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ABSTRACT ii

ABSTRACT

This thesis reports on numerical studies of binary boson stars within the context of an approxi-

mation to general relativity. Boson stars, which are static, gravitationally bound configurations of

a massive complex scalar field, can be made gravitationally compact. Astrophysically, the study

of gravitationally compact binaries—in which each constituent is either a neutron star or a black

hole—and especially the merger of the constituents that generically results from gravitational wave

emission, continues to be of great interest. Such mergers are among the most energetic phenomena

thought to occur in our universe. They typically emit copious amounts of gravitational radiation,

and are thus excellent candidates for early detection by current and future gravitational wave

experiments.

Detailed information concerning the general relativistic dynamics of compact binary systems

relies on computer simulation involving the solution of very complicated systems of time-dependent

partial differential equations in three spatial dimensions (Einstein’s equations plus the equations of

general relativistic hydrodynamics for the case of neutron stars). It is only over the past few years

that reasonably accurate simulations of individual mergers has become possible, and the complexity

and cost of the calculations in part motivates our use of an approximation of general relativity, as

well as our choice of a type of matter that is easier to model than a fluid. The approximation that

is adopted places certain restrictions on the dynamical variables of general relativity (conformal

flatness of the 3-metric) and on the time-slicing of the spacetime (maximal slicing), and has been

previously used in the modeling of neutron stars mergers. By studying a simplified, and more

computationally tractable model within the context of the approximation, we hope to gain insight

into the basic gravitational physics of compact-object interaction, as well as to eventually calibrate

the fidelity of the approximation.

Mathematically, our modeling requires the solution of a coupled nonlinear system of two hy-

perbolic, and 5 elliptic partial differential equations (PDEs) in three space dimensions and time.

We approximately solve this system as an initial-boundary value problem, using finite difference

techniques and well known, computationally efficient numerical algorithms such as the multigrid

method in the case of the elliptic equations. Careful attention is paid to the issue of code valida-

tion, and a key part of the thesis is the demonstration that, as the basic scale of finite difference

discretization is reduced, our numerical code generates results that converge to a solution of the

continuum system of PDEs as desired.

The thesis concludes with a discussion of results from some initial explorations of the orbital

dynamics of boson star binaries. In particular, we describe calculations in which motion of such a

binary is followed for more than two orbital periods, which is a significant advance over previous

studies. We also present results from computations in which the boson stars merge, and where

there is evidence for black hole formation.
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CHAPTER 1

INTRODUCTION

Binaries of gravitationally compact objects, such as binary black holes, binary neutron stars or

binaries composed of a neutron star and a black hole, are among the most promising sources of

gravitational waves. An international network of laser interferometer detectors (e.g. LIGO [1],

VIRGO [2], TAMA300 [3] and GEO600 [4]) have been constructed to detect gravitational waves in

the frequency range corresponding to collisions of such binaries, where the compact objects generally

have masses of the order 1 to 10 solar. However, even for such strong sources, the terrestrial signal

strength from a typical event (not likely in our own galaxy, or even in the local group of galaxies)

is expected to be much less than the noise in the detectors. The usual strain amplitude on the

detectors due to gravitational waves is of the order of 10−21m, several orders of magnitude smaller

than atomic nuclei. In this case, the most promising technique to extract the signal from the noise

is called matched filtering [5], which involves comparison of the measured signal against a known

(precomputed) family of waveforms. Therefore, accurate theoretical modelling of compact binary

inspiral is needed to build these waveform templates so as to help to extract the gravitational wave

signal from the noise in the experimental apparatus.

The plunge and merger phase of compact objects in inspiral is characterized by a strong dynam-

ical gravitational field. In this regime the gross, gravitationally-mediated dynamics of fluid stars

may be similar to that of boson stars, which are static, gravitationally bound configurations of a

(hypothetical) massive, complex scalar field, which satisfies the Klein-Gordon equation (possibly

with some non-linear self-interaction potential). Indeed, fluid and boson stars show definite simi-

larities when they are considered as models of isolated, static objects: both can be parametrized

by their central density, ρ0, and both exhibit qualitatively similar plots of total gravitational mass

as a function of ρ0. Since the details of the dynamics of the stars (e.g. shocks) tend not to be

important gravitationally, boson star binaries may provide some insight into neutron star binaries,

while avoiding the computational difficulties associated with general relativistic hydrodynamics.

Finding analytic solutions to the Einstein field equations for astrophysical scenarios such as

binary collisions is a hopeless task and one is thus led to the construction of numerical solutions.

The full Einstein field equations—where field quantities depend on all three spatial dimensions and

time— are very complex and computationally expensive to solve. Despite some recent advances

in the modelling of fully general relativistic interactions of boson stars [6, 7], a complete survey

of the orbital parameter space is still lacking. Given this state, one is naturally led to consider

approximations of the gravitational field equations that can reduce at least some of the compu-

tational difficulties associated with the full Einstein equations. One such approach is based on

a constraint imposed on the spatial part of the metric together with a restriction on the specific

choice of time coordinate, leading to an approximation of general relativity that has been used to

study strong-gravity effects in several scenarios of astrophysical interest, including the interaction
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of compact fluid stars. This thesis extends such studies to the case of interacting boson stars.

More specifically, and as will be discussed in detail in Chap. 2, this approximation is based

on the Conformally Flat Condition, or CFC, for the spatial part of the metric, along with the

Maximal Slicing Condition that fixes the time coordinatization of the spacetime. Although the

resulting approximation to Einsteinian gravity has traditionally been referred to using the CFC

acronym in the literature, we prefer to use CFA, for Conformally Flat Approximation. This stresses

the fact that we are dealing with an approximation to general relativity. Also, we emphasize that

although neither acronym makes explicit reference to the maximal slicing condition, that choice of

time coordinatization has always been an essential ingredient of the approximation, and is so here.

The CFA is based on the heuristic assumption that the dynamical degrees of freedom of the

gravitational field, i.e. the gravitational radiation, play a small role in at least some phases of the

strong field interaction of a merging binary, and on the related fact that the gravitational radiation

expressed as a fraction of the total mass-energy in the system, tends to be small. The CFA

effectively eliminates the two dynamical degrees of freedom present in general relativity, but still

allows the investigation of the same kinds of phenomena observed in the full general relativistic

case. These include the description of compact objects, the dynamics of their interaction, and

black hole formation. It is also worth mentioning that it is still possible to study gravitational

wave generation within this approximation via a multipole expansion of the metric perturbation

components. Briefly, the incorporation of radiation effects, although far from a trivial matter,

can be realized through the introduction of a radiation reaction potential in the equations of

motion for the matter model. We also note that for spherically symmetric systems the CFA is

not an approximation, but can always be adopted through an appropriate choice of coordinates.

Furthermore, use of the approximation for axially symmetric problems has indicated that the

obtained results mimic those of general relativity quite accurately [8, 9, 10, 11]. There is thus

considerable motivation to perform additional studies of strong-field gravity using this approach.

The CFA was first studied in a theoretical context by Jim Isenberg in the 1970’s [12], and

applied numerically (and independently) by Wilson et al. [13, 14, 15, 16, 17, 18, 19, 20] in the

1990’s to the study of a coalescing neutron-star binary system. In these previous works, Wilson

and collaborators presented evidence that, for a realistic neutron-star equation of state, general

relativistic effects might cause the stars to individually collapse into black holes prior to merging.

Furthermore, they observed that at least for some set of initial orbital parameters, strong-field

effects caused the last innermost stable circular orbit, or ISCO, to occur at a larger separation

distance, and thus at lower frequency, than was previously estimated by post-Newtonian methods.

