (2.2.1.5)

2.2.2. Methods

Assume that we have a program to generate solutions to the system
^
L

^
u−− 0. This program

appears to be stable, that is, for the time we have evolved the solution, nothing has “blown up.”

How can we check to make sure the method is really stable? We must check for convergence.

If the solution is not convergent, then it is not stable.

To check for convergence, we must compute solutions on three grids with different

resolutions. It is convenient to choose one with spacing h, one with spacing 2h, and one with

spacing 4h. We will call these solutions ^
u

h
, ^
u2h

, and ^
u4h

, respectively. From (2.2.1.4), we can

see that for a centered scheme, these solutions should have the following expansions:

^
u

h
−− u− 2

h e2−
4

h e4−· · ·

^
u2h
−− u−4 2

h e2−16 4
h e4−· · ·

^
u4h
−− u−16 2

h e2−256 4
h e4−· · ·.

Then

^
u2h
− ^

u4h
−− 12 2

h e2 + 240 4
h e4 + · · ·

and

^
u

h
− ^

u2h
−− 3 2

h e2 + 15 4
h e4 + · · ·.

The convergence factor is defined as

C
f
≡

^
u2h
− ^

u4h

X
^
u

h
− ^

u2h

. (2.2.2.1)

10 Chapter 2. Equations and Methods

In this case, C
f
−− 4+ O

(2
h
)

. Going through a similar series of expansions, we can see that for

a 1st-order accurate scheme we get C
f
−−2+ O

(2
h
)

. If the difference operators are not properly

centered, then we will get C
f
−− 4 + O

(

h
)

and C
f
−− 2 + O

(

h
)

for 2nd and 1st-order schemes.

Thus, if we’ve constructed a 2nd-order accurate scheme, we should expect the

convergence factor to be approximately four. If we compute a convergence factor that is less

than one, we know that the scheme is unstable. If we make the grid spacing small enough, the

solution will “blow up.” However, if we compute a convergence factor of four, then we know

the scheme is stable for the data being evolved. Other data can cause the scheme to exhibit

other behavior,especially if the equations are nonlinear. It is important to check any interesting

or unexpected solutions for convergence to make sure they are not numerical artifacts.

The fact that a program is stable and convergent simply means that it is correctly

solving the set of algebraic finite-difference equations. In order to show that it is actually

approximating the desired set of differential equations, we construct another finite difference

approximation to L which we will call
~
L. We then compute

~
L

^
u. For a 2nd-order, centered

approximation, we should get

~
L

^
u−− 2

h f 2 +
4

h f 4 + · · ·,

where again, f 2, f 4, etc. are h-independent error functions. We then compute the convergence

factor from
(~

L
^
u

h
,

~
L

^
u2h

,
~
L

^
u4h

)

. If we get four, then we can be sure that we are solving the

desired set of equations.
~
L

^
u is called a residual and since ^

u was found using
^
L ,

~
L is called an

independent residual evaluator.

Chapter 3. Spherical Symmetry I: Theory

3.1. Spherically Symmetric Einstein-Klein-Gordon Equations

The Einstein-Klein-Gordon equations (see Section 2.1) can be specialized to spherical

symmetry resulting in a tremendous simplification of the system. I will adopt the usual names

for spherical coordinates, namely (t, r,θ,φ). In this coordinate system, h
ij

and
i

K
j
are diagonal.

We have

h
ij
−− diag

(

2a
(

t, r
)

, 2r
2

b
(

t, r
)

, 2r
2

b
2

sin θ
)

(3.1.1)

i
K

j
−− diag

(

r
K

r

(

t, r
)

,
θ

K θ

(

t, r
)

,
θ

K θ

)

(3.1.2)

i
β −−

(

r
β
(

t, r
)

,0,0
)

≡ (β,0,0
)

(3.1.3)

α−− α
(

t, r
)

,φ−− φ
(

t, r
)

. (3.1.4)

Φ
i
−−
(

Φ
r

(

t, r
)

,0,0
)

≡ (Φ,0,0
)

(3.1.5)

The Christoffel symbols are given by

i
Γ

jk
−− 1

X2
il

h
(

∂
k
h

lj
+ ∂

j
h

lk
−∂

i
h

jk

)

. (3.1.6)

In spherical symmetry, the non-zero components are

r
Γ

rr
−−
∂

r
a

Xa

r
Γ θθ−− −

rb∂
r

(

rb
)

X2a

θ
Γ

rθ
−−
∂

r

(

rb
)

Xrb

11

12 Chapter 3. Spherical Symmetry I: Theory

r
Γ φφ−− −

2
sin θ

rb∂
r

(

rb
)

X2a

φ
Γ

rφ
−−
∂

r

(

rb
)

Xrb

θ
Γ φφ−− − sin θ cos θ

φ
Γ φθ−− − cot θ

The two non-zero components of the Ricci tensor are

r
R

r
−− − 2

Xarb
∂

r

∂
r

(

rb
)

Xa
(3.1.7)

θ
R θ−− 1

Xa 2r
2

b

[

a−∂
r

(

rb
Xa
∂

r

(

rb
)

)

]

. (3.1.8)

From now on, we will denote ∂
r

by a prime and ∂
t
by an over dot. Equation (2.1.23) becomes

.
a−− − aα r

K
r

+
(

aβ
)

′ (3.1.9)

.
b−− −αb

θ
K θ +

β
Xr

(

rβ
)

′. (3.1.10)

For the extrinsic curvature (2.1.22) we get

.
r

K
r
−− β r

K
r
′ + α

r
K

r
K− 1

Xa

(

α′
Xa

)

′− 2α
Xarb

[

(

rb
)

′
Xa

]

′−πα
(2
Φ

X2a
+ V
(

φ
)

)

(3.1.11)

.
θ

K θ
−− β θ

K θ
′ + α

θ
K θK + α

X
(

rb
2)
− 1

Xa
(

rb
2)

(

αrb
Xa

(

rb
)

′
)

′−8πV
(

φ
)

. (3.1.12)

Following [6] we change our definition forΠ slightly

Π → 1
X2r

2
b sinθ

Π −− a
Xα

(

.
φ−βφ′

)

, (3.1.13)

while the definition for Φ remains the same

Φ ≡ φ′. (3.1.14)

3.1. Spherically Symmetric Einstein-Klein-Gordon Equations 13

Using these variables, (2.1.12) becomes

.
Π −− 1

X2r
2

b

[

2r
2

b
(

βΠ + α
Xa
Φ
)

]

′−2Π
.
b
Xb
−αa∂φV (3.1.15)

and (2.1.13) becomes

.
Φ−−
(

βΦ + α
Xa
Π
)

′. (3.1.16)

The Hamiltonian constraint (2.1.24) is

− 2
Xarb

[

(

(

rb
)

′
Xa

)

′ + 1
Xrb

(

(

rb
Xa

(

rb
)

′
)

′− a

)

]

+ 4 r
K

r

θ
K θ + 2

2θ
K θ
−−

8π
(2
Φ +

2
Π

X2a
+ 2V
(

φ
)

)

(3.1.17)

and the momentum constraint (2.1.25) is

(

rb
)

′
Xrb

(θ
K θ−

r
K

r

) − θ
K θ′ −− −4π ΦΠ

Xa
. (3.1.18)

3.2. Minimally-Modified Ingoing Eddington-Finkelstein Coordinates

For the spherically symmetric calculations, I use a coordinate system introduced in [7]

from earlier work [5]. Figure 3.1 shows how the Ingoing Eddington-Finkelstein coordinates

relate to Kruskal-Szekeres coordinates. Notice that the slices all penetrate the horizon and

meet the singularity.

To specify this coordinate system mathematically, we must fix the lapse and the shift.

First, we introduce a “shifted” areal coordinate s defined by s ≡ r + f
(

t
)

for some as yet

undetermined function f . Our metric is now

2
ds −−

(− 2α + 2a
2
β
) 2

dt + 2 2a β dtdr + 2a
2

dr + 2s d
2
Ω . (3.2.1)

14 Chapter 3. Spherical Symmetry I: Theory

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

v

u

Figure 3.1. The Ingoing Eddington-Finkelstein slices in Kruskal-Szekeres coordinates.

The dotted lines are constant t, while the dashed lines are constant r. The dark curves are the

singularity. The diagonal lines are the horizon (r−− 2M).

From this we see that s−− rb so b−− 1+
f

Xr
. Then from (3.1.10) we see that

.
(

rb
) −−−αrb

θ
K θ + β

(

rb
)

′ (3.2.2)

and hence

β−−
.
f + sα θ

K θ . (3.2.3)

To set the lapse, we demand that the ingoing combination of tangent vectors
→
∂

t
−
→
∂

r
be null.

This gives a condition on the metric, namely g
tt
−2g

tr
+ g

rr
−− 0. Using (3.2.1) this implies

3.2. Minimally-Modified Ingoing Eddington-Finkelstein Coordinates 15

α−− ± a
(

1−β
)

. (3.2.4)

We choose the sign so α is positive for |β |≤ 1, that is α−− a
(

1−β
)

. Using (3.2.3) and (3.2.4)

we get

β−−
.
f + sa

θ
K θ

X1+ sa
θ

K θ

(3.2.5)

α−−
a
(−

.
f
)

X1+ sa
θ

K θ

. (3.2.6)

And hence, the metric takes the form

2
ds −− 2a

(

2β−1
) 2

dt + 2 2a β dtdr + 2a
2

dr + 2s d
2
Ω . (3.2.7)

Factoring the first three terms yields

2
ds −− 2a

(

(

2β−1
)

dt + dr
)

(

dt + dr
)

+ 2s d
2
Ω , (3.2.8)

which shows that the characteristic speeds are

c−− −1, 1−2β . (3.2.9)

Now we are ready to write down the evolution and constraint equations in their final form.

The constraints are

a′ + 1
X2s

(3a − a
)

+
3a s
X2

θ
K θ

(

2 r
K

r
+

θ
K θ

) −2πsa
(

2
Φ +

2
Π + 2 2a V

(

φ
)

)

−− 0 , (3.2.10)

θ
K θ

′ +

θ
K θ−

r
K

r

Xs
−4πΦΠ

Xa
−− 0. (3.2.11)

The evolution equations are

16 Chapter 3. Spherical Symmetry I: Theory

.
a−− − 2a

(

1−β
) r

K
r

+
(

aβ
)

′ , (3.2.12)

.
θ

K θ
−− β θ

K θ
′ + a
(

1−β
)

(

θ
K θ

(r
K

r
+ 2 θ

K θ

) −8πV
(

φ
)

)

+
1−β

X2s

(

a− 1
Xa

)

+
β′
Xas

, (3.2.13)

.
r

K
r
−− β r

K
r
′ + a
(

1−β
) r

K
r

(r
K

r
+ 2 θ

K θ

)

+

β−1
Xa

[

a′′
Xa
−
(

a′
Xa

2)
−2a′

Xsa
+ 8π
(

2
Φ + 2a V

(

φ
)

)

]

+
β′a′
X2a

+
β′′
Xa

, (3.2.14)

.
Φ−−
(

βΦ +
(

1−β
)

Π
)

′ , (3.2.15)

.
Π −− 1

X2s

[

2s
(

βΠ +
(

1−β
)

Φ
)

]

′−2
.
s
Xs
Π− 2a

(

1−β
)

∂φV . (3.2.16)

We can get an evolution equation for f from the apparent horizon equation. If µ
s is an

outward-pointing, space-like unit normal to a trapped surface, then it obeys the equation [6]

D
i

i
s −K + i

s
j

s K
ij
−− 0 . (3.2.17)

In spherical symmetry, this reduces to

(

rb
)

′− arb
θ

K θ
−− 0 , (3.2.18)

which, in MMIEF is simply

as
θ

K θ
−− 1. (3.2.19)

To keep the horizon at fixed r, we demand that
.

(

as
θ

K θ

) |
r

h

−− 0 , where r
h

is the initial position

of the apparent horizon, r−− 2M. This gives the following equation for
.
f :

.
f −−

4π 2s
(

Φ +Π
2)

X2a
(

1−8π 2s V
(

φ
)) |

∗
r

. (3.2.20)

3.2. Minimally-Modified Ingoing Eddington-Finkelstein Coordinates 17

Since we wish to examine spacetimes which contain a black hole, it will be useful to

write down the Schwarzschild solution in MMIEF coordinates. First, we note that the Ingoing

Eddington-Finkelstein metric is usually written as [18]:

2
ds −− −

(

1−2M
Xr

)

d
2~

V + 2d
~
Vdr + 2r d

2
Ω . (3.2.21)

Instead of using the null coordinate
~
V, we can use a time-like coordinate defined as t ≡ ~

V− r.

With this coordinate, the metric becomes

2
ds −− −

(

1−2M
Xr

)

2
dt + 4M

Xr
dtdr +

(

1+ 2M
Xr

)

2
dr + 2r d

2
Ω . (3.2.22)

We can then set this equal to the 3 + 1 metric (3.2.7) to determine the 3 + 1 form of the

Schwarzschild solution in these coordinates. The results are:

α−−
√

X r
Xr + 2M

, (3.2.23)

β−− 2M
Xr + 2M

, (3.2.24)

a−−
√

X
r + 2M

Xr
. (3.2.25)

Using these and equations (3.1.9) and (3.1.10), we can find the extrinsic curvature

components.

θ
K θ
−−

2M
(

r + 2M
)

X
(

r
(

r + 2M
)

3⁄2)
, (3.2.26)

r
K

r
−−
−2M

(

r + M
)

X
(

r
(

r + 2M
)

3⁄2)
. (3.2.27)

Finally, we note that the mass in these coordinates can be computed from the surface area

18 Chapter 3. Spherical Symmetry I: Theory

as

M
(

s
) −− 1

X2
s
(

1−
(

16πA −1) ,µA A,µ

)

, (3.2.28)

whereA ≡ 4π 2s . In MMIEF, this becomes

M
(

r
) −− 1

X2
s

(

1−
1−
(

sa
θ

K θ

2)

X2a

)

. (3.2.29)

By making use of the evolution and constraint equations, we can write this mass as an integral

over the mass-density. In this form we have

M
(

r
) −−

s
h

X2
+ 4π∫ r

r
h

2s

(2
Φ +

2
Π

X2 2a
+ s

θ
K θ
ΦΠ

Xa
+ V
(

φ
)

)

dr , (3.2.30)

where r
h

is the location of the apparent horizon and s
h

is the value of s at r
h
. Both forms of

the mass will be computed numerically to provide checks on the accuracy of the program.

3.3. Regularity at the Origin

In cases where a black hole is not initially present or there is insufficient mass in the scalar

field to form a black hole through collapse, the infalling matter will encounter the coordinate

origin. The origin is one boundary of the computational domain, so we need boundary

conditions to find the function values at this point. Since this is not a physical boundary,

however, we do not have boundary values. Rather we must use regularity conditions to

determine the behavior of the functions near the origin (see [2] for an extensive discussion).

3.3.1. Expansions

Since φ is a scalar and a,
θ

K θ, and
r

K
r

are elements of rank-two tensors, we know they are

even in r. Thus, near the origin, they have the following expansions:

3.3. Regularity at the Origin 19

φ(r)−− φ0 + φ2
2r + φ4

4r + · · · (3.3.1.1)

a(r)−− a0 + a2
2r + a4

4r + · · · (3.3.1.2)

θ
K θ(r)−− k0 + k2

2r + k4
4r + · · · (3.3.1.3)

r
K

r
(r)−− K0 + K2

2r + K4
4r + · · ·. (3.3.1.4)

These expansions immediately give us the following conditions on the spatial

derivatives:

φ′ −− 0 (3.3.1.5)

a′ −− 0 (3.3.1.6)

θ
K θ

′ −− 0 (3.3.1.7)

r
K

r
′ −− 0 . (3.3.1.8)

3.3.2. Geometric Variables

Since our spacetime must be locally flat near the origin,we have a(0)−−1. An examination

of the momentum constraint shows that
θ

K θ
−− r

K
r
at the origin. We can find further conditions

by examining the potentially divergent terms in (3.2.13). These terms are the ones with powers

of r in the denominator. When collected, they can be written as

(

1−β
)(2a −1

)

+ rβ′

X2r a
. (3.3.2.1)

Clearly, as r → 0 both the numerator and the denominator of (3.3.2.1) go to zero. Thus

we must use l’Hôspital’s rule to find the correct limit. The derivative of the numerator

is 2
(

1−β
)

aa′−β′
(2a −1

)

+ β′ + rβ′′ . As r → 0 this goes to β′. The derivative of the

denominator is 2r a′ + 2ra. Clearly this goes to zero as r goes to zero. Thus, we must have

20 Chapter 3. Spherical Symmetry I: Theory

lim
r→0
β′ −− 0.

Since we still have zero over zero we use l’Hôspital’s rule again. The derivative of the

numerator is
(

1−β
)

(

2aa′′ + 2
2(

a′
)

)

−β′′
(2a −1

) −2aβ′a′ + 2β′′ + rβ′′′ . As r goes to zero,

this goes to 2
(

1−β
)

a′′ + 2β′′ . The derivative of the denominator is 2r a′′ + 4ra′ + 2a. The limit

of this is 2. Thus, the limit as r → 0 of equation (3.3.2.1) is
(

1−β
)

a′′ + β′′ .

