
Although the solution given by a finite element method is by definition con-
tinuous, on irregular meshes this continuous frunction is insufficient to properly
calculate numerical derivatives. We will consider this problem from two angles.
First we lay down some notation,

L[u] = 0 (1)

is the second order, partial differential equation that we want a numerical solu-
tion to. The solution is two dimensional,

u : Ω → R (2)

Ω ⊂ R2. (3)

Then we formulate the problem in its weak formulation,

L[u, v] = 0, (4)

where v is any continuous function with v|∂Ω = 0. Then by choosing a number
of nodes in Ω

N = {xi|i = 1, 2, ..., nN , x ∈ Ω} (5)

and connect them into a partitioning triangulation of Ω, that is xi(Kj) is the
ith vertex (up to three) of the triangle Kj , the partition is then given by the
union of elements

Ki = {x ∈ Ω| l1x1(Ki) + l2x2(Ki) + l3x3(Ki) = x,
l1 + l2 + l3 = 1, l1, l2, l3 > 0, xj(Ki) ∈ N}, (6)

with the additional stipulations that

Ki ∩Kj =

{
0 if i 6= j;
Ki if i = j,

(7)

nK⋃
i=1

Ki = Ω, (8)

and
xi 6∈ Kj for i = 1, 2, ...nN unless xi = xk(Kj) for k ∈ [1, 2, 3]. (9)

Then we consider spaces

H1(Ωh) = {u : Ω → R| u|Ki
∈ P1} (10)

H1
0 (Ωh) = {u : Ω → R| u|Ki ∈ P1, u|∂Ω = 0}, (11)

then define the finite element solution as the function uh ∈ H1(Ωh) such that,
for all v ∈ H1

0 (Ωh) we have that

L(uh, v) = 0. (12)
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We assume that the finite element method described is second order, and
that (∫

Ω

(u− uh)2
) 1

2

< Ch2. (13)

Thus we can generally write that

uh = u + h2e(h). (14)

Now we consider the standard second order, centred difference operator for the
approximation of the Laplacian

4H = 4+ H2L(H), (15)

where L is a higher order differential operator. Applying this to to uh and
considering the error, compared to the desired result

4Huh −4u = H2L(H)[u] + h2 4H e(h). (16)

It is necessary that H > h, because if H . h, then uh is piecewise linear on
the scale of the finite difference operator and will spuriously vanish. On the
necessary scales the error function e(h) is not smooth and thus the finite differ-
ence approximation of the derivative is ill posed. The denominator necesarily
contains a expression quadratic in the stepsize, so

4Huh −4u = H2L(H)[u] + O(1)
h2

H2
, (17)

and the result is in general an O(H−2) quantity, or at best O(1) for an equal
scaling.

Now we consider a regular triangular
mesh with spacing h over a rectangu-
lar domain Ω and a smooth function u :
Ω → R with u ∈ C∞. We consider cal-
culating an approximation of the Lapla-
cian at a point, x, located inside of an el-
ement. We define the linear interpolant
of u as the function which is identical
to its smooth analog at the nodes of the
mesh,

I1u(x) = u(x) for x ∈ N (18)

and is linear inside of the elements

I1u(x) ∈ H1(Ωh). (19)
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To calculate the Laplacian we consider the second order, centred finite difference
formula

4H [u](x) =
u(x + (0,H))− 2u(x) + u(x− (0,H))

H2

+
u(x + (H, 0))− 2u(x) + u(x− (H, 0))

H2
.

(20)

Using barycentric coordinates, we can label the point x in the above figure as

x = l1(0, 0) + l2(−h, 0) + l3(0, h) (21)

with
l1 + l2 + l3 = 1, and l1, l2, l3 > 0. (22)

We can use this fact to simply compute the interpolant’s value at the chosen
points, where we will choose H = h for the finite difference formula,

I1u(x) = l1u(0, 0) + l2u(−h, 0)+l2u(0, h), (23)

I1u(x± (h, 0)) = l1u(±h, 0) + l2u(−h± h, 0)+l2u(±h, h), (24)

I1u(x± (0, h)) = l1u(0,±h) + l2u(−h,±h)+l2u(0, h± h). (25)

It is now quite evident that

4h[I1u](x) =
I1u(x + (0, h))− 2I1u(x) + I1u(x− (0, h))

h2

+
I1u(x + (h, 0))− 2I1u(x) + I1u(x− (h, 0))

h2
.

(26)

leads to

4h[I1u](x) = l1 4h [I1u](0, 0) + l2 4h [I1u](−h, 0) + l3 4h [I1u](0, h), (27)

and because of the exactness of the nodes

4h[I1u](x) = l14h[u](0, 0)+l24h[u](−h, 0)+l34h [u](0, h) = I1[4hu](x), (28)

standard interpolation theory describes this as an O(h2) approximation for the
Laplacian.

We now consider a simple irregular mesh (see figure below), where the only
difference is a different orientation of two triangles compared with the previous
mesh. Using the same barycentric coordinates, and finite difference formula we
arrive at the same equations for the interpolated values except

I1u(x− (0, h)) = l4u(0, 0) + l5u(−h, 0) + l6u(−h,−h) + l7u(0,−h). (29)

We will assume without loss of generality that l4 = 0. Next, due to choice of
the origin of the coordinate system

x = (−l2h, l3h), (30)

so that we can form the linear equations

x− (0, h) = (−l2h, l3h− h) = (−(l5 + l6)h,−(l6 + l7)h), (31)
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which are identical to

l1 = l7 − l5, (32)
l2 = l5 + l6, (33)
l3 = −(−1 + l6 + l7) = l5. (34)

When we compute the finite difference
formulas this time, we can pull out the
previous result with parts leftover, that
is

4h[I′1u](x) = 4h[I1u](x) + e, (35)

where e is given by

e =
l5u(−h, 0) + (l6 − l2)u(−h,−h) + (l7 − l1)u(0,−h)− l3u(0, 0)

h2
, (36)

looking at the formulas for l1, l2, and l3 we see that this error term can be
expressed as

e =
l5u(−h, 0)− l5u(−h,−h) + l5u(0,−h)− l5u(0, 0)

h2
. (37)

A little knowledge of some of the more rare finite difference formulas recognizes
this error term as

e = l5
∂2u

∂x0∂x1

∣∣∣
(h

2 , h
2 )

+ O(h2). (38)

In a general irregular mesh there will be contributions from mixed derivatives
at many locations.
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