This result has significance for the possible detection of gravitational waves, since it places the

frequency of radiation from coalescence closer to the maximum sensitivity range of current laser-

interferometric detectors. However, the Wilson-Mathews compression effect was unexpected and

controversial, and raised questions concerning the validity of the CFA.

Subsequently, Flanagan [21] identified an inconsistency in the derivation of some of the equa-

tions of motion used in the study, and suggested that use of the correct equations would reduce the

crushing effect. A revised version of simulations was published shortly thereafter [22]: a key claim

resulting from this work was that the crushing effect was still present, although the magnitude of
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the observed effect was reduced in comparison to the previous calculations. Further, comparisons

between a fully relativistic code and its CFA counterpart in the context of head-on collisions of

neutron stars showed the presence of this effect and lended more credibility to the earlier calcu-

lations [23]. However, the most recent simulations [24] aimed at studying the possible crushing

phenomenon actually indicate a decompressing effect on the neutron stars. Still, this result is not

in direct contradiction to Wilson et al’s results since the initial data used for the two sets of simu-

lations differ. For a more complete review of the history of this controversy, as well as a possible

explanation for the neutron star crushing effect, the reader should refer to the work by Favata [25]

and references therein. Also it is worth noticing that since the start of this project new “waveless”

formalisms have been developed [26, 27] and used to improve the accuracy of the binary compact

stars computations [28] in the inspiral phase with respect to the fully relativistic case.

One key goal of the work started in this thesis is to determine to what extent the CFA is a good

approximation to model compact binaries. From this point of view, it is particularly interesting to

study the CFA within the context of a simpler matter model than that commonly adopted, and

this provides a key motivation for our use of boson stars. Some of the key questions we wish to

address are as follows:

• Would boson stars collapse individually before merger, or is this phenomena strongly depen-

dent on how the matter is modelled? Favata [25] posited a mechanism that would tend to

compress the neutron stars given a particular set of conditions. Does that analysis apply to

the binary boson star as well?

• How well does the CFA approximate the full general relativistic equations? Can we shed some

light on the nature of the radiative degrees of freedom in the full theory from a detailed study

of the differences between results obtained using the CFA and the full Einstein equations?

• What is the final result of the merger? Can we compare the results to those obtained from

other techniques, including fully general relativistic calculations?

• Where is the ISCO? Do the results obtained match those seen in collisions of fluid stars, or

can they at least be compared qualitatively?

In order to answer such questions, the Einstein equations (and ultimately the equations resulting

from the adoption of the CFA) have to be cast in a form convenient for numerical calculations.

What follows is a brief description our such modelling procedure; more details will be provided in

subsequent chapters.

The current work makes use of the 3 + 1 or ADM (Arnowitt-Deser-Misner) [29] decomposition

of the equations is used. One of the main features of the 3 + 1 approach, which underlies the

majority of the work in numerical relativity, is that it provides a prescription for disentangling the

dynamical field variables from those associated with the coordinate invariance of general relativity.

Specifically, the spacetime metric components are grouped into 4 kinematical components which

encode the coordinate freedom of the theory (the lapse function and three components of the shift

vector), and 6 dynamical ones (the components of a 3-dimensional metric induced in a spacelike

hypersurface). Now, for any specific calculation, the coordinate system must be completely fixed
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by giving prescriptions for the lapse and shift. In particular, the time coordinate is fixed by a choice

of the lapse function, and, as already mentioned, in this work we follow previous studies using the

CFA and adopt so-called maximal slicing (a very commonly adopted slicing condition in numerical

relativity that was originally proposed by Lichnerowicz [30]). A key property of maximal slicing

is that its use inhibits the focusing of the world lines of observers that move orthogonally to the

hypersurfaces: such focusing can result in the development of coordinate singularities, and is also

associated with the formation of physical singularities. An important point is that this coordinate

choice generally results in a well-posed elliptic equation for the lapse functions.

As the name suggests, the CFA requires the spatial 3-geometry to be conformally flat. This

reduces the number of independent components of the spatial metric from 6 to 1, with the single,

non-trivial function that then defines the spatial metric being known as the conformal factor. Given

the maximal slicing condition, it transpires that this implies that all non-trivial components of the

4-metric are governed by elliptic equations. Specifically, the Hamiltonian constraint reduces to an

elliptic equation for the conformal factor, and the momentum constraints yield elliptic equations

for the shift vector components.

Within the CFA, the dynamics of the gravitational field is completely determined by the dynam-

ics of the matter source(s), which in our case is a complex scalar field that satisfies the Klein-Gordon

equation. Overall then, the model considered in this thesis is governed by a mixed system of 2

second-order hyperbolic and 5 elliptic partial differential equations (PDEs)—hereafter often referred

to as “our model”—which is solved as an initial-boundary value problem. To generate numerical

solutions we adopt finite difference techniques, and use approximations which are second-order

accurate in the mesh spacings.

The starting point of a numerical evolution of our system is the specification of initial conditions

for the complex scalar field. For example, for the relatively simple case of two identical boson stars

that are initially at rest, the solution of the coupled Einstein/scalar field equations in spherical

symmetry, and with a time-periodic ansatz for the scalar field, provides a static star profile that

can be duplicated and interpolated onto a three dimensional domain. This sets initial values

representing a binary system. The elliptic equations governing the geometric quantities are then

solved on the initial slice by use of a numerical technique called multi-grid. The matter field values

are then time advanced using a second order discretization of the Klein-Gordon equation, which,

along with the elliptic equations for the advanced-time metric unknowns, is solved iteratively.

This thesis focuses on the development, testing and preliminary use of a code that approximately

solves the system of equations sketched above. The code has been subjected to a thorough series

of tests that assess convergence of the numerical results with respect to the basic discretization

scale, as well as conservation of mass and Noether charge. Additional tests include the use of the

technique of independent residual evaluation as described in detail in Chap. 4. Overall, results

from these tests indicate that the code is correctly solving the equations of motion governing the

model. Specific results calculated using the code include long-term evolution of an orbiting binary

system, (more than two orbital periods), as well as high speed head-on collisions. These results are

promising and suggest that, especially with enhancements such as the incorporation of adaptive

mesh refinement techniques and capabilities for parallel execution, the code will be a powerful tool
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for investigating strong-gravity effects in the interaction of boson stars.

We now proceed to two short overviews of subjects that are germane to our current study.

First, in Sec. 1.1, the current status of the numerical modelling of gravitationally-compact binary

systems is summarized. Second, some basic concepts and properties concerning boson stars are

reviewed in Sec. 1.2.

1.1 An Overview of Compact Object Binaries

As mentioned previously, accurate modelling of compact star binaries is needed to help extract

the gravitational wave signal from the noise in current and planned terrestrial gravitational wave

interferometers. This section briefly describes the status of numerical relativistic modelling of these

binaries by means of a quick survey of the pertinent literature. We first note that there are several

good review papers on the general subject, including the following:

• Rasio & Shapiro’s review of coalescing binary neutron stars [31]. This covers work up to 1999

on coalescing binary neutron stars—using Newtonian, post-Newtonian and semi-relativistic

approximations—and is highly recommended for familiarizing the interested reader with ear-

lier research in the field.

• Baumgarte & Shapiro’s extensive review of the use of numerical relativity to model compact

binaries [32].

• Pretorius’ more recent review on black hole collisions [33].