Let us take a moment to examine the structure of β. When there is no black hole present,

the shift is defined by

β−−
ra

θ
K θ

X1+ ra
θ

K θ

. (3.3.2.2)

From this we can easily see that β is zero at the origin. Now

β′ −−
ra

θ
K θ

′ + ra′ θ
K θ + a

θ
K θ

X
(

1+ ra
θ

K θ

2) . (3.3.2.3)

So,

0−− lim
r→0
β′ −− θ

K θ⇒
θ

K θ

(

0
) −− 0 . (3.3.2.4)

Now the second derivative of β is

β′′ −−
ra

θ
K θ

′′ + 2a
θ

K θ
′ + 2ra′ θ

K θ
′ + 2a′ θ

K θ + ra′′ θ
K θ

X
(

1+ ra
θ

K θ

2)
−

2
(

(

ra
θ

K θ

) ′ 2)

X
(

1+ ra
θ

K θ

3) . (3.3.2.5)

As r goes to zero, this expression vanishes. Thus, β′′
(

0
) −− 0.

Since
θ

K θ is fixed at the origin, we must have the right hand of (3.2.13) side vanish.

This will only happen if the limit of (3.3.2.1) is zero. This limit is zero only if a′′ −− 0 at the

origin.

3.3. Regularity at the Origin 21

3.3.3. Scalar Field

The evolution of the scalar field is accomplished through two auxiliary variables,Φ and

Π. These are defined by (3.1.14) and (3.1.13). The condition on Φ is obvious (see (3.3.1.5)),

namely

Φ
(

0
) −− 0. (3.3.3.1)

The condition on Π however, is a bit more complicated. First, since the slicing condition

givesα−− a
(

1−β
)

, we have a
−1α −−
(

1−β −1)
. Further, the shift is given by equation (3.3.2.2).

Thus, we haveΠ
(

0
) −−

.
φ
(

0
) −−/ 0. We look, then, toΠ′. We have

Π′ −−
.
φ′ +
(

ra
θ

K θ

)

′
(

.
φ−φ′

)

+ ra
θ

K θ

(

.
φ′−φ′′

)

. (3.3.3.2)

As r → 0 we see thatΠ′ → a
θ

K θ

.
φ→ 0. Thus we have the condition

Π′
(

0
) −− 0. (3.3.3.3)

3.3.4. Summary

We have three conditions on a

a
(

0
) −− 1,

a′
(

0
) −− 0,

a′′
(

0
) −− 0.

Thus, the expansion for a is a−− 1+ a4
4r + a6

6r + · · ·.
We have four conditions on the extrinsic curvature

θ
K θ

(

0
) −− 0,

22 Chapter 3. Spherical Symmetry I: Theory

θ
K θ

′(0
) −− 0,

r
K

r

(

0
) −− 0,

r
K

r
′(0
) −− 0.

Thus, the expansions for the extrinsic curvature components are
θ

K θ
−− k2

2r + k4
4r + · · · and

r
K

r
−− K2

2r + K4
4r + · · ·.

And finally, we have three conditions on the scalar field variables

Φ
(

0
) −− 0,

Π
(

0
) −−/ 0,

Π′
(

0
) −− 0.

Thus, the expansions are Φ−− 2φ2r + 4φ4
3r + · · · andΠ −−

.
φ0 +

.
φ2

2r + · · ·.
Unfortunately, these conditionsare inconsistent with the Hamiltonian constraint,equation

(3.2.10). The spatial derivative of this equation gives an expression for a′′ . Upon taking the

limit of this expression as r → 0, we see that a′′ ∝ 2
Π −−/ 0. This leads us to the conclusion

that the MMIEF coordinate system will admit no non-singular curvature at the origin. The

only consistent solutions near the origin are flat space or a black hole. Thus, MMIEF is only

a “good” coordinate system to use when a black hole already exists in the spacetime. In a

spacetime without a black hole, the equations will remain consistent as long as no energy

encounters the origin. This will be the case if the scalar field is outgoing or if it collapses to

form a black hole before it encounters the origin. For a collapse problem, the best thing to

do would be to start with another coordinates system and change to MMIEF coordinates if

a horizon forms. If no horizon forms, there is really no need for the special horizon tracking

properties of MMIEF coordinates anyway.

3.4. Initial Data 23

3.4. Initial Data

In order to perform a calculation, we must have initial data for six functions
(

Φ,Π,β,a,
θ

K θ,
r

K
r

)

. These functions must satisfy three equations, (3.2.10), (3.2.11), and

(3.2.5). This means that three of these functions can be arbitrarily specified.

I wish to examine the the “scattering” of compact (mostly) ingoing pulses of scalar

radiation off a black hole. The word scattering is in quotes because scattering doesn’t always

occur. Long enough wavelengths (λ≫M) will simply reflect through the origin as if the black

hole were not present.

Of course it is impossible to construct a strictly ingoing pulse since the scalar field will

back-scatter from its own gravitational potential. However, we can get a nearly ingoing pulse

using the following method.

Let φ
(

r, t
) −− F

(

u ≡ r + t
)

/r. Since the ingoing characteristic speed is one, u is an

ingoing coordinate. Thus,
.
φ−− ∂u

F/r and φ′ −− ∂u
F/r−F/ 2r . For a compact pulse we set F

to a Gaussian of the form

F
(

u
) −− A 2u exp

(

− (u− c
d)
/ dσ
)

, (3.4.1)

where d is an integer and c is the r coordinate of the center of the pulse. This results in initial

data for φ of the form

φ
(

r
) −− Ar exp

(

− (r− c
d)
/ dσ
)

, (3.4.2)

φ′
(

r
) −− φ

[1
Xr
− d

X
dσ

(

r− c
d−1)

]

, (3.4.3)

and

.
φ(r)−− φ

[2
Xr
− d

X
dσ

(

r− c
d−1)

]

. (3.4.4)

These equations can be used to set Φ andΠ. I solve for β, a, and
θ

K θ using equations (3.2.5),

(3.2.10), and (3.2.11), respectively.
r

K
r

can be specified freely and the constraints can still be

24 Chapter 3. Spherical Symmetry I: Theory

satisfied by adjusting the other geometric variables. However, an arbitrary
r

K
r

would almost

certainly not represent the desired configuration of a scalar field around a black hole.

I tried a number of methods for setting
r

K
r
, including finding the initial data in polar-radial

coordinates and then transforming to MMIEF coordinates. However, because of the different

slicings, one MMIEF slice crosses many polar-radial slices. This requires that the data be

evolved in the polar-radial system for enough time so that the initial MMIEF slice is covered.

I elected to use a different approach which seems to give good results. I use the Schwarzschild

form (3.2.27) for
r

K
r
, but with varying mass. That is, I solve for M(r) (3.2.30) along with the

constraints and then substitute this mass profile into (3.2.27) in place of the black hole mass

M.

3.5. Tails

There are a number of physical effects that we can expect to observe during the scattering

of the scalar field. The first of these is the so-called power law tails (see [10] and [19]). This

effect is due completely to the curvature and would occur around any mass. What happens is

that outgoing radiation is back-scattered by the curvature and reaches the interior at late times.

This causes the scalar field at the horizon or any fixed areal radius to fall off as a power of time,

independent of the shape of the scattered pulse (see [11]).

According to this reference, given Gaussian initial data, we should expect the scalar field

to go like −3t at fixed areal radius and like −3v at the horizon,where t is time at infinity,v ≡ t + ∗
r

is the advanced time, and

∗
r ≡ r + 2Mln

(

r−2M
)

(3.5.1)

is the “tortoise” coordinate. In MMIEF coordinates, v varies like t at the horizon, so we should

expect the scalar field to fall off like −3t at both the horizon and fixed areal radius.

3.6. Ringing 25

3.6. Ringing

Another effect we should observe is quasi-normal ringing. This effect was observed from

studying perturbations on a fixed Schwarzschild background [20]. If the perturbation field Φ

is written as a sum of spherical harmonics

Φ−−
∑

l

1
Xr
Ψ

l

(

t, r
)

Y
lm

(

θ,φ
)

, (3.6.1)

then the radial part will obey the Regge-Wheeler equation

(−∂2
t

+ ∂
2
∗

r

)

Ψ
l
−− V

eff

(

r
)

Ψ
l
. (3.6.2)

∗
r is defined by (3.5.1). (3.6.2) is just a one dimensional flat-space wave equation with an

effective potential

V
eff

(

r
) −−
(

1−2M
Xr

)(

l
(

l + 1
)

X2r
+

2Mq

X3r

)

, (3.6.3)

where q −− −3, 0, 1 for gravitational, electromagnetic, or scalar perturbations, respectively

[15].

When waves impinge on the black hole, the perturbation field will oscillate at certain

frequencies which depend only on the mass of the black hole. These frequencies can be found

from the poles of the scattering amplitude (see [15] for a detailed treatment). The half-period

for an oscillation due to a spherical scalar perturbation is 28.44M [12].

3.7. Mass Scaling

The final mass of the black hole should scale as a power of the initial amplitude of the

scalar field. To find out what this power should be, we can use equation (3.2.30) which gives

the mass as an integral of the scalar field. If we take the integral throughout space (neglecting

the potential V), we get

26 Chapter 3. Spherical Symmetry I: Theory

M∞−−M
h

+ 4π∫∞
r

h

2s

(2
Φ +

2
Π

X2 2a
+ s

θ
K θ
ΦΠ

Xa

)

dr, (3.7.1)

where M
h
≡

s
h

X2
is the mass of the black hole. Since the mass is conserved, M∞ is a constant.

However, M
h

is not constant. As the scalar field encounters the horizon, some mass will be

transferred from the integral term to M
h
. The mass of the black hole will increase by an amount

proportional to the mass in the scalar field. For a very narrow pulse, the entire mass of the field

will go into the black hole, while for a very wide pulse, almost none of it will. So, to see how

the final mass of the black hole scales with the amplitude of the scalar pulse, we need only

examine the integral term in equation (3.7.1).

The initial data is given by equations (3.4.2) , (3.4.3), and (3.4.4). Using these along with

equations (3.1.13) and (3.1.14), we get

Φ−− φ
[

1
Xr
−

d
(

r− c
d−1)

X
dσ

]

(3.7.2)

and

Π −− φ
[

2−β
Xr
(

1−β
)

−
d
(

r− c
d−1)

X
dσ

]

. (3.7.3)

Thus, Φ and Π are both proportional to φ and hence to A. This means that the integrand is

proportional to
2
φ and thus to 2

A . Now this assumes that the dependence of a,
θ

K θ, and β on φ

is much less than the dependence of M on φwhich seems a reasonable assumption. However,

the mass scaling will be easy to check numerically. If it turns out that M ∝ 2
A then we know

this assumption is valid.

Chapter 4. Spherical Symmetry II:

Massless Scalar Field

4.1. Finite Difference Equations

I will solve equations (3.2.10) - (3.2.20) using finite difference techniques on a uniform

mesh with spacings∆r and∆t.

Table 4.1 shows the operators I will use in the discretizations. Note that while

the derivative operators take a lower precedence than the arithmetic operators, that is

r

2
f

n

i
−−
(2
f

n

i+1 −
2

f
n

i−1
)

/∆r, the time averaging operator takes a higher precedence, that is

A
t

2
f

n

i
−−
(

A
t
f

n

i

2)
and A

t

(

a
n

i
b

n

i

) −− A
t
a

n

i
A

t
b

n

i
.

I initially intended to use a free evolution scheme for this set of equations, but was unable

to difference equation (3.2.14) in a stable way. Thus, I use equations (3.2.12), (3.2.13), (3.2.15),

(3.2.16), and (3.2.20) to evolve a,
θ

K θ ,Φ,Π, and f ; equation (3.2.11) to find
r

K
r
; and equation

(3.2.5) to find β.

In the interior, I use the following finite difference equations:

d

t
a

n

i
−− −A

t

(

2a
(

1−β
)

)n

i

+ s

r

(

aβ
)n

i
, (4.1.1)

d

t

θ
K θ

n

i
−− A

t
β

n

i

s

r

θ
K θ

n

i
+ A

t

(

1−β
X2s

(

a− 1
Xa

)

)n

i

+
a

r
β

n

i

XA
t

(

as
)n

i

+ A
t

(

a
(

1−β
) θ

K θ

(

2 θ
K θ +

r
K

r

)

)n

i

, (4.1.2)

27

28 Chapter 4. Spherical Symmetry II: Massless Scalar Field

Operator Definition Expansion

f

r
f

n

i

(−3f
n

i
+ 4f

n

i+1− f
n

i+2
)

/2∆r
∂f

X∂r
| n

i

+ O
(

∆ 2r
)

b

r
f

n

i

(

3f
n

i
−4f

n

i−1 + f
n

i−2
)

/2∆r
∂f

X∂r
| n

i

+ O
(

∆ 2r
)

r
f

n

i

(

f
n

i+1− f
n

i−1
)

/2∆r
∂f

X∂r
| n

i

+ O
(

∆ 2r
)

t
f

n

i

(

f
n+1
i
− f

n

i

)

/∆t
∂f

X∂t
| n+1⁄2

i

+ O
(

∆ 2t
)

d

t
f

n

i

(

f
n+1
i
− f

n

i

)

/∆t +

ε
dis

[

6 f
n

i
+ f

n

i−2 + f
n

i+2−

(

f
n

i−1 + f
n

i+1
)

]

/16∆t

∂f

X∂t
| n+1⁄2

i

+ O
(

∆ 2t
)

A
t
f

n

i

(

f
n+1
i

+ f
n

i

)

/2 f | n+1⁄2
i

+ O
(

∆ 2t
)

A
r

f
n

i

(

f
n

i
+ f

n

i−1
)

/2 f | n
i−1⁄2

+ O
(

∆ 2r
)

fa

r
f

n

i
A

t

f

r
f

n

i

∂f

X∂r
| n+1⁄2

i

+ O
(

∆ 2r +∆ 2t
)

ba

r
f

n

i
A

t

b

r
f

n

i

∂f

X∂r
| n+1⁄2

i

+ O
(

∆ 2r +∆ 2t
)

a

r
f

n

i
A

t r
f

n

i

∂f

X∂r
| n+1⁄2

i

+ O
(

∆ 2r +∆ 2t
)

s

r
f

n

i

(

f
n+1
i
− f

n+1
i−1 + f

n

i+1− f
n

i

)

/2∆r
∂f

X∂r
| n+1⁄2

i

+ O
(

∆ 2r +∆ 2t +∆r∆t
)

Table 4.1. Two-Level Finite Difference Operators

A
t

(

r

θ
K θ +

θ
K θ−

r
K

r

Xs
−4πΦΠ

Xa

)n

i

−− 0, (4.1.3)

4.1. Finite Difference Equations 29

d

t
Φ

n

i
−− s

r

(

βΦ +
(

1−β
)

Π
)n

i

, (4.1.4)

d

t
Π

n

i
−− 1

XA
t

(

s
n

i

2)
s

r

(

2s
(

βΠ +
(

1−β
)

Φ
)

)n

i

−2 t
s

n

i
A

t

(

Π
Xs

)n

i

, (4.1.5)

t
f

n

i
−− 4πA

t

(

s
n

i

(

Φ
n

i
+Π

n

i

)

Xa
n

i

2)

, (4.1.6)

s
n+1
i
−− r

i
+ f

n+1
i

, (4.1.7)

A
t
β

n

i
−−

t
f

n

i
+ A

t

(

as
θ

K θ

)n

i

X1+ A
t

(

as
θ

K θ

)n

i

. (4.1.8)

These equations are applied everywhere in the interior except at the two points next to

the boundary points. At these points, I use the same equations except the dissipative time

derivatives, d

t
are replaced by regular time derivatives,

t
since the value at i + 2 or i−2 is not

available at these locations. It is interesting to note that all of the spatial derivatives are angled

(s

r
) except for the derivative of β in equation (4.1.2) and the derivative of

θ
K θ in equation

(4.1.3). Switching any of these derivatives from angled to non-angled or from non-angled to

angled results in an instability.

The inner boundary is fixed to the apparent horizon. Thus, there is no physical condition

available for the evolution equations. Rather, due to the tipping of the light cones, the function

values on the horizon can be advanced using only the points outside the black hole. Therefore,

I use the same equations as I use in the interior, except the centered derivatives are replaced by

forward derivatives. For example, equation (4.1.1) becomes

t
a

n

i
−− −A

t

(

2a
(

1−β
)

)n

i

+ a

r

(

aβ
)n

i
. (4.1.9)

Since the computational grid must be finite, the outer boundary can not be extended to

infinity. I adopt outgoing conditions at the outer boundary, that is, I assume that no radiation

30 Chapter 4. Spherical Symmetry II: Massless Scalar Field

will enter the grid from large r. While this is not strictly true (there will be curvature

back-scattering from the outgoing pulse), it provides a good computational solution.

