Critical Collapse in Newtonian Self-Gravitating Systems

Andrew Inwood

UBC Physics

Supervisor: Matthew Choptuik

Outline

- Black holes and singularities
- Overview of critical collapse
- Critical Collapse in Newtonian Phenomena
- Shed light on problems using Newtonian gravity

Proposed research

Black Holes

Schwarzschild solution (1917)

Can use Newtonian reasoning to guess the Schwarzschild radius

Escape velocity

$$v_e = \sqrt{\frac{2GM}{R}}$$

$$R = 2M$$

$$c = G = 1$$

Singularities

Penrose-Hawking Singularity Theorems (1960's)

Guarantee singularity formation of sufficiently dense mass and energy configurations.

Sufficiently weak gravitating systems **never** become singular

- •No sufficient condition for black hole formation found beyond singularity theorems.
- Dynamics of black hole formation is not well understood

Critical Collapse

Choptuik (1990s)

Used massless scalar field coupled to gravity in numerical studies

$$p = p^*$$

$$p > p^*$$

Phase Diagram

Gundlach, 2002

Analogy to Phase Transitions in Statistical Mechanics

Type I

- Occur when a mass scale is set
- •Mass of final states independent of $p-p^*$
- •Critical solution is independent of time, or periodic in time.

 Mass of final state obeys a power-law scaling

$$M \propto (p - p^*)^{\gamma}$$

Type II

 Critical solution is self-similar and scale-invariant (continuously or discretely)

Self-Similarity

Scale-invariance

Sierpinski Triangle

Fern

Critical Solutions self-similar in logarithmic time

Newtonian Critical Collapse

•Matter models (Newtonian isothermal gas, massive scalar fields)

•Also exhibit self-similar solutions (Hunter and Larson-Penston)

•Important in understanding star formation in interstellar clouds

 Advantageous for investigating challenging problems in critical collapse

Self-Similarity Hypothesis

•Self-similarity also found in non-critical solution in collapse of gas models.

 Hypothesized that all initial configurations will evolve towards SS.

Need more studies beyond spherical symmetry

Cosmic Censorship

Conjecture: Singularities are always enclosed by an event horizon.

Is key to determining the precise range of validity of GR

Is formation of naked singularities stable against non-spherical perturbation?

Can dynamics tell us more about formation of naked singularities?

Matter Model

Complex massive scalar field in spherical symmetry.

Relativistic equations of motion reduce to a coupled system of a <u>Schrodinger</u> equation and a <u>Poisson</u> equation.

$$i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\nabla^2\Psi + V\Psi$$

$$\nabla^2 V = \Psi \Psi^*$$

$$c = G = \hbar = 1$$

Numerical Techniques

Finite-differencing

$$\nabla^2 V = \frac{2}{r} \frac{\partial V}{\partial r} + \frac{\partial^2 V}{\partial r^2}$$

$$\mathcal{L}\mathbf{V} = \mathbf{\Psi}\mathbf{\Psi}^*$$

Crank-Nicholson is a popular scheme to solve Schrodinger equations.

Research Goals

•Look for critical phenomena in complex massive scalar field

Look for self-similarity

Calculate exact form of solution

Investigations with more parameters

Beyond spherical symmetry

Resources

- •For initial exploratory calculations, only require one processor.
- •If singularities and SS found, require adaptive mesh refinement techniques = more expensive
 - >Time on computer clusters at UBC will be needed.
- Software for visualization of time-dependent PDEs developed by Choptuik (RNPL and XVS)

XVS output

Summary

Gravitational collapse will be modeled using a complex massive scalar field

Hope to find:

- Critical Phenomena
- Self-similarity

Hope to gain insights into:

- Dynamics of black hole formation
- Validity of self-similarity hypothesis
- Validity of cosmic censorship conjecture