Efforts to accurately model the collision of compact objects using fully general relativistic

calculations began with the work on black hole head-on collisions by Smarr and collaborators in

the 1970’s [34]. These calculations established numerical relativity as a sub-field of general relativity

in its own right, and indicated that one could expect perhaps a few percent of the total mass-energy

of the system to be emitted in gravitational waves. In the early 1990’s, Anninos et al. [35] revisited

and extended this work on head-on collisions. In particular, they showed that at late times the

extracted gravitational waveform could be matched to black hole normal modes. In 1993 the Binary

Black Hole Grand Challenge Alliance consisting of investigators of several different intitutions was

founded with the mission of provide stable, convergent algorithms to compute the gravitational

waveforms originated from black-hole collisions. The Alliance main result [36] consisted in the

evolution of a single black-hole moving freely in the three dimensional computational domain.

This result constituted an important step towards the binary black hole evolution, specially when

contrasted with previous computations where the black-holes were kept fixed in the domain by

specific choices of coordinates. However, it was not until 2004 that a significant amount of orbital

motion for a black hole binary was successfully simulated. At that time Brügmann and colaborators

published results [37] demonstrating a binary with wide separation completing a full orbital period.

2005 then saw the publication of breakthrough results by Pretorius [38, 39], and the beginning

of the most productive period of binary black hole research. Pretorius presented calculations

that tracked the evolution of a binary black hole spacetime through several orbits, the plunge-

and-merge phase, and into the late-time stage where the final black hole quickly rings down to
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a near-stationary (Kerr) configuration. Furthermore, Pretorius was able to extract a reasonably

accurate gravitational wave signal from the whole evolution. Pretorius’ work had an electrifying

effect on research in the field, and other groups, led by the UTB [40, 41, 42] and NASA [43, 44] group

efforts, were quickly able to produce comparable results using similar [45] or different techniques

(moving punctures) [43, 44, 40, 41, 42, 46, 47]. Moreover, it was possible to compare the various

simulations and to show that the results were generally consistent to within the level of numerical

error [48].

Since that time, a large number of distinct simulations have been performed, and some in-

teresting phenomenology has been unearthed. Of particular interest are the kicks that the final

black holes that form from the merger can experience due to asymmetric emission of gravitational

radiation during the colaescence [49, 50, 51, 52]. When two black-holes merge in a condition of

no special symmetry, such as unequal black hole masses, the gravitational waves produced carry

away net linear momentum and are responsible then for the kicks observed on the final merged ob-

ject. The magnitude of the resulting recoil has important astrophysical implications. For example,

depending on the mass of the host stellar cluster, it may not be possible to retain the coalesced

black-hole after a major merger. Typical recoil speeds are reported to be of the order of 100km/s.

The early calculations concerning kicks—which used non-spinning black holes (no intrinsic angular

momentum)—have now been extended to investigate the effects of the black hole spins on the recoil

velocity of the final black hole. [53, 54, 55, 56, 57, 58] These studies have indicated that impressively

large kicks (∼ 4000km/s) can result from misalignment of the black holes’ intrinsic spins and the

orbital angular momentum, as well as from large initial spins. In addition, pioneering studies by the

UTB/RIT group [59, 60, 61, 62] have shown that the black holes’ initial spins can have a significant

impact on the orbital dynamics, as well as on the emitted gravitational waveform at late times.

Another interesting effect that is still being studied concerns the effect of orbital eccentricity on

the gravitational radiation waveforms; summaries of recent progress on this problem are given in

[49, 63, 64, 65, 66]. Comparison of the waveforms resulting from numerical simulations on the one

hand and post-Newtonian calculations on the other is also underway [67, 68, 69, 70, 71]. Especially

notable in this regard are the the very high accuracy simulations, recently reported by the Cornell-

Caltech group, that use pseudo-spectral techniques [72, 73]. Gravitational waveforms from some

of these studies have now been compared to those calculated from post-Newtonian techniques [74],

demonstrating for the first time that numerical relativity calculations can provide a more accurate

waveform for the late phases of inspiral than that provided by post-Newtonian methods. Finally,

it is worth mentioning two studies of relativistic (high speed) collision of black holes [75, 76]. This

type of collision is of particular current interest since it ties in with the phenomenology of possible

mini-black hole formation in new generations of particle accelerators such as the Large Hadron

Collider at CERN. Moreover, ultrarelativistic black-hole collisions are still an unexplored scenario

where interesting theoretical limits could be tested. For example, the investigation of classes of

initial conditions that could lead to naked singularity formation. So far preliminary results of such

collisions have shown no evidence of cosmic censorship conjecture violation. Their results also re-

port on a copious amount of energy emitted as gravitation radiation, ranging from 14% to 25% of

the initial rest mass energy and approaching thus the upper bound of 29% estimated by Penrose.
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The first fully relativistic simulation of binary neutron star inspiral and merger was performed by

Shibata and Uryū [77] in 2000. They paid particular attention to the final product of the coalescence

for a simple equation of state. Their work indicated that the nature of the final configuration

would depend on the initial compactness of the neutron star: more compact neutron stars would

lead to black hole formation, while those less compact would lead to a massive, differentially

rotating neutron star. In 2002, subsequent work by the same authors, using increased resolution

in the simulations, produced gravitational waveforms for the mergers [78]. Additional research

by Shibata and his collaborators [79] has focused on unequal mass binaries, as well as the use of

several different approaches to mimic realistic equations of state [80, 81]. Recent stable longterm

simulations extending over a few inspiraling orbits through to merger (the end state is typically a

black hole) have now been performed by several different groups [82, 83, 84, 85]. It is worth noting

that in all of the work mentioned this far, the simulations ignore any effects due to magnetic fields,

and it is only very recently that the first results involving magnetized neutron star binaries have

been published [86, 87]. Finally, results from three dimensional general relativistic simulations of

binaries in which one constitutent is a black hole and the other is a neutron-star binaries, have also

just started to appear; see [88, 89, 90, 91, 92] and references therein.

Despite the tremendous advances in the simulation of compact star binaries over the last few

years, relatively small regions of the multi-dimensional parameter spaces associated with the prob-

lems have been surveyed. In addition, these fully general relativistic calculations still present con-

siderable computational challenges, both in terms of their inherent complexity, and in their typical

computationsl cost. These challenges are only enhanced by the use of fluid matter sources. In this

context, and as mentioned previously, the use of scalar-field matter (i.e. boson stars) provides a

toy model with which to investigate at least some of the strong gravitational field phenomenology

associated with compact binaries. The key observation here is that the addition of the evolution

equations for a massive scalar field to the set of equations for the dynamical, relativistic gravita-

tional field does not significantly increase the overall difficulty in generating a numerical solution,

relative to a pure-gravity problem. The same cannot be said for fluid matter, where considerable

effort and finesse must be used to accurately deal with solution features such as shocks, turbulence

and vacuum or near-vacuum regions.

Thus, assuming that boson star binaries can serve as reasonable (gravitational) facsimiles of

neutron star binaries, it may be possible to use the boson star model to more quickly survey

parameter space to determine regions where particularly interesting phenomena might be expected

to arise in the neutron star case. Moreover, and more speculatively, there is still a chance that

boson stars may turn out to have real astrophysical relevance, in which case the computation of

gravitational waveforms from their interaction could be relevant to the ongoing efforts to detect

gravitational waves. For these and other reasons then, the numerical study of general relativistic

boson star binaries continues to be of significant interest.

In this thesis we take the ”toy model” approach one step further. Thus, although it is certainly

possible to simulate boson stars within the context of full general relativity [93, 94, 95, 6, 7], we

opt to study these bosonic compact objects within the context of a relatively simple approximation

to general relativity.
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The next section provides a short overview of the basic physics of boson stars as well as a survey

of some of the key literature related to boson star research.