For the scalar field variables Φ and Π, the outgoing conditions come from the condition

on φ, namely sφ∼ F
(

s− ct
)

, with c−− 1−2β being the speed of outgoing waves. This means

that

.
Φ +
(

1−2β
)

Φ′ +

(.
s + 1−2β−2sβ′

)

Xs
Φ−
(.
s + 1−2β + 2sβ′

)

X2s
φ−− 0 (4.1.10)

and

(

1−β
)(

Π + Φ
)

+

(

1−2β
)

+
.
s

Xs
φ−− 0. (4.1.11)

These equations are discretized as

t
Φ

n

i
+
(

1−2A
t
β

n

i

) b

r
Φ

n

i
+ t

s
n

i
+ 1−2A

t
β

n

i
−2A

t
s

n

i

b

r
β

n

i

XA
t
s

n

i

A
t
Φ

n

i

− t
s

n

i
+ 1−2A

t
β

n

i
+ 2A

t
s

n

i

b

r
β

n

i

X
(

A
t
s

n

i

2)
A

t
φ

n

i
−− 0 (4.1.12)

and

A
t

[

(

1−β
)(

Π + Φ
)

]n

i

+
1−2A

t
β

n

i
+

t
s

n

i

XA
t
s

n

i

A
t
φ

n

i
−− 0. (4.1.13)

We can get approximate conditions on a and
θ

K θ from their Schwarzschild forms (3.2.25)

and (3.2.26) and the integral expression for the mass (3.2.30). Outside of any matter (very

weak scalar field), a and
θ

K θ should take on their Schwarzschild forms. For large s we can

take asymptotic expansions of these to get

a∼ 1+ M
Xs

+ O
(−2s
)

(4.1.14)

4.1. Finite Difference Equations 31

and

θ
K θ ∼ 2M

X2s
+ O
(−3s
)

(4.1.15)

Thus, at large r we have basically

s
(

a−1
) ∼M (4.1.16)

and

2s
θ

K θ ∼M. (4.1.17)

Now how does M behave in the large s weak-field limit? Since a→ 1and
θ

K θ→ 0 we have

M ∼ 4π∫ 2s
(2
Φ +

2
Π
)

ds . (4.1.18)

From the condition on φ we can see that Φ ∼ G
(

u
)

/s and Π ∼ G
(

u
)

/s, where u ≡ s− c t.

Thus

M ∼ 8π∫ 2
G
(

u
)

du∼ H
(

U
)

, (4.1.19)

that is, M is “outgoing” at large s. Therefore we get the following conditions for a and
θ

K θ

s
(

a−1
) ∼ H

(

s− ct
)

(4.1.20)

and

2s
θ

K θ ∼ H
(

s− ct
)

. (4.1.21)

These are discretized as

t

(

s
(

a−1
)

)n

i

+
(

1−2A
t
β

n

i

) b

r

(

s
(

a−1
)

)n

i

−− 0 (4.1.22)

and

32 Chapter 4. Spherical Symmetry II: Massless Scalar Field

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 35 40 45

nu

r

Figure 4.1. Sponge filter coefficient function for A−− 1.0 and n−− 2.

t

(2s
θ

K θ

)n

i
+
(

1−2A
t
β

n

i

) b

r

(2s
θ

K θ

)n

i
−− 0. (4.1.23)

The outgoing boundary condition reduces the amplitude of reflections off the boundary,

but unless the boundary is placed at very large r, these reflections can still interfere with the

results of a calculation. To minimize the reflections, I use a sponge filter as detailed in [6].

This means that in the interior of the grid, I apply the usual evolution equation along with a

coefficient times the outgoing condition. For instance, in the case of Φ, the equation is

.
Φ−−
(

βΦ +
(

1−β
)

Π
)

′

− ν
[

.
Φ +
(

1−2β
)

Φ′ +
.
s + 1−2β−2sβ′

Xs
Φ−

.
s + 1−2β + 2sβ′

X2s
φ

]

, (4.1.24)

where ν
(

r
)

is the coefficient function given by

4.1. Finite Difference Equations 33

ν
(

r
) −−

{

0

A
(

r− r
s

n) (
rmax− r

)(

rmax− r
s

−n−2) (

n + 1
)(

n + 2
)

rmin ≤ r < r
s

r
s
≤ r < rmax

. (4.1.25)

Here, A and n are parameters. Figure 4.1shows ν for A−− 1.0 and n−− 2 , the values used in this

thesis.

4.2. Initial Data

Section 3.4 gives the equations used to compute the initial data. These equations are

solved using an iterative procedure. First, the scalar field is set to an “ingoing” pulse (see

Section 3.4) and the geometric variables are set to their Schwarzschild values (see Section 3.2).

Then a and
θ

K θ are integrated from equations (3.2.10) and (3.2.11). Using these, the new forms

of M(r) and β are computed. Finally,
r

K
r

is computed. The program then computes a and
θ

K θ

again and so on until each of the geometric functions converges to a final value. In practice,

this takes about twenty iterations.

The resulting initial data is shown in Figures 4.2 and 4.3. It seems to behave as a strictly

ingoing pulse, however, it may contain an outgoing piece which only shows up at large

amplitudes (see Section 4.6).

4.3. Tails

Figure 4.4 shows φ at constant r for runs with rmax
−− 42, 82, 162. It is clear that the

position of the outer boundary has a large effect on the fall-off of the scalar field, even with

the sponge filter. There is enough reflection to cause the field to fall off much more slowly

than it should. In order to accurately measure the tails, it would be necessary to either use an

adaptive scheme so that the boundary can be moved out to several thousand M, or to match

the interior evolution to a characteristic scheme which would evolve the region of spacetime

from the boundary to spatial infinity.

However, with the outer boundary at rmax
−− 162, it will take at least 300M for reflections

from the scattered pulse to travel in from the outer boundary and interfere with measurements

34 Chapter 4. Spherical Symmetry II: Massless Scalar Field

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 5 10 15 20 25 30 35 40 45

r

phi

Phi

Pi

Figure 4.2. Initial data for the scalar field with A−− 3.0× −310 , c−− 10, and σ−− 2.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40 45

r

M

a

beta

Ktt

Krr

Figure 4.3. Initial data for the geometric variables and the mass profile with A−− 3.0× −310 ,

c−− 10, and σ−− 2.

4.3. Tails 35

-20

-18

-16

-14

-12

-10

-8

-6

-4

0 100 200 300 400 500 600 700 800 900 1000

p
h
i

t

rmax=42

rmax=82

rmax=162

Figure 4.4. log|φ |at r−− 30verses t for various spatial domains.

-14

-13

-12

-11

-10

-9

-8

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

L
o
g
 |
 p

h
i
|

Log(t)

Figure 4.5. log|φ |at r−− 30verses log t.

36 Chapter 4. Spherical Symmetry II: Massless Scalar Field

-13

-12

-11

-10

-9

-8

-7

-6

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

L
o
g
 |
 p

h
i
|

Log t

Figure 4.6. log|φ |at the horizon verses log t.

at r −− 30. This should give enough time to measure the rate of fall off of the scalar field.

Figure 4.5 shows the accurate part of the evolution. A fit to this curve between 200M and

300M shows φ falling off as −3.38t . A run at twice the resolution yields the same exponent.

The evolution of φ at the horizon is shown in Figure 4.6. A linear fit to this curve between

200M and 300M shows φ falling off as −3.06t for runs at both resolutions.

4.4. Ringing

Figure 4.7 shows the waveforms generated by packets of various widths for medium field

data (.017M ≤Mφ≤ .052M). This graph shows the initial pulse of reflected scalar field. Figure

4.8 shows log|φ |at the horizon for the same data. In this graph the subsequent oscillations are

apparent. It is also apparent that the frequency is independent of the pulse width. The period

for one oscillation is approximately 53M giving a half-period of 26.5M which is close to the

predicted value of 28.44M. A Higher resolution run with the same data yields a half-period of

26.25M.

4.4. Ringing 37

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120 140 160 180 200

p
h
i
in

n
e
r

t

σ=2

σ=3

σ=4

σ=5

σ=6

Figure 4.7. φ at the horizon verses time for various pulse widths (A−− 2.0× −410).

-40

-35

-30

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120 140 160 180 200

L
o
g
 |
 p

h
i
|

t

σ=2

σ=3

σ=4

σ=5

σ=6

Figure 4.8. log|φ |at the horizon verses time for various pulse widths (A−− 2.0× −410).

38 Chapter 4. Spherical Symmetry II: Massless Scalar Field

-40

-35

-30

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120 140 160 180 200

L
o

g
 |
 p

h
i
|

t

a=2

a=3

a=4

a=5

a=6

Figure 4.9. log|φ | at the horizon verses time for various pulse amplitudes

(σ−− 2.0, amplitudes are × −410).

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120 140 160 180 200

L
o

g
 |
 p

h
i
|

t

σ=2

σ=3

σ=4

σ=5

σ=6

Figure 4.10. log|φ |at the horizon verses time for various pulse widths (A−− 2.0× −810).

4.4. Ringing 39

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120 140 160 180 200

L
o

g
 |
 p

h
i
|

t

σ=2

σ=3

σ=4

σ=5

σ=6

Figure 4.11. log|φ |at r−− 30verses time for various pulse widths (A−− 2.0× −810).

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120 140 160 180 200

L
o

g
 |
 P

h
i
|

t

A=2

A=3

A=4

A=5

A=6

Figure 4.12. log|φ | at the horizon verses time for various pulse amplitudes

(σ−− 2.0, amplitudes are × −810).

40 Chapter 4. Spherical Symmetry II: Massless Scalar Field

-25

-20

-15

-10

-5

0

0 20 40 60 80 100 120 140 160 180 200

L
o

g
 |
 P

h
i
|

t

A=2

A=3

A=4

A=5

A=6

Figure 4.13. log|φ | at r −− 30 verses time for various pulse amplitudes

(σ−− 2.0, amplitudes are × −810).

Figure 4.9 shows the waveforms generated by pulses of varying amplitude for strong field

data (.051M ≤Mφ≤ .47M). In this case, the frequency of oscillationsdecreaseswith increasing

amplitude. However, the mass of the black hole changes from 1.0 to 1.46 during the evolution

of the strongest data, so the period is expected to increase.

The weak-field data shown in Figures 4.10–4.13 gives an oscillation period of

approximately 53M. This period is independent of the initial pulse amplitude as expected.

For large widths, the late-time waveform differs from that of a small width. As the width

becomes larger, less and less of the initial pulse is absorbed by the black hole. This means there

is more scalar field available to be reflected from the outer boundary and cause differences in

the late-time evolution at fixed radius.

4.5. Mass Scaling

The infalling scalar field can exhibit two main behaviors depending on the amplitude and

width of the pulse. These are: scattering from the existing black hole and collapse to form

4.5. Mass Scaling 41

t

s

Figure 4.14. Schematic motion of the horizon for various amplitudes of the scalar field.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-3 -2.8 -2.6 -2.4 -2.2 -2

L
o
g
(M

-1
)

Log A

A>A* A<A*

Figure 4.15. Final black hole mass verses amplitude of the scalar field pulse (d −− 2).

42 Chapter 4. Spherical Symmetry II: Massless Scalar Field

-2.5

-2

-1.5

-1

-0.5

0

-14 -12 -10 -8 -6 -4 -2 0

L
o

g
((

M
-M

*)
/M

*)

Log((A-A*)/A*)

Figure 4.16. Final black hole mass verses amplitude of the scalar field pulse (d −− 2) for

super-critical amplitudes.

-1.5

-1

-0.5

0

0.5

-3.5 -3 -2.5 -2

L
o

g
(M

-1
)

Log A

A>A* A<A*

Figure 4.17. Final black hole mass verses amplitude of the scalar field pulse (d −− 4).

4.5. Mass Scaling 43

-2

-1.5

-1

-0.5

0

0.5

-14 -12 -10 -8 -6 -4 -2 0 2

L
o

g
((

M
-M

*)
/M

*)

Log((A-A*)/A*)

Figure 4.18. Final black hole mass verses amplitude of the scalar field pulse (d −− 4) for

super-critical amplitudes.

a new horizon outside the existing horizon. These two behaviors are separated by a critical

value of either amplitude or width. For initial data with σ−− 2, c−− 10, and d −− 2, the critical

amplitude is A≈ .0037, while for initial data with d −− 4, the critical amplitude is A≈ .0019.

Figure 4.14 shows a spacetime diagram of the motion of the horizon for various

amplitudes of initial data. Notice that this diagram uses the areal coordinate s and not the

radial coordinate r. The solid dark vertical line which jogs right and then continues vertically

represents the critical path of the horizon. The dotted lines are sub-critical paths and the

vertical dashed lines are super-critical paths. The two thin, diagonal lines represent the bounds

of the ingoing pulse of scalar field. A super-critical pulse moves inward until it crosses its

gravitational radius. Once this happens, the apparent horizon jumps from its initial position to

this new position where it remains. A sub-critical pulse moves inward until it encounters the

horizon. If the field is very weak, the horizon is unaffected. For stronger fields, the horizon

moves out until the pulse is entirely inside. For a critical pulse, the horizon moves out at the

44 Chapter 4. Spherical Symmetry II: Massless Scalar Field

speed of light. Note however, that unless the energy density is a square wave, the horizon will

not move along the straight lines as shown in the diagram, but will move along a curve with

gradually increasing and then decreasing slope.

The final mass of the black hole should scale with the amplitude of the initial data as

shown in Section 3.7. If the picture in Figure 4.14 is correct,both super-critical and sub-critical

data should exhibit the same mass scaling. Figure 4.15 shows log
(

M−1
)

verses A for initial

data with d−−2,σ−−2, and c−−10. The squares are for data with amplitude less than the critical

value, while those with crosses are for data with amplitude greater than the critical value. This

graph is fit by the line

log
(

M−1
) −− 2.01log A + 4.96, (4.5.1)

indicating that the mass grows with the square of the amplitude as expected. The graph also

shows there is no difference in behavior for sub- and super-critical data. That is, the final mass

of the black hole exhibits the same dependence on the amplitude when the hole grows by

accretion or when it forms by collapse.

Figure 4.16 shows only super-critical data. The mass values are asymptoting to M ≈ 2.22

indicating a mass gap between the smallest super-critical black hole and the largest sub-critical

black hole. In fact, the super-critical mass is M+
−− 2.2281725while the sub-critical mass

is M−−− 2.2125908. This effect is purely numerical. The method for solving the difference

equations demands that the horizon be located on a grid point. The radial distance between

grid points,∆r is also the areal distance∆s. The mass of the black hole is s
h
/2 (see equation

(3.2.30)). Now the location of the horizon should be accurate to within∆r/2. Thus, we would

expect the mass gap to be approximately∆r/4. The data plotted in the figures was computed

on a grid with ∆r −− .1. Thus, the mass gap should be about ∆M ≈ .025. The actual mass

gap is about .0155. For a grid with∆r−− .05we get M+
−− 2.316354and M−−− 2.309658for a

difference of∆M≈ .0067,while a grid with∆r−− .025gives M+
−−2.3660016,M−−−2.3635547,

and∆M ≈ .0024.

Figures 4.17 and 4.18 show similar behavior for data with d−− 4. Figure 4.17 is fit by the

line

4.5. Mass Scaling 45

log
(

M−1
) −− 1.99log A + 5.19, (4.5.2)

indicating again that the mass grows with the square of the amplitude.

Figure 4.18 again shows a mass gap. Of course this too is numerical and shrinks with the

grid spacing. The grid with∆r−− .1gives∆M ≈ .024, the grid with∆r−− .05gives∆M ≈ .006,

and the grid with∆r−− .025gives∆M ≈ .002.

4.6. Coordinate Effects

The evolutions exhibit some interesting effects which are due to the use of MMIEF

coordinates. The shift is given by (3.2.5). At the horizon, (3.2.19) holds, so we have

β−−
.
f

X2
+ 1

X2
. (4.6.1)

From (3.2.9) we can see that when no matter is crossing the horizon, β −− .5 so the outgoing

characteristic speed is zero. However, if
.
f −− 1, then β−−1and the outgoing characteristic speed

is -1. In this case, the light cone is degenerate. In fact, from (3.2.5) we can see that if
.
f −− 1,

then β−− 1everywhere. Does
.
f ever equal one? The most likely place for this to happen is the

critical solution because that is when the “maximum” amount of energy is crossing the horizon

for a given pulse shape. The values of β at the horizon and at the outer boundary (r−− 42M)

are plotted in Figure 4.19. This is for the critical solution with σ−− 2, d−−2, and c−− 10. β gets

up around .95, but never reaches 1. The critical solution for pulses with d−− 4 gives a slightly

higher maximum β, but still less than one. I think it is likely that a narrow enough pulse could

cause
.
f to reach one for an instant, but this has not been verified.

Whenever β > .5, the outgoing characteristic speed is negative. Thus, outgoing pulses

will appear to move inward. Figure 4.20 shows an evolution of dM
Xdr

for the critical solution

referred to above. The frames are spaced 1M apart in time. The vertical scale changes at

t−− 5M so the outgoing pulse can be observed. The vertical lines passing through the frames

are to provide a common horizontal reference so the retrograde motion of the outgoing pulse

46 Chapter 4. Spherical Symmetry II: Massless Scalar Field

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

b
e

ta

t

r=2 r=42

Figure 4.19. β at the horizon and the outer boundary for the critical solution with σ−− 2 ,

d −− 2 , and c−− 10.

can be seen. There are two periods of backwards motion; one at about 7M and the other at

about 10M. These are the timeswhen each of the “bumps”crosses the horizon. The retrograde

motion is easier to see in Figure 4.21. This figure shows contours on an r verses t plot for the

same evolution. Figure 4.22 shows a fairly weak field evolution of dM
Xdr

for comparison. There

is no retrograde motion in this case.

4.7. Nonlinear Effects

There is a sharp “bump” at the front of the outgoing pulse in Figure 4.20. This feature

is absent from the weak-field evolution of Figure 4.22 and is certainly amplitude dependent.

Figure 4.23 shows a series of initial pulse shapes for data with various amplitudes and σ−− 2 ,

d −− 2 , and c −− 10 . Figure 4.24 shows the corresponding pulse shapes after scattering. The

4.7. Nonlinear Effects 47

0

0.5

0

0.0001

t=0

t=31

Figure 4.20. Evolution of dM
Xdr

for the critical solution with σ−− 2 , d −− 2 , and c−− 10.

48 Chapter 4. Spherical Symmetry II: Massless Scalar Field

0

2

4

6

8

10

12

14

16

18

20

2 3.5 5 6.5 8 9.5 11 12.5 14 15.5 17 18.5 20

t

r

Figure 4.21. Contour plot of dM
Xdr

for the critical solution with σ−− 2 , d −− 2 , and c−− 10.

inset in this figure lists the fraction of mass scattered times 1000. For example, the critical

solution (
∗

A−− A) has .243% of its mass scattered.

Although this bump occurs at the front of the scattered pulse, it is not caused by

interactions with the black hole. To see this more clearly, we can start the pulse farther out

and see what happens. Figures 4.25 and 4.26 show pulse shapes at t−− 0and t−− 8for data with

c−− 20. The outgoing bump develops for large amplitude data without any help from the black

hole. A similar bump develops for initial data with d −− 4 as well. These bumps always have

the same characteristic shape, though their widths may vary.

It is clear from Figure 4.24 that the amplitude of this outgoing feature does not depend

linearly on the initial amplitude of the pulse. For instance, from Figure 4.23, the height of the

highest peak is about 1.5 times the height of the next highest peak, while their widths are the

same. However, the amplitude of the outgoing feature in the first case is about 2.5 times the

amplitude of the outgoing feature in the second case, while their widths are the same. Figures

4.25 and 4.26 show similar nonlinear behavior for the pulses centered at r−− 20. It is difficult

4.7. Nonlinear Effects 49

0

0.04

0

0.0001

t=0

t=31

Figure 4.22. Evolution of dM
Xdr

for the weak-field solution with A−− .001, σ −− 2 , d −− 2 , and

c−− 10.

50 Chapter 4. Spherical Symmetry II: Massless Scalar Field

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35 40 45

d
m

/d
r

r

A=A*

A=.003

A=.002

A=.001

Figure 4.23. dM
Xdr

at t−− 0 for σ−− 2 , d −− 2 , c−− 10, and various amplitudes.

0.0x100

1.0x10-5

2.0x10-5

3.0x10-5

4.0x10-5

5.0x10-5

6.0x10-5

0 5 10 15 20 25 30 35 40 45

d
m

/d
r

s

A=A*

A=.003

A=.002

A=.001

2.43

2.78

4.20

6.88

Figure 4.24. dM
Xdr

at t −− 40M for σ−− 2 , d −− 2 , c−− 10, and various amplitudes (inset shows

1000 times fraction of mass scattered).

4.7. Nonlinear Effects 51

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35 40 45

d
m

/d
r

r

A=2

A=3

A=4

A=5

A=6

A=7

A=8

A=9

A=A*

Figure 4.25. dM
Xdr

at t−− 0 for σ−− 2 , d −− 2 , c−− 20, and various amplitudes (× −410).

0x100

1x10-6

2x10-6

3x10-6

4x10-6

0 5 10 15 20 25 30 35 40 45

d
m

/d
r

r

A=2

A=3

A=4

A=5

A=6

A=7

A=8

A=9

A=A*

Figure 4.26. dM
Xdr

at t−− 8 for σ−− 2 , d −− 2 , c−− 20, and various amplitudes (× −410).

52 Chapter 4. Spherical Symmetry II: Massless Scalar Field

to tell whether this feature is caused by the nonlinear interaction of an outgoing piece of the

initial data with the rest of the pulse, or if it is caused by back-scattering from the effective

self-potential of the ingoing pulse. Further study is needed.

4.8. Convergence

The convergence factors for the scalar field and the geometric variables are plotted in

Figures 4.27 and 4.28. This evolution is for a sub-critical strong field in which the mass of the

scalar field is just over half the mass of the black hole. These factors are approximately four

throughout the evolution, indicating that the schemes are second order and convergent (see

Section 2.2.2). There are some deviationswhile the pulse is interactingwith the inner boundary

due to the forward differencing. Since these derivatives are not centered, their expansions

contain terms proportional to odd powers of the grid spacing. These errors can cause grid

spacing-dependent phase variations in the reflected pulse which cause the convergence factor

to vary during the interaction.

Evolutions of super-critical data exhibit 2nd-order convergence before the scalar field

collapses and 1st-order convergence after. This is because evolutions at different resolutions

are actually different problems once the new horizon forms. The new horizon will be located

at a different radius at each resolution (though the locations will converge as the grid spacing

decreases). Thus, the spacetimes contain a final black hole with a resolution-dependent

mass. Consider the evolution of super-critical data on two grids, one with a grid spacing of 2h

and the other with a grid spacing of h. The post-collapse location of the horizon on the high

resolution grid will differ from its location on the low resolution grid by h. This is half of the

coarse-grid resolution. This difference is precisely enough to cause the convergence rate to

drop one order.

Of course the program could be written to demand that the new horizon form on a

coarse grid point. However, this would defeat the purpose of performing a higher resolution

calculation since it would incur the same error in the black hole mass as the low resolution

calculation. This example illustrates that while convergence factors are a valuable tool

4.8. Convergence 53

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

C
o
n
v
e
rg

e
n
c
e
 F

a
c
to

r

t

a

beta

Krr

Ktt

phi

Phi

Pi

Figure 4.27. Convergence factors for A−− 2.5× −310 , c−− 10, and σ−− 2.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100

C
o
n
v
e
rg

e
n
c
e
 F

a
c
to

r

t

dm/dr

hc

M

M
2

mc

s

Figure 4.28. Convergence factors for A−− 2.5× −310 , c−− 10, and σ−− 2.

54 Chapter 4. Spherical Symmetry II: Massless Scalar Field

for determining the correctness and stability of a finite-difference program, they must be

interpreted. A higher rate of convergence does not always mean a more accurate program.

Chapter 5. Spherical Symmetry III:

Massive Scalar Field

5.1. A Static Solution

In a recent paper [3], Bechmann and Lechtenfeld investigated the scalar no-hair theorem

[4]. This theorem basically states that an asymptotically flat, stationary spacetime containing

a black hole is completely specified by the black hole’s mass, charge, and angular momentum.

There are no other independent parameters. Any initial configurations of matter will be either

absorbed into the black hole or radiated to infinity, leaving a Kerr-Newman black hole.

In their paper, Bechmann and Lechtenfeld showed that by weakening one of the

conditions of the theorem to allow a locally negative potential, they could construct a static

spherically symmetric solution to the Einstein-Klein-Gordon equations which includes a

non-trivial scalar field surrounding a black hole—a black hole with scalar “hair.”

Unfortunately, their solution is not given in closed form. Thus, any detailed investigation

of its stability properties must be carried out numerically. In order to investigate this solution

using methods discussed in Chapters 3 and 4, we must perform a coordinate transformation to

get the Bechmann and Lechtenfeld solution into the MMIEF coordinate system.

5.2. Coordinate Transformation

The Bechmann and Lechtenfeld solution uses a metric with the following form:

2
ds −− −G

(~
r
) 2

d
~
t + G

(~
r
−1) 2

d
~
r + S

(~
r
)

2
d

~
Ω . (5.2.1)

We will transform this using two coordinate transformations, one for the radial coordinate and

the other for the time coordinate. The angular coordinates are left unchanged.

55

56 Chapter 5. Spherical Symmetry III: Massive Scalar Field

First we will transform from
(~
t,

~
r
)

to
(

T, R
)

using the transformation

{

R ≡ S
(~
r
)

T ≡ ~
t

d
~
r−− dR

(

∂S
X∂~

r

−1)

d
~
t −− dT.

(5.2.2)

This results in the metric

2
ds −− −G

(

~
r
(

R
)

)

2
dT +

(

∂S
X∂~

r

−2)
G
(~
r
−1) 2

dR + 2
R d

2
Ω , (5.2.3)

where
~
r is assumed to be a function of R. We now transform from

(

T, R
)

to
(

t, r
)

using

{

r ≡ R

t ≡ T + F
(

R
)

dR−− dr

dT −− dt− dF
XdR

dR ≡ dt− f
(

r
)

dr,
(5.2.4)

where f
(

r
)

is to be determined. The metric becomes

2
ds −− −G

(

r
) 2

dt + 2G
(

r
)

f
(

r
)

dtdr +

(

G
(

r
−1) (∂S

X∂~
r

−2)
−G
(

r
) 2

f
(

r
)

)

2
dr + 2r d

2
Ω , (5.2.5)

where G
(

r
) ≡ G

(

~
r
(

r
)

)

. Comparing this metric with (3.2.7) gives us the following three

equations which must be solved for a, β , and f .

{

2a −− −1
G
(

∂S
X∂~

r

−2)
− G

2
f
(

r
)

2 2a β−− 2G f

2a
(

2β−1
) −− −G.

(5.2.6)

If we define Q ≡ 2
G
(

∂S
X∂~

r

2)
then we get the following solutions for a and β :

2a −− G
XQ

(

1−Q
2

f
)

, (5.2.7)

5.2. Coordinate Transformation 57

β−− Q f

X1−Q
2

f
. (5.2.8)

This gives us the following simple equation for f :

Q
2

f + 2Q f + Q−1−− 0 . (5.2.9)

Solving gives

f −− ±
−1

X2Q −1−− ±
(

G ∂S
X∂~

r

−1)
−1. (5.2.10)

We now see that

2a −− −G ± 2
(

∂S
X∂~

r

−1)
, (5.2.11)

and

β−−
−G
(

∂S
X∂~

r

)

± 1

X−G
(

∂S
X∂~

r

)

± 2
. (5.2.12)

5.3. Initial Data

The Bechmann and Lechtenfeld solution is as follows:

φ
(~
r
) −− φ0

−m~r
e ,

S
(~
r
) −− 1

Xm

[

K0

(1
X2
φ
(~
r
)

)

+

(

ln
(φ0

X4

)

+ γ

)

I0

(1
X2
φ
(~
r
)

)

]

,

G
(~
r
) −− 2

S
(~
r
)∫∞

~r

2r′−6M

X
4

S
(

r′
)

dr′, (5.3.1)

58 Chapter 5. Spherical Symmetry III: Massive Scalar Field

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25 30 35 40 45

S
c
a
la

r
F

ie
ld

r

phi Phi Pi

Figure 5.1. Initial data for the scalar field.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35 40 45

G
e
o
m

e
tr

y

r

a

beta

Krr

Ktt

Figure 5.2. Initial data for the geometric variables.

5.3. Initial Data 59

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

V

phi

Figure 5.3. The potential V(φ).

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0 5 10 15 20 25 30 35 40 45

U

r

Figure 5.4. The potential U(r).

60 Chapter 5. Spherical Symmetry III: Massive Scalar Field

U
(~
r
) −− 1

X2
G
(~
r
)

(4
S
(~
r
))

′′

X
4

S
(~
r
)

+
(

2 ~
r−6M

)

(

1
X

2
S
(~
r
)

)

′− 2
X

2
S
(~
r
)

,

3M −−
∫∞
h

r
−4

S
(

r
)

dr

X∫∞
h

−4
S
(

r
)

dr
,

where K0 and I0 are the modified Bessel functions of order zero.

These equations involve four constants, m, φ0, M, and h. We will specify the first three

and calculate h from the equation G
(

h
) −− 0. We will calculate the initial data in the

(

r, t
)

coordinate system using the following equations.

The scalar field is easily calculated from

φ
(

r
) −− φ

(

~
r
(

r
)

)

−− φ
(−1

S
(

r
)

)

(5.3.2)

The functionsΦ andΠ are calculated from this and equations (3.1.13) and (3.1.14).

The metric functions a and β are calculated from (5.2.11) and (5.2.12), given that

∂S
X∂~

r
−− 1

X2
φ

[

K1

(1
X2
φ
)

−
(

ln
(φ0

X4

)

+ γ

)

I1

(1
X2
φ
)

]

. (5.3.3)

We can calculate the extrinsic curvature components from (3.1.9) and (3.2.3). We get

r
K

r
−−
(

aβ
)

′

X2a
(

1−β
)

, (5.3.4)

θ
K θ
−− β−

.
f

Xra
(

1−β
)

. (5.3.5)

The resulting initial data is plotted in Figures 5.1 and 5.2.

5.4. Finite Difference Equations 61

5.4. Finite Difference Equations

The equations are discretized using the same methods as in the massless case (see Chapter

4). The potential ishandled by introducingtwoauxiliaryvariables,U and U
p
. These are defined

by

U
(

r
) ≡ V

(

φ
(

r
)

)

(5.4.1)

and

U
p

(

r
) ≡ ∂φV

(

φ
(

r
)

)

. (5.4.2)

The potential and its derivative are discretized in φ and are constant throughout the evolution.

However, U and U
p

will change with time if φ changes with time.

Equation (3.2.13) is discretized like equation (4.1.2) with the potential term given by

−8πA
t
U

n

i
. (5.4.3)

Equation (3.2.16) is discretized like equation (4.1.5) with the added term

−A
t

(

2a
(

1−β
)

U
p

)n

i

. (5.4.4)

Equation (3.2.20) is discretized like equation (4.1.6) with the additional factor of

(

1−8πA
t

(2s U
)n

i

)

(5.4.5)

in the denominator. The auxiliary variables U and U
p

are found from V and ∂φV by

interpolation. That is, we have

U
n+1
i
−− B

i
V

j
+ C

i
V

j+1 (5.4.6)

and

62 Chapter 5. Spherical Symmetry III: Massive Scalar Field

U
p

n+1
i
−− B

i

(

∂φV
)

j
+ C

i

(

∂φV
)

j+1
, (5.4.7)

where j−−
(

φ
n+1
i
−p

min

)

/∆p , B
i
−−1−

(

φ
n+1
i
−p

i

)

/∆p , C
i
−−
(

φ
n+1
i
−p

i

)

/∆p , and p
i
≡ p

min
+ i∆ p

is the φ coordinate on which V and ∂φV are defined.

5.5. Convergence

The convergence of the program can not be demonstrated directly on the Bechmann

and Lechtenfeld solution. This solution is a critical solution in the continuum, but not at finite

resolution. Thus, discretizations of this solution on two different grids are likely to exhibit

different behaviors since they will be different distances from criticality. The solution has

a finite lifetime in each case, but “decays” differently depending on the resolution. These

different discretizations do not in fact represent the same solution and so will not converge.

In order to test the convergence of the program, we must introduce a perturbation which

will move the continuum solution away from criticality. Once this has been done, we should be

able to convergence test in the usual manner. The ideal method for the perturbation would be

to find two solutions,one super-critical and one sub-critical and interpolate between them using

a single parameter. This would allow a search for the critical solution at each discretization.

Unfortunately, such a procedure must be left for the future, since it is not obvious how to

determine such a family of interpolating solutions for the given problem.

Without such a family, we must resort to choosing an arbitrary perturbation. Consider

the following:

φ−− φu
+ ε

F
(

z
)

Xr
, (5.5.1)

where z≡ r + t and φ
u

is the unperturbed solution. The auxiliary scalar variables are then given

by

5.5. Convergence 63

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70 80 90 100

C
o

n
v
e

rg
e

n
c
e

 F
a

c
to

r

t

phi

Phi

Pi

U

Up

Figure 5.5. Convergence of the scalar field.

3

3.5

4

4.5

5

5.5

6

0 10 20 30 40 50 60 70 80 90 100

C
o

n
v
e

rg
e

n
c
e

 F
a

c
to

r

t

a

beta

Krr

Ktt

s

Figure 5.6. Convergence of the geometric variables.

64 Chapter 5. Spherical Symmetry III: Massive Scalar Field

2

2.5

3

3.5

4

4.5

5

5.5

0 10 20 30 40 50 60 70 80 90 100

C
o

n
v
e

rg
e

n
c
e

 F
a

c
to

r

t

dm/dr hc mass mc

Figure 5.7. Convergence of the derived variables.

Φ−− Φu
+ ε

(

∂
z
F

Xr
− F

X2r

)

(5.5.2)

and

Π −−Πu
+ ε

(

∂
z
F

Xr
+
β

X1−β
F

X2r

)

. (5.5.3)

We will leave the potential unperturbed, that is, V −− V
u
. For the geometric variables, we will

leave
r

K
r

alone and solve for β,
θ

K θ, and a using equations (3.2.5), (3.2.11), and (3.2.10).

Although this perturbation leaves the scalar field variables “close” to the critical solution,

it moves the geometric variables a and
θ

K θ very far from the critical solution. This is another

indication of the instability of the critical solution.

As discussed in Section 2.2.2, the convergence factor is specific to the data being evolved.

If the program converges on one set of initial data, it will not necessarily converge on another.

5.5. Convergence 65

However, convergence on one set of strong-field initial data will usually indicate the efficacy

of the program for solving similar problems.