1.2 An Overview of Boson Stars

The concept of a boson star can be traced to the pioneering work by Wheeler [96] and collaborators

who considered self-gravitating “lumps” of massless fields (electromagnetic or gravitational) called

geons. Intuitively at least, such configurations are unlikely to be stable, unless perhaps they have

a large amount of angular momentum that could counteract gravitational collapse.

Kaup [97], based on the geon concept, introduced a massive complex scalar field minimally

coupled to general relativity rather than the electromagnetic field. Assuming a static spherically

symmetric solution, he found solutions to the coupled equations, which he called Klein-Gordon

geons. These solutions were later renamed boson stars. The gravitational stability of such stars

have been studied in several different contexts and the interested reader should refer to the review

work by Jetzer [98].

Following the work by Kaup, Ruffini and Bonazzola [99] showed that the classical limit for the

boson star stress-energy tensor could be obtained by the mean value of its quantum counterpart

over the ground state vector for a system of many particles. All the bosons in the system will

occupy this ground state at zero temperature, forming a Bose-Einstein condensate. Then a boson

star is a self-gravitating compact object (compact in the sense that its radius is of the same order

as the Schwarzschild radius) composed of a large number of scalar particles in their ground state,

and described classically by a complex scalar field minimally coupled to gravity.

To date there exists no known fundamental scalar particle. Scalar fields, however, hardly rep-

resent a revolution in cosmology as their existence has been studied for quite some time. Examples

are the inflation field, proposed by Guth in 1981 [100] or the dilaton field which is a fundamental

field in bosonic string theory. There is of course a demand for the existence of the massive Higgs

boson, which is currently being sought by the particle physicists1. Scalar particles have been pro-

posed as a good candidate for, or at least as a component making up a good fraction of, the dark

matter in the universe.

Certainly, the study of the collapse of such a boson cloud of scalar particles into a boson star

could lead to a better understanding of astrophysical phenomena. The field of gravitational lensing

has achieved quite some maturity in recent years and could be helpful in its detection as well as

in the determination of its properties. Boson stars should exhibit distinct lensing effects, some

of which have already been determined. Finally, as another example of astrophysical speculation,

boson stars could offer an alternative to super black holes in galactic centers, since they could

achieve a very large size.

Despite all their possible astrophysical/particle physics applications, studies on boson stars

are strongly motivated by the simplification that this matter model introduces in the system of

equations when compared with their fermionic counterparts. The dynamics of the scalar field is

governed by a partial differential equation, viz, the Klein-Gordon equation, that has a simpler

1See the paper by Schunck and Mielke for a review [101] from particle physics point of view.
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mathematical structure than the simplest equation describing fluids, the Euler equation. The

simplicity comes from the absence of the main non-linear term present in the fluid dynamics

equation. For example, non-linear terms of the kind uux, for u = u(x), is known to be responsible

to develop singularities in the evolution of matter from a smooth initial data. With the choice of

the Klein-Gordon equation, no problems with shocks, low density regions, ultrarelativistic flows,

etc in the evolution of this kind of matter (as opposed to fluids or fermionic matter) is expected.

Modelling the matter fields with a scalar field becomes then a promising model to investigate the

strong-field dynamics of gravitationally compact objects and it is expected to shed some insight

about the dynamics of its fermionic counterpart.

Note that some features of both the fermionic and bosonic system can easily be noticed from

the start. For example, in spherical symmetry the family of solutions can be parameterized by the

modulus of the field at r = 0, the central field, φ0, which is analogous to the central density for

perfect fluid stars, governed by the TOV equations and the ideal equation of state P = KρΓ
o . A

noticeable difference between the models though, shows up in the configuration of a boson star in

equilibrium. Its tail expands, in principle to infinity, unlike the tail on fluid model stars which have

sharp edges.

The gravitational equilibrium of such gravitational solitons has already been investigated but

still raises lots of interest. Boson stars are prevented from collapsing gravitationally by the pressure

that stems from the Heisenberg uncertainty principle. Like their fermionic counterparts, neutron

stars and white dwarfs, boson stars also have a limiting ADM mass below which the star is stable

against complete gravitational collapse into a black hole. As for the neutron star case (where the

degeneracy pressure provided by the Pauli exclusion principle provides the repulsive force), an

expression for the maximum possible mass for the boson star can be also derived. The maximum

mass turns out to be ∼ M3
pl/m

2 for the fermionic matter star and ∼ M2
pl/m for a boson star

with no self-interaction potential energy terms. In both expressions Mpl is the planck mass and m

represents the respective constituent particle mass. This result comes from the fact that the boson

particles within the star are confined to a region R, and thus, via the uncertainty principle, the

following is valid p · R ∼ ~. For moderately relativistic boson stars, p = mc, a result obtained by

considering the relativistic kinetic energy of the order of the rest energy. Combining both results

above: R ∼ ~/mc. Equating this to the Schwarzschild condition, the mass formula finally arises:

R ∼ ~

mc
=

2MmaxG

c2
⇒ Mmax ∼ M2

Pl

m
(1.1)

The simplest variation of the standard boson star model generally consists of adding self-

interaction terms to the usual massive Klein-Gordon Lagrangian, such as λ|φ4|, studied by Colpi et

al. [102] and several others. As mentioned before, stable stars are formed when there is a balance

between all the forces acting on its constituent matter. In this case it is a balance between the

gravitational force, Heisenberg’s uncertainty principle, and the attractive/repulsive self interaction

between constituent particles. So the size and mass of the star greatly depends on the mass of the

individual bosons, and on the effect of self interaction terms. In principle, then boson stars can

exist in a very wide size range, from microscopic to cosmologically significant scales.
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1.3 Thesis Layout

The rest of this thesis is organized as follows:

Chap. 2 discusses the key formalisms and (continuum) approximations used in this thesis. A

quick overview of general relativity is used primarily to fix notation, and to introduce key geometri-

cal quantities (metric, curvature etc.). This is followed by a discussion of the 3+1 decomposition of

spacetime, in which the 4-geometry of spacetime is viewed as the time history of the 3-geometry of

a spacelike hypersurface. We then proceed to a discussion of our matter model (a massive complex

scalar field) including a derivation of the associated equations of motion. Sec. 2.4 is devoted to the

issue of a conformal decomposition of the equations. The CFA is imposed on these equations and

the final form of the equations of motion is derived and discussed. Related issues such as boundary

conditions and initial data are also discussed in this chapter.

Chap. 3 begins with a review the basics concepts related to the finite difference approximation

(FDA) of partial differential equations (PDE) that are used in the thesis. Some strategies and

techniques used to evaluate code correctness are then presented and are followed by a discussion

of the methods used to solve the coupled system of elliptic-hyperbolic equations.

The majority of the original research contributions in this thesis are contained in Chap. 4. The

chapter starts with a discussion of the construction of the numerical code, including a descripition

of the overall algorithmic flow. This is followed by the results from a thorough series of code tests

that employed several different types of initial data. The dynamics of head-on collision of boson

stars is then considered. The last part of the chapter discusses results related to orbital dynamics.

Three different cases are identified, according to the nature of the final merged object: 1) no merger

and longterm orbital dynamics, 2) rotating boson star and 3) (possible) black hole formation.

App. A documents the use of a publically-available FORTRAN subroutine that generates initial

data for a spherically-symmetric boson star, and which implements a general polynomial self-

interaction term for the scalar field. We feel that this routine should be of significant utility to

others who wish to study the dynamics of general relativistic boson stars.

App. B discusses the derivation of finite difference operator formulas. All the finite difference

operators used in this thesis is tabulated here. We note that the derivation process introduced here

is not new. It is only included in this appendix for quick reference and for being a key element on

the development of the MAPLE routines presented in the next appendix.

App. C contains a detailed description of the design and use of a MAPLE procedure which

facilitates the construction and coding of finite-difference discretizations of generic systems of PDEs.

Again, some effort has been expended in designing the routine so that it is potentially useful in

other contexts, and for other researchers.

App. D contains a short review of the iterative methods for solving either linear or non-linear

systems of algebraic equations. Since these techniques are at the heart of the numerical techniques

to solve our model equations, we feel that it would be useful to include this review here as a quick

reference.
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1.4 Conventions, Notation and Units

We adopt the abstract index notation for tensors as defined and discussed in Wald‘[103]. In par-

ticular, letters from the beginning of the Latin alphabet, {a, b, c, ...}, denote abstract indices. We

then use two sets of indices for tensor components: Greek indices {µ, ν, ...} range over the spacetime

values 0, 1, 2, 3 (where 0 is the time index), while the subset of Latin indices {i, j, k, l,m, n} range

over the spatial values 1, 2, 3. The Einstein summation convention applies to both of these compo-

nent index types. We also adopt Wald’s sign conventions, so in particular, the metric signature is

(−,+,+,+). The totally symmetric and totally antisymmetric parts of a tensor of type (0, 2) are

defined as

T(ab) =
1

2
(Tab + Tba) (1.2)

and

T[ab] =
1

2
(Tab − Tba). (1.3)

respectively.

We also adopt a common terminology from computational science in which the sets of time-

dependent PDEs with dependence on 1, 2 and 3 spatial dimensions (independent variables) are

referred to as 1D, 2D and 3D, respectively. In particular, PDEs describing spherically symmetric

systems in which the field variables depend on time and a radial coordinate, r, are referred to as

1D.

A variety of differentiation operators are used below. ∇a and Da denote the covariant deriva-

tive operators compatible with the spacetime metric gab and induced hypersurface metric γab,

respectively. The Lie derivative along a vector field va is denoted by Lv. Ordinary derivatives are

represented by different notations according to the context. For example the ordinary derivative of

the function f = f(x, y, z) with respect to the coordinate x will be denoted in one of the following

ways: ∂f/∂x ≡ ∂xf ≡ f,x. For time dependent functions, g = g(t, x, y, z) it is usual to temporal

differentiation using an over-dot, but the following are equivalent: ∂g/∂t ≡ ∂tg ≡ ġ. Finally,

Planck units are used throughout this thesis. Thus Newton’s gravitational constant G, the reduced

Planck constant, ~ and the speed of light in vacuum c are all set to unity: G = ~ = c = 1.
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CHAPTER 2

FORMALISM

This chapter discusses the mathematical formalism employed to model a binary system of compact

stars in coalescence, the central topic of this dissertation. Due to the compactness of the stars,

newtonian theory of gravity fails to accurately describe this system. The most accurate theory

of gravity to date is the Einstein’s theory of General Relativity and it is in the context of an

approximation to General Relativity that the numerical study of two compact stars (boson stars)

orbiting each other was conducted. Sec. 2.1 briefly review the general relativistic field equations.

Sec. 2.2 discusses the mathematical formalism to cast the Einstein equations into a form amenable

to numerical treatment, the so called 3 + 1 or ADM formalism. Sec. 2.3 discusses the choice of a

complex scalar field as the matter model. The derivation of the scalar field equations of motion,

the Klein-Gordon equations, is presented along with related derived quantities. Sec. 2.4 exposes in

detail the derivation of the equations of motion for the coupled gravity-scalar-field system under

the key assumptions for this thesis: conformally flat and maximal slicing conditions. The 3+1 form

of the Einstein equations is first conformally decomposed. This conformal decomposition is not

crucial per se for the implementation of the approximation (CFA), however it provides a context in

which the CFA can be easily compared to the full Einstein equations. It is therefore discussed here

for the sake of completeness and clarity of exposition. The conformally flat condition along with the

maximal slicing choice is then imposed on these conformally decomposed field equations. As a result

a system of partial differential equations in cartesian coordinates is obtained. The several strategies

for implementing boundary conditions for this system is, at last, discussed. The reader interested

only on the final form of the equations may consider to skip the previous sections of lengthy

derivations and approach Sec. 2.5 directly. Sec. 2.5 summarizes the equations derived previously

and points out their main features besides indicating how they were solved. This chapter ends

by discussing, also in detail, how the initial data for the binary boson star system was calculated.

Note that the binary boson star is only a particular scenario chosen to be studied under CFA.

Sec. 2.6 derives the equations necessary for modelling a boson star in spherical symmetry; adopts

the static ansatz to describe a spherically symmetric static star and describes how each star is then

interpolated into the three dimensional spacelike hypersurface in order to consist the initial data

set describing a boson star binary.

2.1 General Relativity Field Equation

Space and time in General Relativity are modeled as a four dimensional Lorentzian manifold M.

Each point in the spacetime manifold corresponds to a physical event. The notion of distance

between two points or, in the spacetime case, the interval between two events, is encoded in a

symmetric, non-degenerate, tensor field of type (0, 2), the metric gab. The metric is thus the
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fundamental entity used to quantify the geometry of spacetime, and gravitational effects arise due

to the fact that this geometry is, in general, curved.

Let {xµ} be a coordinate system that we assume covers that part of the manifold, M, which

is of interest. The vector and dual vector bases associated with this coordinate system are called

coordinate bases and are usually written as {(∂/∂xµ)a} and {(dxµ)a}, respectively. Therefore the

metric components (or the line element corresponding intuitively to infinitesimal squared distance)

in this coordinate basis can be read as:

gab ≡ ds2 = gµν (dxµ)a (dxν)b . (2.1)

The covariant derivative map, ∇a is chosen in terms of the ordinary (partial) derivative map,

∂a via

∇av
b = ∂av

b + Γbacv
c, (2.2)

where Γbac is the Christoffel symbol and vb is an arbitrary vector. Throughout this thesis we use a

covariant derivative that is compatible with the metric, i.e. that satisifies ∇agbc = 0. The Christoffel

symbol can then be calculated in terms of the ordinary derivative operator:

Γcab =
1

2
gcd (∂agbd + ∂bgad − ∂dgab) . (2.3)

The intrinsic notion of curvature of the spacetime can be made mathematically precise by

considering the parallel transport of vectors along curves in the spacetime. For example, a spacetime

is curved in a region if an arbitrary vector that is parallel transported along a closed path that

bounds that region experiences an overall rotation. Another consequence of curvature is that

the result of parallel transporting a vector is, in general, path-dependent. Parallel transport can

be made mathematically precise in terms of the covariant derivative operator 1 The failure of

successive applications of the covariant derivative to commute captures the path-dependence of

parallel transport (along with the notion of curvature) is quantified by the so called intrinsic

curvature tensor, the Riemann curvature tensor, defined by:

2∇[a∇b]wc = R d
abc wd. (2.4)

Contractions of the Riemann tensor give rise to the Ricci tensor :

Rac = R d
adc (2.5)

and to the Ricci scalar or scalar curvature:

R = gabRab. (2.6)

A key feature of the Riemann curvature tensor is that it satisfies the contracted Bianchi identity

which can be expressed as the fact that the Einstein tensor, defined in terms of the Ricci tensor

1See Chap. 3 of [103] for a complete and detailed discussion of this material
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and scalar curvature as

Gab = Rab −
1

2
gabR (2.7)

has vanishing divergence:

∇aGab = 0. (2.8)

Given a metric gab, the Riemann curvature tensor can be written in terms of the Christoffel

symbols through the following tensorial equation:

R d
abc = −2

(

∂[aΓ
d
b]c − Γec[aΓ

d
b]e

)

. (2.9)

Once a coordinate basis is chosen, the Riemann tensor components can be computed from the

metric components and its various derivatives in that basis. In particular, since from (2.3) the

Christoffel symbol components involve first derivatives of the metric components, the components

of the curvature tensor generally involve second derivatives of the metric.