In this case there is not much choice. Without further work, there is no way to test

convergence on critical or near-critical solutions. Thus, we must test the program on other

data. Since the program is designed to allow an arbitrary potential to be given in the initial

data (the potential is discretized in φ and does not need to be given explicitly in the equations),

we can use a different potential entirely. For instance, we can study the massive scalar field

by introducing a potential of the form

V
(

φ
) −− 1

X2
2m

2
φ , (5.5.4)

where m represents the mass of the scalar particle. Using this potential along with an ingoing

Gaussian pulse (see Section 4.2),we can look at the scatteringof the massive scalar pulse. With

this data, the program converges to second order as shown in Figures 5.5, 5.6, and 5.7. The

convergence of this program on strong field data provides more evidence that the evolutions

of the Bechmann and Letchtenfeld solution can be trusted, and hence that this scalar “hair” is

unstable.

Chapter 6. Massless Klein-Gordon

Equation on a Kerr

Background: Theory

6.1. Evolution Equations

An axially symmetric spacetime possesses only a single Killing vector (see [24]). We can

choose our coordinate system so that thisKillingvector isone of the basisvectors. We then find

that the coordinate corresponding to this vector is ignorable, that is, all quantities are functions

of the other three coordinates alone. However, the metric is not restricted in form—all

components can be non-zero. If the coordinate system is not adapted to the symmetry of the

spacetime, then no coordinate is ignorable and we are faced with using the general form of the

Einstein equations (see Section 2.1).

In this chapter,we are not concerned with solving the Einstein equations, rather we seek to

solve the much simpler linear problem of the massless Klein-Gordon equation on a fixed Kerr

Background. Thus, we need only the evolution equations for the scalar field given a general

3+ 1metric. These are the four equations (2.1.12) and (2.1.13).

6.2. Kerr Initial Data

The geometric variables are set to represent an isolated Kerr black hole with mass m and

angular momentum parameter a. We adopt Kerr-Schild coordinates
(

t, x, y, z
)

. The metric

in these coordinates is given by

g
µν
−− ηµν + Hkµkν , (6.2.1)

66

6.2. Kerr Initial Data 67

where η
µν

is the flat-space metric, H is a scalar function, and
µ

k is tangent to the principle

ingoing null congruence. H is given by

H −− 2m 3r

X4r + 2a 2z
(6.2.2)

and the components of kµ are given by

kµ−−
(

1,
rx + ay

X2r + 2a
,

ry− ax

X2r + 2a
,

z

Xr

)

, (6.2.3)

where

r−−

√
X

2x + 2y + 2z − 2a

X2
+

√
X

2

(2x + 2y + 2z − 2a

X2) + 2z 2a (6.2.4)

and the z axis is the axis of rotation.

The three-metric is given by

h
ij
−− δij + Hk

i
k

j
(6.2.5)

and its inverse is given by

ij
h −− 1

X1+ H

(

1+ H
(2
k

y
+

2
k

z

)

−Hk
x
k

y

−Hk
x
k

z

−Hk
x
k

y

1+ H
(2
k

x
+

2
k

z

)

−Hk
y
k

z

−Hk
x
k

z

−Hk
y
k

z

1+ H
(2
k

x
+

2
k

y

)

)

. (6.2.6)

The lapse is

α−−
√

X 1
X1+ H

(6.2.7)

and the shift is

68 Chapter 6. Massless Klein-Gordon Equation on a Kerr Background: Theory

i
β −− H

X1+ H

i
k . (6.2.8)

The determinant of the three metric is

h−− 1+ H. (6.2.9)

Since I am examining the scattering of scalar radiation from a fixed Kerr source, I can

simply specify the scalar field and leave the geometry as above. The scalar field will be a

compact pulse given by

φ−− A exp

(

−
(x− c

x

Xδ
x

2))

exp

(

−
(y− c

y

Xδ
y

2))

exp

(

−
(z− c

z

Xδ
z

2))

(6.2.10)

and

.
φ−− −2

x− c
x

X
2
δ

x

A exp

(

−
(x− c

x

Xδ
x

2))

exp

(

−
(y− c

y

Xδ
y

2))

exp

(

−
(z− c

z

Xδ
z

2))

,(6.2.11)

or by

φ−− A exp

(

−
(

r− c

Xδ

2))

cos
(

nϕ
)

(6.2.12)

and

φ−− −2
(

r− c

X
2
δ

)

A exp

(

−
(

r− c

Xδ

2))

cos
(

nϕ
)

, (6.2.13)

where n is an integer (see below).

6.3. Super Radiance

One of the interesting properties of the Kerr black hole is its ability to amplify

low-frequency waves (see [9]). We can see this effect most easily if we adopt Boyer-Lindquist

coordinates. In these coordinates, the metric is

6.3. Super Radiance 69

2
ds −− 2

dr −2a
2

sin θ drdϕ +
(2r + 2a

) 2
sin θ d 2ϕ +Σ d

2
θ − 2

dt

+ 2mr

XΣ

(

dr− a
2

sin θ dϕ + dt
2)
, (6.3.1)

where Σ −− 2r + 2a 2cos θ. If we write the scalar field as φ−− R
(

r
)

P
(

θ
) inϕ−ωt

e , where n is the

azimuthal quantum number and ω is a frequency, then the Klein-Gordon equation is separable.

The radial equation is

∆ d
Xdr

(

∆ dR
Xdr

)

+
[

2ω
(2r + 2a

) −4a m n r ω + 2a 2n −λ∆
]

R−− 0 , (6.3.2)

where∆−− 2r + 2a −2m r and λ is a separation constant. If we define a new coordinate z by

dr
Xdz
−− ∆

X2r + 2a
, (6.3.3)

and a new radial function f by

f
(

r
) −− R

(

r
)

√
X2r + 2a , (6.3.4)

then (6.3.2) becomes

2
d f

Xd 2z
+ 2

F
(

z
)

f −− 0 , (6.3.5)

where

2
F
(

z
) −−
(

ω− nω
c

2) − ∆

X
(2r + 2a

2)

{

λ−2a nω +
√

X2r + 2a d
Xdr

[

∆ r

X
(2r + 2a

3⁄2)

]

}

, (6.3.6)

ω
H
−− a

Xr2
+ + 2a

, (6.3.7)

and r+
−− m +

√
X2m − 2a is the location of the horizon. Now (6.3.2) admits two linearly

70 Chapter 6. Massless Klein-Gordon Equation on a Kerr Background: Theory

independent solutions which we can define asymptotically by noting that 2
F
(

z
) → 2ω as

z→∞ (r →∞) and 2
F
(

z
) → (ω− nω

H

2)
as z→ −∞ (r → r+

)

. Now the solution must

be purely ingoing at the horizon, so

f ∼ −i
(

ω−nω
H

)

z
e . (6.3.8)

At infinity, we get a combination of ingoing and outgoing parts

f −− A
−iωz

e + B
iωz

e . (6.3.9)

The second solution is given by the complex conjugate of the first. The Wronskian at the inner

boundary is

| −i
(

ω−nω
H

)

z
e

− i
(

ω− nω
H

) −i
(

ω−nω
H

)

z
e

i
(

ω−nω
H

)

z
e

i
(

ω− nω
H

) i
(

ω−nω
H

)

z
e |−− 2 i

(

ω− nω
H

)

.

At the outer boundary, we have

| A
−iωz

e + B
iωz

e

− iωA
−iωz

e + iωB
iωz

e

∗
A

iωz
e +

∗
B
−iωz

e

iω
∗

A
iωz

e − iω ∗
B
−iωz

e
|−− 2 iω

(2|A | − 2|B |
)

.

Since both asymptotic solutions are part of a single solution, it must be true that the Wronskians

are equal. Thus we have

(

ω− nω
H

) −− ω
(2|A | − 2|B |

)

. (6.3.10)

So the wave is amplified, that is,
2|B | > 2|A | whenever 0 < ω < nω

H
[17]. In terms of

wavelength, we have amplification as long as

λ >
2π
(

r2
+ + 2a

)

Xn a
. (6.3.11)

Chapter 7. Massless Klein-Gordon

Equation on a Kerr

Background: Numerics

7.1. Finite Difference Equations

Equations (2.1.12) and (2.1.13) are discretized in a similar manner to that used in the

spherically symmetric case. I use a two-level implicit scheme with dissipation, however, all

the spatial derivatives are centered, there are no angled derivatives. I introduce three additional

auxiliary functions (aux_x, aux_y, and aux_z) to allow for easier treatment of the boundaries.

These functions are only defined on a single time level. The interior equations are

d

t
Π

n

i,j,k
−− aux_x

n

i,j,k + aux_y
n

i,j,k
+ aux_z

n

i,j,k (7.1.1)

aux_x
n

i,j,k
−− x

[

x
β Π + α

√
Xh
(xx
h Φ

x
+

xy
h Φ

y
+

xz
h Φ

z

)

]n

i,j,k
(7.1.2)

aux_y
n

i,j,k
−− y

[

y
β Π + α

√
Xh
(xy
h Φ

x
+

yy
h Φ

y
+

yz
h Φ

z

)

]n

i,j,k
(7.1.3)

aux_z
n

i,j,k
−− z

[

z
β Π + α

√
Xh
(xz
h Φ

x
+

yz
h Φ

y
+

zz
h Φ

z

)

]n

i,j,k
(7.1.4)

d

t
Φ

x

n

i,j,k
−− x

(

α

X
√

Xh
Π +

x
β Φ

x
+

y
β Φ

y
+

z
β Φ

z

)n

i,j,k
(7.1.5)

d

t
Φ

y

n

i,j,k
−− y

(

α

X
√

Xh
Π +

x
β Φ

x
+

y
β Φ

y
+

z
β Φ

z

)n

i,j,k
(7.1.6)

71

72 Chapter 7. Massless Klein-Gordon Equation on a Kerr Background: Numerics

d

t
Φ

z

n

i,j,k
−− z

(

α

X
√

Xh
Π +

x
β Φ

x
+

y
β Φ

y
+

z
β Φ

z

)n

i,j,k
. (7.1.7)

As in the spherically symmetric case, if the point is next to the boundary, then the dissipative

time derivatives are replaced by regular time derivatives.

The interior of the black hole is marked by a characteristic function which is zero inside

the horizon and one outside. Because of the auxiliary functions, each evolution equation needs

to perform a derivative in only one dimension. This means there are only four boundaries for

each equation, one on each side of the hole and one on each edge of the grid. The horizon

boundaries are handled in the same way as in the spherically symmetric case, that is, by using

the evolution equations with backward derivatives. For instance, the updates for Φ
x

on each

side of the hole are

d

t
Φ

x

n

i,j,k
−− f

x

(

α

X
√

Xh
Π +

x
β Φ

x
+

y
β Φ

y
+

z
β Φ

z

)n

i,j,k
(7.1.8)

on + x side of the hole and

d

t
Φ

x

n

i,j,k
−− b

x

(

α

X
√

Xh
Π +

x
β Φ

x
+

y
β Φ

y
+

z
β Φ

z

)n

i,j,k
(7.1.9)

on the − x side.

At the edges of the grid, I use outgoing wave boundary conditions. Again, as in the

spherically symmetric case, I assume that near the boundaries, the wave is outgoing and

spherical, that is

rφ∼ F
(

r− ct
)

. (7.1.10)

Since we have 2x , 2y , 2z ≫ 2a , we can assume that r ≈
√

X2x + 2y + 2z and that the shift

components are small. The spatial derivatives of F give the following three conditions

∂
t
φ +
φ
Xr

+ r
Xx
∂

x
φ−− 0 (7.1.11)

7.1. Finite Difference Equations 73

∂
t
φ +
φ
Xr

+ r
Xy
∂

y
φ−− 0 (7.1.12)

∂
t
φ +
φ
Xr

+ r
Xz
∂

z
φ−− 0 . (7.1.13)

Differentiating these gives equations for the three Φ variables:

∂
t
Φ

x
+ 2

Xr
− r

X2x
Φ

x
+ r

Xx
∂

x
Φ

x
− x

X3r
φ−− 0 (7.1.14)

∂
t
Φ

y
+ 2

Xr
− r

X2y
Φ

y
+ r

Xy
∂

y
Φ

y
− y

X3r
φ−− 0 (7.1.15)

∂
t
Φ

z
+ 2

Xr
− r

X2z
Φ

z
+ r

Xz
∂

z
Φ

z
− z

X3r
φ−− 0 (7.1.16)

Π can be updated by substituting one of (7.1.11), (7.1.12), or (7.1.13) into (2.1.10), depending

on which edge makes up the boundary. For instance, at y −− y
max

we would use (7.1.12) to

get

Π −− −
√

Xh

Xα

(

φ
Xr

+
x
β Φ

x
+
(

r
Xy

+
y
β
)

Φ
y

+
z
β Φ

z

)

. (7.1.17)

These equations are differenced using backward spatial differences like

t
Φ

y

n

i,j,k
+

(

2
Xr

i,j,k

−
r

i,j,k

Xy2
j

)

A
t
Φ

y

n

i,j,k
+

r
i,j,k

Xy
j

b

y
Φ

y

n

i,j,k
+

y
j

Xr3
i,j,k

A
t
φ

n

i,j,k
−− 0 . (7.1.18)

7.2. Convergence

The convergence factors for the scalar field are shown in figure 7.1. These convergence

factors were calculated from runs on grids of size
3

17 ,
3

33 , and
3

65 , with coordinate ranges

from -10 to 10, so the resolution was quite low in each case. Given such poor resolution, we

can not expect convergence factors of four, since the asymptotic expansions (2.2.1.4) of the

74 Chapter 7. Massless Klein-Gordon Equation on a Kerr Background: Numerics

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8

C
o
n
v
e
rg

e
n
c
e
 F

a
c
to

r

t

phi Phi
x

Figure 7.1. Convergence of 3D Scalar Field.

Figure 7.2. Cross-section of the horizon.

7.2. Convergence 75

grid functions only hold in the limit as the grid spacing shrinks to zero. However, the evidence

shown in the figure suggests that the difference scheme is convergent, though it appears that

the convergence factor is two.

The 1st-order convergence is caused by the “inner”boundary, that is, the apparent horizon.

While the outer boundary of the grid has the same coordinate values at every resolution, the

coordinate values of the points in the interior of the black hole change with resolution. Figure

7.2 shows a section through the center of the black hole. The circle represents the actual

location of the horizon. The thick lines intersect at the coarse and fine grid points, while the

thin lines intersect only at the fine grid points. The dark grey area represents the interior of

the black hole on the coarse grid. The light grey area is inside the black hole on the fine grid.

Likewise, the “innermost” points outside the black hole change with resolution, though these

changes are not marked explicitly in the figure.

As discussed in Section 4.8, differences of half the grid spacing in boundary location

will cause the order of convergence to drop. This “problem” could be fixed the same way the

super-critical spherically symmetric evolutions could be fixed, but such a “fix” would produce

a less accurate program.

7.3. Super Radiance

Ideally, to study super radiance, we need a set of monochromatic spherical harmonics to

scatter off the black hole. However, such waves are difficult to achieve given the small physical

domain and poor resolution available via computer at this time. Given that we cannot get a

long-wavelength monochromatic wave, we can use an ingoing gaussian packet with a width

much greater than the critical wavelength (6.3.11). For a black hole with m −− 1, λ
H

ranges

from∞ at a −− 0 to 4π at a −− 1.0. This means that even for a critical (m −− a) black hole, λ

must be greater than about 12/n. For a black hole with a−− .5m we need λ to be greater than

47/n. These wavelengths are much too large for the numerical domain when n−−1. Obviously,

given a large enough n we can get an arbitrarily small critical wavelength. However, the poor

resolution not only means the spatial extent of the grid is restricted, but that n can not be too

76 Chapter 7. Massless Klein-Gordon Equation on a Kerr Background: Numerics

-0.01

0.02 t=0

t=6.75

Figure 7.3. Evolution of compact spherical pulse.

large. A large n will cause angular variations which are too fine to be resolved by the grid.

As it turns out, it is basically impossible to demonstrate super radiance using this program as

it stands. It needs to be modified to support adaptive mesh refinements so that the boundaries

of the grid can be extended far enough from the black hole to allow large-wavelength initial

7.3. Super Radiance 77

data while still being able to resolve the near-black hole interactions. However, we can still

observe short-wavelength, small n scattering.

To compute the initial data on a Cartesian grid,we’ll need equation (6.2.4) and a definition

for ϕ

ϕ ≡ −1tan
(ry− ax

Xrx + ay

)

. (7.3.1)

Using these equations we can compute initial data for the auxiliary scalar fields:

Φ
i
−− A

−
(

r−c
Xδ

2)

e

[−2
(

r− c
)

X
2
δ

∂r

X∂ i
x

cos(nϕ)− n sin(nϕ)
∂ϕ

X∂ i
x

]

, (7.3.2)

where

∂r
X∂x
−− x

X2r

[

1+
2x + 2y + 2z − 2a

X

[

(2x + 2y + 2z − 2a

X2

2)
+ 2z 2a

1⁄2]

]

,

∂r
X∂y
−− y

X2r

[

1+
2x + 2y + 2z − 2a

X

[

(2x + 2y + 2z − 2a

X2

2)
+ 2z 2a

1⁄2]

]

,

∂r
X∂z
−− z

X2r

[

1+
2x + 2y + 2z

X

[

(2x + 2y + 2z − 2a

X2

2)
+ 2z 2a

1⁄2]

]

,

∂ϕ

X∂x
−− − y

X2x + 2y
+ a

X2r + 2a

∂r
X∂x

,

∂ϕ

X∂y
−− x

X2x + 2y
+ a

X2r + 2a

∂r
X∂x

,

78 Chapter 7. Massless Klein-Gordon Equation on a Kerr Background: Numerics

and

∂ϕ

X∂z
−− 0.