The curvature of spacetime arises in response to the distribution of matter-energy in the space-

time, which includes contributions from the gravitational field itself, as well as those from any

matter fields present in the spacetime. For any given matter field, the coupling to gravity is

governed by the stress-energy-momentum tensor (stress-energy for short): Tab. In many cases,

including that considered in this thesis, the equation of motion for the matter field can be derived

from the vanishing of the divergence of the stress tensor,

∇aTab = 0. (2.10)

The Einstein field equation expresses the intimate relationship between the physical phenomena

taking place in the spacetime and the curvature of the spacetime geometry itself. In its most

compact and elegant form the field equation is:

Gab ≡ Rab −
1

2
gabR = κTab, (2.11)

where the constant κ depends on the system of units, but is also chosen so that in the weak-field

limit, the Newtonian description of gravity is recovered. In the geometric units used in this thesis

we have κ = 8π.

Once a coordinate basis is chosen, the Einstein equations can be cast as a system of 10 non-linear

second order partial differential equations for the metric components, gµν , in the chosen coordinate

system. Since the metric signature is Lorentzian, i.e. (−,+,+,+), this system of partial differential

equations has a hyperbolic or wave-like character. Physically relevant solutions of this system of

equations are quite hard to obtain. Only a few of them are possible to be obtained exactly by

restricting to spacetimes with high degree of symmetry as for example the Schwarzschild solution

describing the exterior gravitational field of a static, spherically symmetric body or the Kerr solution

describing stationary rotating black-holes. Many other exact solutions of the Einstein equations

have been found with the discovery of Killing vector fields or the use of null tetrads (Newman-

Penrose formalism). However, most of them are of little astrophysical interest.

The tensorial nature of the Einstein field equations gives rise to several different formalisms.
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Formalisms are prescriptions on how to decompose the spacetime and how to choose fundamental

and auxiliary variables. It provides thereby the framework to choose coordinates. Ultimately a

coordinate system that is adapted to the symmetries or features of the solution would be the ideal

coordinates for the problem. Since no one is able predict in advance how the field solution for a

highly dynamical and strong field spacetime would be, the choice of coordinate becomes a hard craft.

One way to generate solutions of Einstein equations involves treating the equations as a dynamical

system. Loosely speaking, in this approach one of the spacetime coordinates is singled out as a

“time” function with respect to which the system evolves. One then considers some collection of

quantities (e.g. metric components, and derivatives thereof) that defines the state of the geometry

at any specific time. Initial values for these quantities are to be prescribed at some initial value

of the “time” function, and then equations of motion generate “future” (or “past”) values. This,

in a nutshell, is the initial value formulation of Einstein equations and the next section presents

details of a particular approach—the ADM or 3+1 formalism—that casts Einstein equations as an

initial value problem (or Cauchy problem) on a spacelike hypersurface. This formalism (as well as

others based on it) has proved to be very convenient in obtaining numerical solutions of the field

equations that are of astrophysical interest.
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2.2 3+1 Decomposition - ADM Formalism

In the ADM formalism spacetime is decomposed into space and time. Fundamental to this ap-

proach is the choice of a timelike unit vector field ta in the spacetime and a foliation of spacelike

hypersurfaces, Σt, parametrized by the time function. The timelike vector field is chosen such that

its integral curves represent the time function coordinate t throughout the spacetime, i.e. such that

ta∇at = 1. In essence the vector field and the time function are chosen to represent the develop-

ment in time of quantities defined on the hypersurface. In order to make the last statement precise,

it is necessary to decompose spacetime vector fields into (vector) parts defined either exclusively

on the hypersurface or in a normal direction to the hypersurface. We thus introduce the lapse

function, α, as the projection component of the vector field ta along a unit vector field, na, which

is normal to the hypersurface and the shift vector, βa, the projection of ta along the hypersurface,

and thus satisfying gabβ
anb = 0. Therefore ta can be expressed as:

ta = αna + βa. (2.12)

Here, the lapse function is obtained from ta by the formula:

α = −gabtanb, (2.13)

since gabn
anb = −1. Introducing the projection tensor, γab, defined by

γab = δab + nanb, (2.14)

the shift vector can be expressed as

βa = γabt
b, (2.15)

as can be verified from equation (2.12) and the definition of the γab.

Also note that the relation ta∇at = 1 is satisfied from equation (2.13) if the dual normal vector

is chosen such that:

na = −α∇at. (2.16)

The decomposition of vectors into “temporal” and “spatial” parts can be easily generalized to

tensors. The tensor part normal to the hypersurface can be obtained by contraction of the tensor

indices with the unit norm vector na. Its hypersurface tangent part, on the other hand, comes

from applying the projection tensor to each tensor index to be projected into the hypersuface:

⊥ T ab...cd... ≡ γae γ
b
f . . . γ

g
c γ

h
d . . . T

ef...
gh... (2.17)

A tensor which has had all of its indices projected onto the hypersurface is known as a spatial

tensor. One such tensor of special interest is the induced three dimensional metric, γab, of the

hypersurface:
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γab = gab + nanb. (2.18)

In order to describe parallel transport of spatial tensors and curvature within a hypersurface, a

covariant derivative operator must be defined. A natural choice is to project the four dimensional

covariant derivative into the spacelike hypersurface, leading to the definition of a three dimensional

covariant derivative operator, Da

Da ≡⊥ ∇a. (2.19)

The Riemann curvature tensor on the hypersurface is defined analogously to its four dimensional

counterpart:

2D[aDb]wc = R d
abc wd, (2.20)

while the Ricci tensor and Ricci scalar are obtained by the usual contractions of the Riemann

curvature tensor:

Rab = R c
acb and R = Ra

a . (2.21)

As mentioned previously, the Riemann curvature tensor describes the curvature intrinsic to a

manifold. In the current case, which involves the embedding of three-dimensional hypersurfaces in

a four-dimensional spacetime, there is a second type of curvature, known as the extrinsic curvature,

that quantifies the embedding. Since the orientation of the hypersurface within the spacetime is re-

lated to the unit normal vector, na, the covariant derivative of na thus characterizes nearby changes

in the orientation. The extrinsic curvature tensor, Kab, can thus be defined as the projection of

the covariant derivative of the dual vector field associated to the normal vector field:

Kab = − ⊥ ∇anb = −1

2
⊥ Lngab = −1

2
Lnγab. (2.22)

Since both sides of the Einstein equations must be decomposed in the 3+1 approach, we must

also consider various projections of the stress-energy tensor along the normal na and into the

hypersurface Σt. First note that the stress-energy tensor Tab is a type (0, 2) symmetric tensor. A

generic tensor of this type can be decomposed in the following way in the 3+1 formalism:

Tab =⊥ Tab − 2n(a ⊥ Tb)n̂ + nanbTn̂n̂. (2.23)

We rewrite the above as

Tab = Sab − 2J(anb) + ρnanb, (2.24)
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where the quantities, ρ, Ja and Sab are defined by

ρ ≡ Tn̂n̂ = Tabn
anb = T abnanb, (2.25)

Ja ≡ ⊥ Tan̂ =⊥ (Tabn
b), (2.26)

Ja ≡ ⊥ T an̂ = − ⊥ (T abnb), (2.27)

Sab ≡ ⊥ Tab, (2.28)

Physically, ρ is interpreted as the local energy density, Ja as the momentum density and Sab as

the spatial stress tensor, all measured by observers moving orthogonally to the slices.