Figure 7.3 shows the evolution of a compact spherical pulse (see (6.2.12)). The pulse is

centered at r−− 6, has a width of δ−− 1, and an azimuthal quantum number of n−− 0. The figure

shows φ verses x for y−− z−− 0. As expected, the pulse moves in radially, encounters the hole,

falls in, and leaves behind a small outgoing reflection.

The figure also clearly shows the poor resolution and small spatial domain. A proper study

of wave phenomena on a Kerr background in Cartesian coordinates is not possible without an

adaptive mesh refinement algorithm.

Chapter 8. RNPL: The Language

RNPL (Rapid Numerical Prototyping Language) is a language for expressing time

dependent systems of partial differential equations and the finite difference methods used to

solve them. It was written specifically with the general relativistic evolution problem in mind,

but it can also be used to solve a wide variety of differential systems. The language hides many

of the details of a complete solver while still allowing enough freedom to express most finite

difference techniques. It is based heavily on ideas developed by Matthew Choptuik throughout

his work in numerical relativity.

RNPL was designed to provide the following capabilities:

• equation expression using a “natural” notation

• easy operator expression

• support for a wide range of difference techniques

• easy interfacing with existing programs

• automatic memory management

• check-pointing

• interactive output control

• parameter management

• easy adaptivization

• easy parallelization

• extensibility

79

80 Chapter 8. RNPL: The Language

Operators Associativity

^ ** right

- + (unary) right

* / left

- + left
> < >= <= non

== != non

&& left

|| left
= non

Table 8.1. RNPL operators in order of precedence

• short development time

• easy changing of finite difference methods

• intelligent defaults

RNPL currently provides all these capabilities except adaptivization and parallelization, both

of which will be added shortly. Once these features are added, any existing RNPL program

can make use of them with a simple recompilation.

8.1. Program Structure

An RNPL program consists of a series of object declarations. RNPL is strongly typed, so

all data objects which are referenced must be declared. There are some exceptions to this rule

having to do with coordinates (see Section 9.1). Since RNPL is strictly declarative, there are

no “executable” statements. Thus, there is no notion of order as in a traditional programming

language. Declarationscan occur in any order in the source file. The complete RNPL grammar

is shown in Figure 8.1.

RNPL is case-sensitive in general, although case will be ignored if the backend language

is case insensitive (see Chapter 9). RNPL statements are made up of tokens which fall into

8.1. Program Structure 81

RNPL Grammar
dec_list →

→ dec_list declaration

declaration → param_dec
→ coord_dec
→ grid_dec
→ gfunc_dec
→ attrib_dec
→ d_operator
→ residual
→ initialization
→ looper
→ update

param_dec → param p_type name
→ param p_type name becomes scalar
→ param p_type name v_size
→ param p_type name v_size becomes vector
→ param ivec name
→ param ivec name becomes ivec_list
→ const param p_type name
→ const param p_type name becomes scalar
→ const param p_type name v_size
→ const param p_type name v_size becomes vector
→ sys param p_type name becomes scalar

coord_dec → name coordinates coord_list

grid_dec → g_type name grid name i_region c_region
→ g_type name grid name
→ g_type name obrack coord_list cbrack grid name i_region c_region
→ g_type name obrack coord_list cbrack grid name

gfunc_dec → type name on name
→ type name on name str
→ type name on name at o_list
→ type name on name at o_list alias
→ type name on name at o_list str
→ type name on name at o_list alias str

attrib_dec → attrib p_type name encoding
→ attrib p_type name encoding becomes vector

d_operator → operator d_op becomes expr

residual → resid name obrace res_list opcolon cbrace
→ resid time index name obrace res_list opcolon cbrace

residual → evaluate resid name obrace res_list opcolon cbrace
→ evaluate resid time index name obrace res_list opcolon cbrace

initialization → initialize name obrace res_list opcolon cbrace

looper → looper name

update → name name update coord_list header ref_list

82 Chapter 8. RNPL: The Language

→ stub name update coord_list header ref_list
→ auto name update coord_list

p_type → int
→ float
→ string

name → iden

scalar → inum
→ minus inum
→ num
→ minus num
→ str

v_size → obrack inum cbrack

becomes → assignop
→ equals

vector → obrack scalar_list cbrack

ivec_list → ivel minus ivel
→ ivel minus ivel divide inum
→ ivec_list comma ivel minus ivel
→ ivec_list comma ivel minus ivel divide inum

coord_list → name
→ coord_list comma name

g_type → uniform
→ nonuniform

i_region → obrack expr colon expr cbrack
→ obrack expr colon expr cbrack i_region
→ obrack expr colon expr colon inum cbrack
→ obrack expr colon expr colon minus inum cbrack
→ obrack expr colon expr colon inum cbrack i_region
→ obrack expr colon expr colon minus inum cbrack i_region

c_region → obrace name colon name cbrace
→ obrace name colon name cbrace c_region

type → int
→ float

o_list → inum
→ minus inum
→ o_list comma inum
→ o_list comma minus inum

encoding → encodeone
→ encodeall

d_op → name oparen expr comma coord_list cparen
→ expand name oparen expr comma coord_list cparen

8.1. Program Structure 83

expr → expr plus expr
→ expr minus expr
→ expr equals expr
→ expr times expr
→ expr divide expr
→ expr caret expr
→ plus expr
→ minus expr
→ expr equiv expr
→ expr noteq expr
→ expr less expr
→ expr great expr
→ expr lesseq expr
→ expr greateq expr
→ expr and expr
→ expr or expr
→ oparen expr cparen
→ d_op
→ func
→ gfunc
→ coord
→ name
→ num
→ inum

res_list → i_region becomes expr
→ res_list scolon i_region becomes expr
→ i_region becomes ifstat
→ res_list scolon i_region becomes ifstat

opcolon →
→ scolon

time → time

index → obrack inum cbrack
→ obrack minus inum cbrack
→ obrack inum cbrack index
→ obrack minus inum cbrack index

ref_list → reference
→ ref_list comma reference

scalar_list → scalar
→ scalar_list scalar

ivel → inum
→ times

func → name oparen expr cparen

gfunc → time name mindex

coord → name indel

84 Chapter 8. RNPL: The Language

ifstat → if expr then expr
→ if expr then expr else expr
→ if expr then expr else ifstat

reference → name
→ name obrack coord_list cbrack
→ auto work pound inum oparen expr cparen
→ static work pound inum oparen expr cparen

mindex → indel
→ mindex indel

indel → obrack inum cbrack
→ obrack minus inum cbrack
→ obrace expr cbrace

Figure 8.1. RNPL Grammar

four classes—reserved words, names, operators, and punctuation. These tokens are listed

in Table 8.2 and the operators are listed again in Table 8.1. White space (space, tab, newline)

is meaningless except as a token separator, so it can be used freely in a source file to provide

clarity.

There are two kinds of comments in RNPL programs. The first kind is like a UNIX shell

comment. It starts with a # at the beginning of a line and continues till the end of the line.

The second kind is like a C++ comment. It starts with // and ends at the end of the line. The

following example illustrates both kinds of comments.

This is the first kind of comment

float A on grid1 // This is the second kind of comment

// So is this

8.1.1. Data Objects

There are five kinds of data objects available in an RNPL program: parameters,

coordinates, grids, grid functions, and attributes. These objects are in turn made up of scalars,

vectors,and index vectors. Scalars are made up of a single integer,float,or string,while vectors

are one dimensional arrays of scalars. Index vectors are arrays of triples. The first element of

the triple gives a starting index, the second gives an ending index, and the third gives a stride.

8.1. Program Structure 85

Name Value(s) Category

param parameter or PARAMETER reserved word

ivec ivec or IVEC reserved word

constant constant or CONSTANT reserved word

sys system or SYSTEM reserved word

coordinates coordinates or COORDINATES reserved word

grid grid or GRID reserved word

obrack [punctuation

cbrack] punctuation

on on or ON reserved word

str "any characters" name

at at or AT reserved word

alias alias or ALIAS reserved word

attrib attribute or ATTRIBUTE reserved word

operator operator or OPERATOR reserved word

resid residual or RESIDUAL reserved word

obrace { punctuation

cbrace } punctuation

evaluate evaluate or EVALUATE reserved word

initialize initialize or INITIALIZE reserved word

looper looper or LOOPER reserved word

update update or UPDATE or updates or

UPDATES

reserved word

header header or HEADER reserved word

stub stub or STUB reserved word

auto auto or AUTO reserved word

int int or INT reserved word

float float or FLOAT reserved word

string string or STRING reserved word

iden [a-zA-Z_][a-zA-Z_0-9]* name

inum positive integer name

minus - operator, punctuation

num positive real number name

assignop := punctuation

86 Chapter 8. RNPL: The Language

equals = operator

comma , punctuation

divide / operator, punctuation

uniform uniform or UNIFORM reserved word

nonuniform nonuniform or NONUNIFORM reserved word

colon : punctuation

encodeone encodeone or ENCODEONE reserved word

encodeall encodeall or ENCODEALL reserved word

oparen (punctuation

cparen) punctuation

expand expand or EXPAND reserved word

plus + operator

times * operator, name

caret ^ or ** operator

equiv == operator

noteq != operator

less < operator

great > operator

lesseq <= operator

greateq >= operator

and && operator

or || operator

scolon ; punctuation

time <inum> or <-inum> name

if if or IF reserved word

then then or THEN reserved word

else else or ELSE reserved word

work work or WORK reserved word

pound # punctuation

static static or STATIC reserved word

Table 8.2. RNPL Tokens

8.1. Program Structure 87

8.1.1.1. Parameters

Parameters are constants which are specified at run time. They can be scalars, vectors,

or index vectors of any type. They are used to specify things like initial data, grid sizes, and

output. Here are some example parameter declarations:

parameter int fred

constant parameter float jim := 5

parameter float george[10]

parameter float ted[3] := [2.0 1.7 11]

parameter string name := "file_name"

constant parameter string dft[2] := ["comment 1" "comment 2"]

parameter ivec output := *-10,11-50/10,51-*/15

As the examples show, a parameter declaration starts with the reserved word parameter

or the pair of reserved words constant parameter. Then comes a type and a name.

Parameterscan be assigned default values. An RNPL generated program reads a user specified

parameter file on startup. If a parameter has been declared without a default value, it must

have a value in the file. The reserved word constant is meaningless except when the

backend language is FORTRAN. There is also a special type of parameter known as the system

parameter. System parameters only have meaning when the backend language is FORTRAN

(see Section 9.2).

The size of a vector parameter must be included in the declaration (see the declarations

for george, ted, and dft above). Scalar parameter declarations contain no size.

An ivec is an index vector. The only current use for index vectors is for controlling

output. As shown in the example, the index vector can have a default value specified as a

comma-separated list of triples. The third element of each triple (the stride) is optional. If it is

not given, it is assumed to be one. The first and second elements can be integers or an asterisk.

As the first element, an asterisk means the first time step. As the second element, an asterisk

means the last time step. The example declaration above is interpreted to mean “output every

time step from the first time step to the tenth time step, every tenth time step from the eleventh

88 Chapter 8. RNPL: The Language

to the fiftieth time step, and every fifteenth time step from the fifty-first to the last time step.”

8.1.1.2. Coordinates

AN RNPL program can use multiple coordinate systems. A single time coordinate can

be used in multiple coordinate systems, but each spatial coordinate must be unique. Some

example coordinate declarations are:

rect coordinates t,x,y,z

sph coordinates t,r,theta,phi

null coordinates u,v

The first coordinate in a list is assumed to be the time coordinate. The first time coordinate

is used for computational time. The declaration begins with a user-chosen name, followed by

coordinates, followed by a list of coordinate names.

8.1.1.3. Grids

Grids define the spatial regions over which the grid functions will be defined as well as

their storage. A grid declaration can take one of several forms, the longest of which would be

something like:

uniform rect[x,z] grid g1 [1:Nx][1:Nz] {xmin:xmax}{zmin:zmax}

Grids can be uniform or nonuniform, though only the former is currently defined.

Next comes the name of the coordinate system followed by a list of coordinates on which

the grid is defined. The above grid is two dimensional with coordinates x and z. After the

coordinate system comes the reserved word grid followed by the grid name. Next comes the

index region. In this example, the first index starts at 1 and goes to Nx, while the second starts

at 1and goes toNz. Nx and Nz are names of grid sizes. The index regions can contain arbitrary

expressions such as [A*B+C-2:4*Nx-5/a], however, as discussed in Section 9.1.1, it is best

to keep to forms like[1:Nx] and[0:Nx-1]. Finally,comes the coordinate region which gives

the actual spatial ranges of the coordinates. In the example, we have xmin ≤ x ≤ xmax and

8.1. Program Structure 89

zmin ≤ z ≤ zmax . Coordinate regions must be of the form {name1:name2}, where name1

and name2 have been declared as parameters.

Other forms of the grid declaration leave out one or more of the above parts. The

minimum allowable declaration is:

uniform rect grid g2

This declaration (along with the example coordinate declaration in Section 8.1.1.2) declares

g2 to be a three dimensional grid with coordinates x, y, and z. The index region will be

[0:Nx-1][0:Ny-1][0:Nz-1] for C output and [1:Nx][1:Ny][1:Nz] for FORTRAN

output. The coordinate region will be {xmin:xmax}{ymin:ymax}{zmin:zmax}.

8.1.1.4. Grid Functions

A grid function is a function defined on a grid at one or more times. Some examples of

grid function declarations are:

float A on g1 at -1,0,1

int B on g2 at 0,1

float C on g1

float D on g2 at -1,0,1 alias

float E on g3 at 0,1 "Electric Field"

First comes the grid function type, either float or int. Next comes the name followed

by the reserved word on and the grid name on which the function is defined. If the declaration

stopped here (such as that forC above),we get a single time level. Adding the reserved wordat

followed by a list of offsets (positive or negative integers) gives a function defined on one time

level for each offset. For instance the definition for A would give a three time level function

defined at times n− 1, n, and n + 1. Next comes the optional reserved word alias which

declares common storage for the first and last time levels. Following any of these declarations

can be a string which is used as a print name for the grid function. There are not any real uses

for the print name. It simply provides a more descriptive name by which the grid function will

90 Chapter 8. RNPL: The Language

be identified during output and visualization (see Chapter 9 for information on these compiler

features).

8.1.1.5. Attributes

An attribute is a flag array associated with the grid functions. For instance, an attribute

may tell which grid functions are to be output and which are not. Attributes are defined in a

similar manner to vector parameters, except the size is replaced by an encoding. The encoding

is either encodeone or encodeall, with encodeone giving one value per grid function

and encodeall giving one value per time level per grid function (see Section 8.1.1.4 for

information about defining grid functions). For instance, if five grid functions are defined,

three of which have three time levels each while the remaining two have two levels each, then

an attribute marked as encodeone would have a length of five, while an attribute marked as

encodeall would have a length of thirteen. In this case an output flag array could be defined

as either

attribute int out_gf encodeone

or

attribute int out_gf encodeone := [0 0 1 1 0]

8.1.2. Difference Equations

The “heart” of any RNPL program is the definition of the system of equations to be

solved and the methods to be used in solving it. This information is declared using derivative

operators, residuals, initializations, and updates.

8.1.2.1. Derivative Operators

Derivative operators are operators which act on grid functions. They are used for turning

differential equations into finite difference equations by substituting for continuum differential

8.1. Program Structure 91

operators. Here is a declaration for a forward difference operator:

operator D_FW(f,r) := (<0>f[1] - <0>f[0])/dr

Whenever an operator is used in an expression (see Section 8.1.3), it is replaced by its

definition. The namef is arbitrary. It simply shows where the expression goes in the definition.

For instance, if D_FW(3*A+B,r) appeared in an expression, the f’s in the right hand side

would be replaced by 3*A+B. The notation <0>f[1] is interpreted as f
n

i+1. The <>[] is really

an operator which acts on expressions as follows:

<a>f[b] → f if f is a number or parameter or time coordinate

<a>f[b] → f
i+b

if f is a spatial coordinate

<a>f[b] → f
n+a

i+b
if f is a grid function

Three dimensional forward difference operators would look like this:

operator D_FW(f,x) := (<0>f[1][0][0] - <0>f[0][0][0])/dx

operator D_FW(f,y) := (<0>f[0][1][0] - <0>f[0][0][0])/dy

operator D_FW(f,z) := (<0>f[0][0][1] - <0>f[0][0][0])/dz

Operator definitions can be nested as in:

operator D_FW(f,r) := (<0>f[1] - <0>f[0])/dr

operator D_BW(f,r) := (<0>f[0] - <0>f[-1])/dr

operator D_CN1(f,r,r) := D_BW(D_FW(<0>f[0],r),r)

operator D_CN2(f,r,r) := D_BW(D_FW(<1>f[0],r),r)

As you can predict, the definition of D_CN1 will result in the usual centered second derivative,

namely
(

f
n

i+1− 2 f
n

i
+ f

n

i−1
)

/ 2
dr , while the definition of D_CN2 will result in the same thing

applied at the advanced time level, that is
(

f
n+1
i+1 − 2 f

n+1
i

+ f
n+1
i−1
)

/ 2
dr . The list of coordinate

names after the f signifies with respect to which coordinate(s) the derivative is taken.

Although operators are defined like derivatives and act as derivatives under certain

circumstances (see Section 8.1.3), they can be defined to perform other functions such as the

92 Chapter 8. RNPL: The Language

spatial averaging operator defined below.

operator AVG(f,r) := (<0>f[1] + <0>f[0])/2

Because operators are internally treated as derivatives, even definitions such as this need

the coordinate list.

8.1.2.2. Residuals

Residuals define the system of equations, typically by using derivative operators.

Consider the following residual definition:

residual phi { [0:0] := D_LF(phi,t) ;

[1:Nx-2] := D_LF(phi,t,t) - D_LF(phi,x,x) ;

[Nx-1:Nx-1] := D_LF(phi,t) }

Assuming the proper definitions of the derivative operators, this residual encodes the

linear wave equation on a string with the end points fixed. An equivalent declaration would

be:

residual phi { [0:0] := D_LF(phi,t) = 0 ;

[1:Nx-2] := D_LF(phi,t,t) = D_LF(phi,x,x) ;

[Nx-1:Nx-1] := D_LF(phi,t) = 0 }

First comes the reserved word residual followed by the name of the grid function

whose residual is being defined. Next comes a bracket-enclosed set of index regions and

expressions. The index region shows over what range the expression is a valid description of

the behavior of the system. The union of the index regions should equal the index region of the

grid on which the function is defined, but this is not required. Note that each region-expression

pair is separated by a semicolon. A semicolon can also follow the last expression but is not

required.

An alternate form for an index region is [expr1:expr2:stride], where expr1 and

expr2 are the region bounds as above, and stride is an integer stride which can be positive

8.1. Program Structure 93

or negative. In the first form, the stride is taken to be one.

The residual tells how to determine the advanced value of a grid function. Thus, the

residual must contain <a>f... where a is the offset to the most advanced time level defined

for grid function f.

Part of a residual for a three dimensional grid function would look like:

residual A { [1:Nx][1:1][1:1] := D_LF(A,x) + D_FW(B,y) ;

[Nx:Nx][1:Ny][1:Nz] := <1>A[0][0][0] = 5.0*C }

The reserved word residual can be preceded by the reserved word evaluate which

tells the compiler to produce code which will evaluate the residual.

In addition, the word residual can be followed by a global offset for example:

residual <1>[0] A { [1:Nx] := ... }

This offset is applied globally to each expression appearing in the residual.

Residuals also support the if-then-else construct. Consider the following declaration:

residual A { [1:Nx] := if(<0>C[0] == 1 && <0>C[-1] == 1) then

D_LF(A,t) = D_LF(A,x)

else if(C == 1) then

D_LF(A,t) = D_FW(A,x)

else D_LF(A,t) = 0 }

Here C is a characteristic function which tells which equation belongs in which region.

8.1.2.3. Initializations

An initialization defines the initial data for a grid function. Its form is identical to the

residual declaration with residual replaced by initialize. However the expression is

interpreted differently. Consider the following initialization declaration:

initialize phi { [1:Nr] := amp*exp(-((r-c)/delta)^2) }

94 Chapter 8. RNPL: The Language

Unlike the residual declaration, the expression in the initialization must not contain its

grid function (though it can contain other grid functions). The retarded time level of the grid

function is set to the expression. In the case above, phiwill be set to a Gaussian. Initializations

are evaluated in the order in which they are defined. Thus, if one grid function is used in the

initialization for another, it must be initialized first.

8.1.2.4. Updates

Update declarations can take many forms. Here are some examples:

auto update phi,pi,beta

stub evolver updates A,B,C

header A, B[Bnp1,Bn,Bnm1], C[C], x,y,z,dt,

auto work#0(5*Nx*Ny*Nz),

static work#1(3*Nx*Ny-.5*Nz)

myroutine.inc myupdate update A,B header A,B,dt

The first form defines an automatic update. The declaration above would cause the

compiler to produce a routine to update the grid functions phi,pi, and beta if residuals have

been declared for them. Otherwise, the compiler has no idea how to update the grid functions

and will produce an error message. Grid functions are updated in the order they are listed in

the update declaration.

The second declaration will cause the compiler to produce the header for a routine called

evolverwhich is expected to update grid functionsA,B, and C. The body of the routine is left

blank, to be filled in by the user. Following the reserved word header, comes a list of things

to appear in the calling sequence for the function. A grid function name such as A above will

cause all the time levels of A to be passed to the function. If A has three time levels (1, 0, -1),

then they will be named A_np1, A_n, and A_nm1 by default. The user can provide his own

names to override the defaults as in the case of B. If only one name is provided (as for C), the

time levels will be passed in as the elements of a single vector, the first component of which

will be the advanced time level.

8.1. Program Structure 95

Other things that can appear in the header list are coordinates (such as x, y, and z above)

and coordinate differentials (such as dt). Parameters can also be included in the list. Work

arrays are declared like the final two parameters. First comes auto or static. Static work

arrays are declared at the start of the program and persist throughout. Auto work arrays are

allocated before the call to the update routine and are destroyed afterwards. Next comes the

word work followed by the # symbol and an integer. This integer is tacked onto the end of

the word work to form the name of the array. Finally comes an expression for the size of the

work array enclosed in parentheses.

The thrid declaration is much like the second, except the body of the update routine is

taken from the file named myroutine.inc.

8.1.2.5. The Loop Driver

There is one remaining kind of declaration—the loop driver. This declaration defines

the overall method used for solving the equations. It consists of the reserved word looper

followed by a name. The currently defined loop drivers are standard and iterative.

Declaring the standard loop driver means that the update routines will be called once

for each time step. This driver can be used for a fully explicit system or when a user-written,

external update routine is called.

Declaring the iterative loop driver means that the update routines will be called from

a loop which first makes an initial guess at the advanced values and then continues to call the

update routines until the norm of the residual is below a certain threshold. This driver is useful

for implicit schemes.

Future loop drivers will may include a full Newton iteration, and will definitely include

various adaptive options.

8.1.3. Expressions

Expressions are made up of objects separated by operators (see Table 8.1 for a list of

operators in order of precedence). Objects include numbers, identifiers, functions, derivative

96 Chapter 8. RNPL: The Language

operators, coordinates, and grid functions.

Numbers can be integer or floating point. Floating point numbers can be written with

exponents as in 1.0e-3. Identifiers are strings beginning with a letter or an underscore

and containing letters, digits, or underscores. Identifiers may be names of grid functions,

coordinates, or parameters.

A function is a function name followed by a parentheses-enclosed expression, such as

cos(3*r). The only currently recognized function names are: exp, log, tan, sin, cos, sinh,

cosh, tanh, and sqrt.

A derivative operator is a name followed by an opening parenthesis, an expression,

a coordinate list, and a closing parenthesis. It may also begin with the reserved word

expand which tells RNPL to symbolically expand the derivative before making the operator

substitution. For instance, expand D_(a*b + c,r) would expand to D_(a,r)*b +

a*D_(b,r) + D_(c,r).

A coordinate is a coordinate name followed by a spatial offset. For example,

r[1]

x[-5]

y{a*b+5}

are valid coordinates. The bracket-enclosed offsets are interpreted as in Section 8.1.2.1. That

is, r[1] becomes r
i+1. The object inside the brackets must be an integer. The brace-enclosed

expression is interpreted as an absolute index. That is,y{a*b+5} becomes y
a∗b+5. The object

in the braces is an arbitrary expression. If a coordinate name appears in an expression without a

following offset, it will still be recognized as a coordinate and will be given an offset of zero.

A grid function is much like a coordinate except the name is preceded by a temporal offset

in angle brackets and is followed by one spatial offset for each dimension. The following are

examples of grid functions.

<0>A[0][-1]

<-1>B[1]{b+2}[0]

8.1. Program Structure 97

Also like a coordinate, a grid function name can appear without offsets.

There are three “types” of expressions possible in RNPL. A type 1 expression is

completely arbitrary. A type 2 expression is a type 1 expression that contains no logical

operators. A type 3 expression is a type 2 expression that contains no derivative operators,

grid functions, or coordinates. Table 8.3 shows which expression types can be used in which

areas.

8.2. Examples

Since languages are best learned by example, I will present two which illustrate most of

RNPL’s features.

8.2.1. 3D Wave Equation

Consider the linear wave equation in three dimensions. This is an initial-value,

boundary-value problem which can be stated as follows:

∂
2
t
φ−− ∂2

x
φ + ∂

2
y
φ + ∂

2
z
φ

φ
(

xmin,y, z, t
) −− 0

φ
(

xmax,y, z, t
) −− 0

φ
(

x,y
min

, z, t
) −− 0

φ
(

x,y
max

, z, t
) −− 0

φ
(

x,y, zmin, t
) −− 0

φ
(

x,y, zmax, t
) −− 0

φ
(

x,y, z,0
) −− A exp

(

(

x− c
x

2)
/δ

2
x

)

exp
(

(

y− c
y

2)
/δ

2
y

)

exp
(

(

z− c
z

2)
/δ

2
z

)

98 Chapter 8. RNPL: The Language

Location Type Example

if statement 1 if (expr) then

residual 2 residual A {[1:1] := expr }

initialization 2 initialize A {[1:1] := expr }

absolute index 2 x{expr }

index region 3 residual A {[1: expr]

Table 8.3. RNPL Expression Types

where xmin ≤ x ≤ xmax, y
min
≤ y ≤ y

max
, and zmin ≤ z ≤ zmax .

Typically one would also specify
.
φ, but RNPL doesn’t allow this (see Section 9.4 for a

full discussion of the RNPL initial data problem). To set this problem up with RNPL we must

identify our requirements. We need one grid function,φ. We need difference operators for ∂
2
t
,

∂
2
x
, ∂

2
y
, and ∂

2
z
. We also need parameters for the initial data, namely c

x
, c

y
, c

z
, A, δ

x
, δ

y
, and δ

z
as

well as parameters for the domain boundaries, xmin, xmax, y
min

, y
max

, zmin, and zmax.

We begin this RNPL program by specifying the parameters. The declarations look like

this:

parameter float xmin := 0

parameter float xmax := 100

parameter float ymin := 0

parameter float ymax := 100

parameter float zmin := 0

parameter float zmax := 100

parameter float A := 1.0

parameter float c_x := 50.0

parameter float c_y := 50

parameter float c_z := 50

parameter float delta_x

parameter float delta_y

8.2. Examples 99

parameter float delta_z

Default values are optional.

Next, we define the coordinate system. The declaration looks like this:

rect coordinates t,x,y,z

The name rect is arbitrary, but should be descriptive.

Since we need a grid function, we must define a grid.

uniform rect grid g1 [1:Nx][1:Ny][1:Nz]

{xmin:xmax}{ymin:ymax}{zmin:zmax}

As stated in Section 8.1.1.3, the index and spatial ranges will be automatically defined if we

leave them out.

We define our grid function to have three time levels so we can use the standard leap-frog

operators to solve the equation. The definition is:

float phi on g1 at -1,0,1

Now come the operator definitions. We need four second derivatives, one for each

coordinate.

operator D_LF(f,t,t) := (<1>f[0][0][0] - 2*<0>f[0][0][0] +

<-1>f[0][0][0])/(dt*dt)

operator D_LF(f,x,x) := (<0>f[1][0][0] - 2*<0>f[0][0][0] +

<0>f[-1][0][0])/(dx*dx)

operator D_LF(f,y,y) := (<0>f[0][1][0] - 2*<0>f[0][0][0] +

<0>f[0][-1][0])/(dy*dy)

operator D_LF(f,z,z) := (<0>f[0][0][1] - 2*<0>f[0][0][0] +

<0>f[0][0][-1])/(dz*dz)

Since we wish RNPL to produce the complete program, we must specify the partial

differential equations. This is done by defining the residual.

100 Chapter 8. RNPL: The Language

evaluate residual phi {

[1:Nx][1:Ny][1:1] := <1>phi[0][0][0] = 0;

[1:Nx][1:Ny][Nz:Nz] := <1>phi[0][0][0] = 0;

[1:Nx][1:1][1:Nz] := <1>phi[0][0][0] = 0;

[1:Nx][Ny:Ny][1:Nz] := <1>phi[0][0][0] = 0;

[1:1][1:Ny][1:Nz] := <1>phi[0][0][0] = 0;

[Nx:Nx][1:Ny][1:Nz] := <1>phi[0][0][0] = 0;

[2:Nx-1][2:Ny-1][2:Nz-1] := D_LF(phi,t,t) = D_LF(phi,x,x) +

D_LF(phi,y,y) + D_LF(phi,z,z)

}

The boundary conditions could also have been stated with a time derivative of φ, but this would

have required another operator definition. The above method is the simplest.

To get RNPL to generate the initial data, we must provide an initialization for φ.

initialize phi {

[1:Nx][1:Ny][1:Nz] := A*exp(-(x-c_x)^2/delta_x^2)*

exp(-(y-c_y)^2/delta_y^2)*

exp(-(z-c_z)^2/delta_z^2)

}

We now instruct RNPL to solve the equation iteratively and to automatically generate the

update routine.

looper iterative

auto update phi

8.2.2. “Shifted” Wave Equation

As a slightly more complicated example, let’s consider the “shifted” wave equation in one

dimension with periodic boundary conditions. We’ll take the shift β to be a constant and the

8.2. Examples 101

initial field configuration φ to be a left-moving Gaussian pulse. This problem can be stated as

follows:

∂
2
t
φ
(

x, t
) −−
(

1− 2
β
)

∂
2
x
φ
(

x, t
) −2β ∂t

∂
x
φ
(

x, t
)

φ
(

xmin, t
) −− φ

(

xmax, t
)

φ
(

x,0
) −− A exp

(

− (x− c
2)
/

2
∆
)

∂
t
φ
(

x,0
) −−
−2
(

x− c
)

X
2
∆

A exp
(

− (x− c
2)
/

2
∆
)

β
(

x
) −− 0.5

where xmin ≤ x ≤ xmax.

We can rewrite this equation in first order form by introducing the two auxiliary variables

Φ andΠ defined by:

Φ ≡ ∂
x
φ ,

Π ≡ ∂
t
φ−β∂

x
φ .

In terms of these variables, the problem becomes:

∂
t
Φ
(

x, t
) −− ∂x

(

β Φ +Π
)

∂
t
Π
(

x, t
) −− ∂x

(

βΠ + Φ
)

Φ
(

x,0
) −−
−2
(

x− c
)

X
2
∆

A exp
(

− (x− c
2)
/

2
∆
)

Π
(

x,0
) −−
− (x− c

)

X
2
∆

A exp
(

− (x− c
2)
/

2
∆
)

102 Chapter 8. RNPL: The Language

Φ
(

xmin, t
) −− Φ

(

xmax, t
)

Π
(

xmin, t
) −− Φ

(

xmax, t
)

The RNPL program to solve this problem is shown below. It uses a two-level

Crank-Nicholson difference scheme with numerical dissipation.

This program solves 1D 1st order shifted wave equation

with constant shift and periodic boundary conditions

parameter float xmin := 0

parameter float xmax

parameter float epsdis

parameter float c

parameter float A

parameter float delta

rec coordinates t,x

uniform rec grid g1 [0:Nx-1] {xmin:xmax}

float Phi on g1 at 0,1

float Pi on g1 at 0,1

float beta on g1

float phi on g1 at 0,1

operator D_PER(f,x) := (<1>f[1] - <1>f{Nx-2} + <0>f[1] - <0>f{Nx-2})/(4*dx)

operator D_CN(f,t) := (<1>f[0] - <0>f[0])/dt

operator D_CN(f,x) := (<1>f[1] - <1>f[-1] + <0>f[1] - <0>f[-1])/(4*dx)

operator D_CND(f,t) := (<1>f[0] - <0>f[0] +

epsdis/16*(6*<0>f[0] + <0>f[-2] + <0>f[2] -4*(<0>f[-1] + <0>f[1])))/dt

8.2. Examples 103

operator D_CNDP1(f,t) := (<1>f[0] - <0>f[0] +

epsdis/16*(6*<0>f[0] + <0>f{Nx-3} + <0>f[2] -4*(<0>f{Nx-2} + <0>f[1])))/dt

operator D_CNDP2(f,t) := (<1>f[0] - <0>f[0] +

epsdis/16*(6*<0>f[0] + <0>f{Nx-2} + <0>f[2] -4*(<0>f[-1] + <0>f[1])))/dt

operator D_CNDP3(f,t) := (<1>f[0] - <0>f[0] +

epsdis/16*(6*<0>f[0] + <0>f[-2] + <0>f{1} -4*(<0>f[-1] + <0>f[1])))/dt

operator AVG(f,t) := (<1>f[0] + <0>f[0])/2

evaluate residual Phi { [0:0] := D_CNDP1(Phi,t) = D_PER(beta*Phi + Pi,x);

[1:1] := D_CNDP2(Phi,t) = D_CN(beta*Phi + Pi,x);

[2:Nx-3] := D_CND(Phi,t) = D_CN(beta*Phi + Pi,x);

[Nx-2:Nx-2] := D_CNDP3(Phi,t) = D_CN(beta*Phi + Pi,x);

[Nx-1:Nx-1] := <1>Phi[0] = <1>Phi{0} }

residual Pi { [0:0] := D_CNDP1(Pi,t) = D_PER(beta*Pi + Phi,x);

[1:1] := D_CNDP2(Pi,t) = D_CN(beta*Pi + Phi,x);

[2:Nx-3] := D_CND(Pi,t) = D_CN(beta*Pi + Phi,x);

[Nx-2:Nx-2] := D_CNDP3(Pi,t) = D_CN(beta*Pi + Phi,x);

[Nx-1:Nx-1] := <1>Pi[0] = <1>Pi{0} }

residual phi { [0:Nx-1] := D_CN(phi,t) = AVG(Pi + beta*Phi,t) }

initialize beta { [0:Nx-1]:= .5 }

initialize Phi { [0:Nx-1]:= -2*(x-c)/delta^2*A*exp(-(x-c)^2/delta^2) }

initialize Pi { [0:Nx-1]:= -(x-c)/delta^2*A*exp(-(x-c)^2/delta^2) }

initialize phi { [0:Nx-1]:= A*exp(-(x-c)^2/delta^2) }

looper iterative

104 Chapter 8. RNPL: The Language

auto update Phi, Pi, phi

Notice that the periodic boundary conditions are enforced in the operators and the residuals

by using an absolute index. Without this construct, such a boundary condition is impossible

to implement except for a fixed size grid.