The several possible combinations of projections of Einstein equations along the “temporal”

and “spatial” directions give rise to the equations of motion in the 3 + 1 form. Projecting both

indices with na we find

R +K2 −KabK
ab = 16πρ, (2.29)

whereK ≡ Ka
a is the trace of the extrinsic curvature. Equation (2.29) is also known as Hamiltonian

constraint. On the other hand, if only one index is contracted along na while the other is projected

onto the hypersurface, we derive a three-vector equation known as the Momentum constraint :

DbK
ab −DaK = 8πJa. (2.30)

We note that care must be exercised in using the covariant form of this equation, since due to

the relative sign in the definitions of Ja and Ja in equations (2.26) and (2.27) we have

⊥ Gan̂ = −DbKab +DaK = 8πJa, (2.31)

⊥ Gan̂ = DbK
ab −DaK = 8πJa. (2.32)

Key features of the constraint equations are the presence of only spatial tensors and the absence

of explicit time derivative of these tensors. They must be satisfied by {γab,Kab} on all slices,

including the initial slice.

The 3+1 equations that do involve time derivatives of the spatial tensors {γab,Kab}, are thus

called evolution equations. For the spatial metric, an evolution equation follows from the definition

of the extrinsic curvature (2.22):

Ltγab = −2αKab + Lβγab. (2.33)

where Lt is the Lie derivative with respect to the vector field ta. The evolution equation for

the extrinsic curvature can be derived by considering the projection of both indices of Einstein

equations, which involves computation of ⊥ Ran̂an̂. After some manipulation, we find

LtKa
b = LβKa

b −DaDbα+ α

[

Ra
b +KKa

b + 8π

(

1

2
γab(S − ρ) − Sab

)]

. (2.34)
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All the definitions and decompositions done so far were coordinate independent ones. Oper-

ationally however, a coordinate system xµ ≡ {t, xi} needs to be introduced in order to generate

solutions of the equations (we remind the reader that Greek indices such as µ range over the space-

time values, 0,1,2,3, while Latin indices such as i are restricted to spatial values, 1,2 and 3). Having

adopted such a basis, the spacetime displacement can be written as

ds2 = gµνdx
µdxν

= −α2dt2 + γij
(

dxi + βidt
) (

dxj + βjdt
)

, (2.35)

where the lapse is a function of time and the spatial coordinates, α ≡ α(t, xi), while the shift is a

spatial vector function of time and spatial coordinates, βi ≡ βi(t, xi). The lapse function can be

interpreted as the lapse of proper time, with respect to coordinate time, for an observer travelling

normally to the hypersurface. The shift vector encodes the translation of spatial coordinates from

one slice to the other, again relative to propagation in the normal direction. All spatial tensors

indices are lowered and raised with the 3-metric γij and its inverse γij , defined by γikγkj = δij .

Both the spatial metric and its inverse are functions of the coordinates xµ.

As discussed above, the decomposition of the stress-energy tensor gives rises to a variety of

energy-momentum quantities defined by equations (2.25-2.28). Using the relations nµ = (1/α;−βi/α)

and nµ = (−α; 0), these quantities become

ρ =
T00

α2
− 2

βiT0i

α2
+
βiβjTij
α2

= α2T 00, (2.36)

Ji =
Ti0
α

− Tijβ
j

α
, (2.37)

J i = α(T i0 + T 00βi), (2.38)

Sij = Tij . (2.39)

The component form of the evolution equations can then be written as

∂tγij = −2αγikK
k
j + 2D(iβj) (2.40)

and

∂tK
i
j = βk∂kK

i
j − ∂kβ

iKk
j + ∂jβ

kKi
k −DiDjα

+ α

[

Ri
j +KKi

j + 8π

(

1

2
δij(S − ρ) − Sij

)]

, (2.41)

while the constraint equations become:

R +K2 −KijK
ij = 16πρ, (2.42)

DjK
ij −DiK = 8πJ i. (2.43)
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Even within a specific formulation of the Einstein equations, such as the 3+1 approach sketched

above, the coordinate invariance of general relativity ensures that there are generally many distinct

possibilities to solve the specific set of PDEs that results once the coordinate system has been fully

fixed (full specification of the lapse and shift). Here we are referring to the fact that we have

more equations (4 second-order “elliptic” constraints + 12 first-order-in-time evolution for a total

of 16 equations) than fundamental dynamical unknowns (6 gij + 6 Kij = 12 unknowns). The

interested reader is referred to the classic paper by Piran [104] in which nomenclature, such as

free evolution, constrained evolution and partially-constrained evolution is defined and discussed.

Here, the key thing to note is that the approximation (CFA) that is adopted in this thesis has

the advantage of providing a single, well defined set of 5 elliptic PDEs for 5 well defined functions

that completely fix the spacetime geometry. In this sense, and in an abuse of Piran’s original

classification, we implement a fully constrained evolution for the geometrical field and, further,

in contrast to the full general-relativistic situation there are no purely gravitational degrees of

freedom. That means that in the model considered here, as is the case for any model that adopts

the CFA with maximal slicing condition, all dynamics is linked to the dynamics of the matter.

This has a host of ramifications, physically, mathematically and computationally, but particularly

given the efforts that have been expended on taming instabilities in free evolution approaches for

the full Einstein equations, is one of the most attractive features of Isenberg’s proposal.
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2.3 Matter Model: Massive Complex Scalar Field

The matter model adopted in this thesis is a complex Klein-Gordon field, which satisfies a Klein-

Gordon equation as discussed in detail below. This field represents a simple type of matter that

when coupled to Einstein gravity, or in the context of the approximation adopted in this thesis,

admits star-like solutions. Studies focusing on such solutions—known as boson stars—using a

variety of techniques including numerical analysis, have a rich history and we refer the reader to

the paper by Schunck and Mielke, [101] (and references therein), for an excellent and thorough

review of the subject as of about five years ago.

General relativists have studied Klein-Gordon fields for many purposes over the years. As

either 1) a classical field or 2) a quantum-theory of spin 0 particles, scalar fields have been widely

exploited for exploratory theoretical studies. A key point is that the simplicity of scalar matter

(in terms, e.g. of physical interpretation as well as complexity of the equations of motion), often

allows one to investigate and understand basic theoretical issues in Einstein gravity relatively free

of the complications a more realistic matter model could bring in. This is a chief motivation for

the use of a scalar field in the current work.

In the discussion below, we will refer to the system of a single Klein-Gordon field coupled to

Einstein gravity as the Einstein-Klein-Gordon (EKG) system. We note that we adopt a complex

scalar field, rather than a real one, since it has been long known that there are no regular, static

solutions (i.e. star-like solutions) for a real scalar field in general relativity. Interestingly, for us

this turns out to be something of a technical point, since for a real field coupled to Einstein gravity

there are quasi-static solutions known as “oscillons” which have decay times that can be much

longer than the intrinsic dynamical time [105]. Thus in principle one could use a real scalar field

to study some of the effects we wish to examine in this thesis and follow-up work. However, for a

variety of reasons, not least including the ease with which one can generate star-like solutions, we

prefer to work with the complex field.

Additionally, the complex field must interact in an non-trivial potential, which we define to

include a mass term. The possibilities for potential choice are endless, and have formed the basis

for much previous work. Again, we choose the simplest approach and, at least initially, adopt only

a mass term. The boson stars modelled by scalar fields with this self-interaction potential are also

known in the literature as mini-boson stars.