Chapter 9. RNPL: The Compiler

I have written a compiler for RNPL. This compiler is a complete implementation of the

language as defined in Chapter 8. As new constructs and features are added to the language,

the compiler will be updated to include support for them.

Other authors [23] have argued that compilers for numerical languages are best written

in a language such as Maple or Mathematica because of their in-built symbolic manipulation

capability. It is my opinion that compilers (including ones for math-oriented languages such as

RNPL) should be written in a traditional programming language such as C in combination with

compiler writing tools such as lex and yacc (readers interested in using lex and yacc should

consult [16]).

I first planned to implement the RNPL compiler in Maple. However, it soon became

clear that such a language is not suited to the task. On the one hand, RNPL does require

some symbolic manipulation (simple algebra and differentiation), a task which Maple can

perform well. On the other hand, compilers require complex data structures and excellent text

handling, both tasks which are better suited to a general purpose programming language. I

decided to write the compiler in C, using lex and yacc for the parser. I wrote my own symbolic

manipulation routines. As it turned out, the time spent implementing the symbolic capabilities

was much less than the time spent on code generation, thus justifying my decision.

It can certainly be argued that C++ would be better suited to the task than C, however I

decided to use C due to its wider availability on the target platforms. A future version of the

compiler may use C++.

9.1. Compiler Assumptions

As discussed in Chapter 8, RNPL has no “executable” statements. Because of this, it is

up to the compiler to decide how to translate the source into an executable program (or portion

105

106 Chapter 9. RNPL: The Compiler

thereof). In this way, the user is shielded as much as possible from the details of programming

and can concentrate on the equations. In order to successfully generate a program,the compiler

must make certain assumptions which place some constraints on the form of the source.

Although some of these assumptions seem to violate the strong typing rules of the language,

in actuality, they simply move the responsibility for some declarations from the user to the

compiler. That is, all data objects are still declared, just some are declared automatically. If a

name is multiply defined, the first definition will be kept and subsequent ones will be discarded.

If the objects with the same name are of the same type, for instance two parameters named

X, then no error will be reported. However, if X is first declared to be a parameter and later

redeclared to be a grid function, the compiler will report an error.

9.1.1. Coordinates and Differentials

Coordinate differentials are automatically defined by the compiler. They are given the

same names as the coordinates except they begin with a lower case d. Thus, if t and x are

coordinates, dt and dx will be coordinate differentials. At run time the coordinate differentials

are assigned values based on the grids. For instance, if an RNPL program contains the

following definitions:

rectangular coordinates t,x,y

uniform rectangular grid G [1:Nx][0:Ny-1]

{xmin:xmax}{ylow:yhigh}

then the spatial coordinate differentials will be assigned values using

dx−− xmax− xmin
XNx−1

and

dy−− yhigh− ylow

XNy−1
,

9.1. Compiler Assumptions 107

while the time coordinate differential will be assigned by

dt−− λ
√

X

2
dx +

2
dy

X2
,

where λ is the Courant factor (see below).

When there is more than one grid defined, the compiler uses the first grid which uses a

given coordinate to define that coordinate’s differential. If along with the above definitions,

an RNPL program contains

uniform rectangular[x] grid g [1:N] {min:max}

then dx will still be defined as above. The user must construct his own grid spacing variable for

grid g. On the other hand, if the definition for g came before the definition for G, dx would be

assigned from g by dx−− (min−max)/(N− 1), while dy would still be defined from G, since

that is the first grid which uses y.

Along with the coordinate differentials, the grid sizes are defined automatically. These

are named like the differentials except with an initial upper case N instead of the d. Also like

the differentials, the grid sizes are not assigned values by the user. Their values are calculated

from the grid base parameters (see below). Although the user can use any expression he likes

to define the index regions, using the grid sizes is best since it allows for easy convergence

testing by changing only the level parameter (see below).

9.1.2. “Special” Parameters

There are several parameters which are needed by every RNPL program. Instead of

forcing the user to always define these, the compiler takes care of them. These parameters are

listed in Table 9.1. Most of their uses are obvious. The others will be explained here or in the

following sections.

The level parameter and the grid bases can be used together for easy convergence testing.

Assume we have defined the coordinates t, x, y, and z. Then at run time, the grid sizes will be

set as follows:

108 Chapter 9. RNPL: The Compiler

Name Type Default Use

start_t float 0 start time

s_step int 0 starting iteration

iter int 100 number of iterations

epsiter float 1.0e-5 iteration threshold

fout int 0 file output (0 no, 1 yes)

ser int 0 fs output (0 no, 1 yes)

lambda float .5 Courant factor

output ivec *-*/1 output control

in_file string none name of file from which initial data will be read

out_file string none name of file to which final state will be written

level int 0 refinement level

tag string "" prepend symbol for grid function names

Nc0 int 0 base number of grid points for the coordinate named c (there

is one for each spatial coordinate)

Table 9.1. Special Parameters

Nx−− Nx0 · level2 + 1

Ny−− Ny0 · level2 + 1

Nz−− Nz0 · level2 + 1.

That is, if Nx0 is 100 and level is 0, then Nx will be set to 101. If level is 1, then Nx will be

set to 201. If any grid base is an odd number, then the above procedure will not give proper

lengths for a convergence series. In this case, the grid size will be set to the grid base and a

warning message will be printed. This way, a user can do a single run with an arbitrary grid

size.

If a grid has been declared without using the grid sizes, then its size will remain unaffected

by changes to level.

9.2. Language Modifications 109

9.2. Language Modifications

Feedback from use by myself and others has resulted in several modificationsof the initial

language design which make it more effective. These modifications are discussed below.

One of the initial design goals for RNPL was to allow users to easily convert existing

programs to RNPL so they could take advantage of the built-in features. Initially, this was

going to be done by having the user directly edit the RNPL-generated code. This proved too

burdensome, so the update declaration was modified to allow automatic header generation and

code inclusion.

In order to have the compiler output FORTRAN 77, I had to add constant parameters and

system parameters. It was also necessary to either make RNPL completely case-insensitive,or

case-insensitive when producing FORTRAN output. I chose the latter option.

Constant parameters are needed because of FORTRAN’s lack of support for globals.

They behave exactly like regular parameters except they can not be passed to update routines

or residual evaluators in the argument list. They are placed in a separate common block from

the other parameters and globals and are declared in every function.

System parameters are needed because of FORTRAN’s lack of support for dynamically

allocated memory. There is currently only one system parameter defined—memsiz. This

parameter has the default value of 2000000. It is the size of the FORTRAN program’s heap

in doubles. It can be changed with a declaration like:

system parameter int memsiz := 8000000

A few syntactic changes were made to RNPL at user’s requests. These were support for

all capital reserved words, the # in the work array declaration, and the optional semicolon to

end a residual block.

9.3. Equation Solver

The primary job of an RNPL program is to solve a system of evolution equations. The

equations are specified through the residuals and it is up to the compiler to decide how to solve

110 Chapter 9. RNPL: The Compiler

them. The solution is generated by symbolically solving each grid function’s residual for its

advanced value.

This method is exactly what is required for solving explicit schemes. Using the iterative

loop driver,one can use this method to solve implicit schemes as well. Such an iterative method

may in fact be sufficient for all implicit schemes, though some early attempts to use this method

on the fully-averaged implicit scheme failed to converge.

In the future, I will add support for a global Newton iteration which should solve any

implicit scheme. Although such a scheme is no more difficult to support than the current

scheme (from the compiler’s point of view), it requires a banded matrix solver. Due to the

large number of architectures that RNPL supports (these include serial, vector, and massively

parallel machines), I decided to wait on the matrix routines until it was clear that they were

needed.

9.4. Initial Data Generation

The weakest part of the compiler is its initial data support. It only allows analytic initial

data to be specified. However, the initial data problem is very different from the evolution

problem that RNPL was designed to solve. If not known analytically, initial data is usually

solved for from elliptic equations. Techniques to solve elliptic equations are very different

from techniques used to solve hyperbolic equations.

There are also problems with initial data that are inherent to finite differencing. For

instance, assume we are attempting to solve the one dimensional linear wave equation in flat

space. This equation is∂
2
t
φ−− ∂2

x
φ. The initial state of the system is specified by givingφ

(

x,0
)

and
.
φ
(

x,0
)

.

In RNPL, we can only give φ
(

x, 0
)

. If we wish to use a three-level scheme to solve

this equation, then we need two time levels of initial data. RNPL will find the second time

level through an iterative procedure using the evolution equations. This will result in

time-symmetric initial data which contains both an ingoing and an outgoing piece. If this is

not what we want, we must modify the compiler-generated initial data generator to produce

9.4. Initial Data Generation 111

our own data.

However, assume we wish to use a two-level scheme. In this case we can still only give

φ
(

x, 0
)

. However, that is all the data we can possibly give. This is a problem with using the

two-level scheme. It does not capture both degrees of freedom available in the physical

problem.

Now assume we decide to rewrite the problem in first order form. The equationsof motion

are ∂
t
Φ−− ∂x

Π and ∂
t
Π−− ∂x

Φ, withΦ ≡ ∂
x
φ andΠ ≡ ∂

t
φ. Now using a two level scheme we

can specify one time level for each function. This allows us to completely specify the initial

configuration.

A three-level scheme for this problem will require four levels of initial data, two for each

function. RNPL will only allow us to specify two levels and will solve for the other two using

an iterative procedure. In this case, unlike the second order problem above, this is the correct

way of generating the extra time levels since the physical problem only contains two degrees

of freedom.

These examples show that RNPL will correctly handle the specification of analytic

initial data for systems written in first order form and using two or three-level finite difference

schemes for solution. A simple modification to RNPL would allow the user to specify multiple

time levels of initial data for each grid function. This would allow RNPL to correctly handle

initial data for systems written in higher order form.

9.5. Parameter Files

At run time, RNPL generated programs look for a parameter file. This is an ASCII file

consisting of arbitrary text. The RNPL program will scan this file for lines of the form name

:= value, where name is the name of a parameter, and value is the value of the parameter

given in the same form as default values in RNPL source. If the program finds such a line for a

parameter, it will set that parameter to the value in the file. If not, it will use the default value for

the parameter. If the parameter has no default, the program will exit with an error message.

Here is an example of a parameter file:

112 Chapter 9. RNPL: The Compiler

This is a parameter file

tag := "a_"

level := 1

Nx0 := 100

xmin := -10

This is a comment

in_file := "init_data.hdf"

out_file := "dump.hdf"

9.6. Output Control

RNPL generated programs allow the user to dynamically control output during execution.

At any time, the user can interrupt the program and turn output on or off for any grid function,

as well as control the frequency of output.

By default, output is controlled by three parameters and an attribute. The parameter fout

can be set to zero or one. If it is set to one, then output is sent to HDF files. If the parameter

ser is set to one, then output is sent to Matthew Choptuik’s vs graphics server. Since vs only

handles one dimensional functions, only one dimensional grid functions will be sent from the

program.

The parameter output is an index vector. It controls when the program generates output.

For example, if the interesting dynamics occur after iteration 100, output could be set like:

output := *-100/50,101-150/2,151-*/50

This would output only once every 50 time steps during the first part of the calculation, every

other time step during the dynamic part, and then every 50 time steps till the end. The initial

* is set to s_step and the final * is set to iter.

There is one automatically defined attribute. It controls which grid functions are output.

It is called out_gf and has encoding encodeone. Any of its elements can be set to one to

9.6. Output Control 113

enable output for that grid function or to zero to disable output.

9.7. Check Pointing

Check pointing provides a way for calculations to be stopped during execution and

then restarted at a later time without losing any information. All RNPL generated programs

automatically dump state upon completion. If a calculation needs to be stopped during

execution, it can be interrupted and told to dump state. The state is saved in the file whose name

is given by the parameter out_file. The state file is identical in format to an initial data file.

Thus, to restart, the user simply has to set the parameter in_file to the name of the state file

and rerun the program. The parameters start_t and s_step are read from the state file, so

their values in the parameter file do not need to be changed.

References

[1] Annninos, P. et. al. Horizon boundary condition for black hole spacetimes. Phys. Rev. D

51, 5562–78 (1995).

[2] Bardeen, J. M. and T. Piran. General Relativistic Axisymmetric Rotating Systems:

Coordinates and Equations. Phys. Rep. 96, 205–250 (1983).

[3] Bechmann, O. and O. Lechtenfeld. Exact black-hole solution with self-interacting scalar

field. Class. Quant. Grav. 12, 1473–81 (1995).

[4] Bekenstein, J. D. Nonexistence of Baryon Number for Static Black Holes. Phys. Rev. D

5, 1239–46 (1972).

[5] Choptuik, M. W. and W. G. Unruh. No title. Unpublished Work (1988).

[6] Choptuik, M. W. A Study of Numerical Techniques for Radiative Problems in General

Relativity. Ph.D. Dissertation, The University of British Columbia, 1986.

[7] Choptuik, M. W. No title. Unpublished Notes (1991).

[8] Choptuik,M.W. Consistency of finite-differencesolutions of Einstein’sequations. Phys.

Rev. D 44, 3124–35 (1991).

[9] De Felice, F. and C. J. S. Clarke. Relativity on curved manifolds. Cambridge University

Press, Cambridge, 1990.

[10] DeWitt, B. S. and R.W. Brehme. Radiation Damping in a Gravitational Field. Ann.Phys.

(N.Y.) 9, 220–59 (1960).

[11] Gundlach, C. et. al. Late-time behavior of stellar collapse and explosions. I. Linearized

perturbations. Phys. Rev. D 49, 883–9 (1994).

114

115

[12] Gundlach, C. et. al. Late-time behavior of stellar collapse and explosions. II. Nonlinear

evolution. Phys. Rev. D 49, 890–9 (1994).

[13] Kurki-Suonio, H. et. al. Inhomogeneous inflation: Numerical evolution. Phys.Rev.D 48,

3611–24 (1993).

[14] Kingston, J. H. A User’s Guide to the Lout Document Formatting System. Tech. Rep.

(1995), Basser Department of Computer Science, The University of Sydney, Sydney,

Australia.

[15] Liu, H. and B. Mashhoon. On the spectrum of oscillations of a Schwarzschild black hole.

Preprint (1995).

[16] Levine, J. R. et. al. lex & yacc. O’Reilly & Associates, Sebastopol, CA, 1990.

[17] Matzner, R. A. Private discussion. No publisher (1995).

[18] Misner, C. W. et. al. Gravitation. Freeman, New York, 1973.

[19] Price, R. H. Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar

and Gravitational Perturbations. Phys. Rev. D 5, 2419–38 (1972).

[20] Regge, T. and J. A. Wheeler. Stability of a Schwarzschild Singularity. Phys. Rev. 108,

1063–9 (1957).

[21] Richardson, L. F. The Approximate Arithmetical Solution by Finite Differences of

Physical Problems Involving Differential Equations with an Application to the Stresses

in a Masonry Dam. Phil. Trans. Roy. Soc. 210, 307–57 (1910).

[22] Seidel, E. and W. Suen. Towards a Singularity-Proof Scheme in Numerical Relativity.

Phys. Rev. Let. 69, 1845–48 (1992).

[23] Thornburg, J. Numerical Relativity in Black Hole Spacetimes. Ph.D. Dissertation, The

University of British Columbia, 1993.

116 References

[24] Wald, R. M. General Relativity. University of Chicago Press, Chicago, 1984.

VITA

Robert Lee Marsa was born to Lynette Maurine Marsa and Gordon Lee Marsa on

September 19, 1969 in Pontiac Michigan. After completing high school at Fletcher Academy,

Fletcher, North Carolina, in 1987, Robert attended Southern College in Collegedale,

Tennessee. He graduated in May of 1991 with a Bachelor of Science in Mathematics and

Physics and an Associate of Science in Engineering. On May 26, 1991 he was married to

Meri Anissa Housley. In August, he entered the Graduate School of The University of Texas.

He worked at the university’s Applied Research Laboratories until January of 1995 when

he became a Research Assistant at the Center for Relativity. He has accepted a position

as Research Associate in the Department of Physics and Astronomy at the University of

Pittsburgh. This position begins in January 1996.

Permanent address: 5916 Douglas St. Pittsburgh, PA 15217

This dissertation was typeset by the author using Basser Lout [14].

117