Since mathematically we are ultimately interested in solving an approximate EKG system as an

initial value problem, we note in passing that a scalar field is known to admit a well-posed initial

value formulation in the following sense [103]:

• For an initial data in a spacelike Cauchy surface Σ in a globally hyperbolic spacetime 2

(M, gab), there is an open neighborhood O of Σ such that the Klein-Gordon equation has a

solution in O and (O, gab) is globally hyperbollic.

• The solution in O is unique and propagates causally.

• The solution depends continuously on the initial data.

2When the domain of dependence of a Cauchy surface is the whole spacetime (region of interest) then this
spacetime (region) is said to be globally hyperbolic
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In addition to possessing star-like solutions, a key advantage of scalar matter relative to the

more-astrophysically relevant perfect fluid case, is that the solutions do not tend to develop shocks

or rarefraction regions. Rather, as is expected from the structure of the equations, and has been

born out my many [106, 107, 108] previous numerical studies, solutions tend to remain as smooth

as the initial data, except at actual physical singularities (produced, for example, by gravitational

collapse).

2.3.1 Einstein-Klein-Gordon System

One route to study matter models in general relativity is to postulate equations of motion for the

matter, derive a suitable stress-energy tensor Tab compatible with those equations and then use

the Einstein equations to relate the matter distribution to the spacetime curvature through this

stress-energy tensor. However, and as already mentioned, in many cases local conservation of the

stress-tensor, implies the matter equation of motion. In such cases it is essentially sufficient to

postulate the stress-energy tensor Tab for the matter model in order to study the coupled system

of matter distribution and spacetime geometry.

Additionally, and for a variety of reasons, it is often useful to adopt a Lagrangian (or variational)

approach to Einstein equations and we will do so here. Here, a basic observation is that the vacuum

Einstein equations can be obtained from the functional derivative of the so called Hilbert action

functional:

SG[gab] =

∫

M

LG =

∫

M

√−gR, (2.44)

where LG =
√−gR is the Einstein lagrangian density and R the Ricci scalar. It is a standard

exercise to show that the functional derivative of the action with respect to the inverse metric gab

is
δSG
δgab

=
√−gGab, (2.45)

which then clearly yields the vacuum Einstein equations Gab = 0 when the field configuration

satisfies the action extremization condition:

δSG
δgab

= 0. (2.46)

In order to obtain a coupled matter-gravity system, one then simply adds to the matter la-

grangian density to the Hilbert term (this is the so-called minimal coupling prescription). We thus

have

L = LG + αMLM , (2.47)

where αM is a coupling constant that can typically be rescaled through a redefinition of the matter

fields. In the case of the Einstein-Klein-Gordon system one conventional choice that we adopt here

is αKG = 16π.

The stress-energy tensor can now be calculated as the variation of the matter action with respect

to the inverse metric field gab. Specifically, one has
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Tab = −αM
8π

1√−g
δSM
δgab

, (2.48)

where SM is the action functional for the matter field M (understood here as a generic collection

of matter fields and their higher order covariant derivatives):

SM [gab,M ] =

∫

M

LM . (2.49)

Finally, variations of the action SM with respect to the matter fields themselves generate the

equations of motion for the matter.

For the reasons discussed above, we now restrict attention to matter consisting of a single

complex scalar field, Φ. We write the field as

Φ = φ1 + iφ2 = φ0 exp(iθ), (2.50)

where φ1, φ2, φ0 and θ are real-valued functions of the spacetime coordinates xµ. The Lagrangian

density associated with this field is

LΦ = −1

2

√−g
(

gab∇aΦ∇bΦ
∗ + U(|Φ|2)

)

, (2.51)

where U(|Φ|2) is the scalar field self-interaction potential. As also discussed above, we will eventu-

ally specialize to the case where U contains only a mass term

U(|Φ|2) = m2ΦΦ∗ = m2φ2
0 = m2(φ2

1 + φ2
2), (2.52)

but for the time being we will continue the discussion in terms of general potentials.

We now rewrite the lagrangian (2.51) in terms of the real-valued quantities defined in (2.50):

LΦ = −1

2

√−g
(

gab∇aφ1∇bφ1 + gab∇aφ2∇bφ2 + U(φ2
0)
)

. (2.53)

Klein-Gordon equations for each real valued component (φA ∈ {φ1, φ2}) can then be obtained by

the usual variational procedure, yielding

�φA − dU(φ2
0)

dφ2
0

φA = 0 or gab∇a∇bφA − dU(φ2
0)

dφ2
0

φA = 0, A = 1, 2, (2.54)

where � ≡ gab∇a∇b is the general relativistic D’Alembertian operator.

Once a coordinate system is chosen, each of the above scalar Klein-Gordon equations is a second-

order-in-time PDE. In keeping with the 3+1 spirit, it is often conventional to recast these equations

in first-order-in-time form, and we do so here. One specific way of doing this is to pass to the
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Hamiltonian description of the system in the standard fashion. Namely, we consider the lagrangian

as a function of the field and its spatial and time derivatives; we define a conjugate momentum

associated with the field; we write down the Hamiltonian functional from the langrangian by

performing a Legendre transformation for the conjugate momentum; and we then evaluate the

Hamilton evolution equations from the lagrangian. Full details of this procedure can be found in

standard texts such as Wald [103], and here we simply summarize the results for the scalar field.

Since the scalar-field Lagrangian (2.51) does not contain time derivatives higher than first order,

the conjugate momentum associated with each component of the scalar field can be defined as:

ΠA ≡ δ(
√−gLφA

)

δφ̇A
, (2.55)

or, more explicitly

ΠA =

√−g
α2

[

φ̇A − βi∂iφA

]

. (2.56)

The dynamical equations of motion (2.54) can be rewritten in terms of these conjugate fields,

leading to four first-order-in-time partial differential equations for the two conjugate pairs of vari-

ables {φA,ΠA} (where A = 1, 2):

∂tφA =
α2

√−gΠA + βi∂iφA, (2.57)

∂tΠA = ∂i(β
iΠA) + ∂i(

√−gγij∂jφA) −√−gdU(φ2
0)

dφ2
0

φA. (2.58)

These last equations can be further manipulated using the following relationship between the

determinants of the spacetime and spatial metrics: 3

√−g ≡ α
√
γ, (2.59)

yielding

∂tφA =
α√
γ

ΠA + βi∂iφA, (2.60)

∂tΠA = ∂i(β
iΠA) + ∂i(α

√
γγij∂jφA) − α

√
γ
dU(φ2

0)

dφ2
0

φA. (2.61)

Having obtained equations of motion for the scalar field, we now consider computation of the

stress-energy tensor and the 3+1 quantities derived from it. Using the variational prescription

sketched above we find

Tab =
1

2

[

∇aΦ∇bΦ
∗ + ∇bΦ∇aΦ

∗ − gab(g
cd∇cΦ∇dΦ

∗ + U(ΦΦ∗))
]

, (2.62)

3This relation is derived from the definition of inverse metric: g00 = −α−2 = (−1)0+0det(γij )/det(gµν ) = γ/g.



CHAPTER 2. FORMALISM 25

which, adopting a coordinate basis, and working with the real-valued field components becomes

Tαβ =

2
∑

A=1

1

2
[∂αφA∂βφA + ∂βφA∂αφA − gαβg

µν∂µφA∂νφA] − 1

2
gαβU(φ2

0). (2.63)

From the above, and using (2.36)-(2.39), we compute the 3+1 stress-energy quantities and find:

ρ =
1

2

2
∑

A=1

[

Π2
A

γ
+ γij∂iφA∂jφA

]

+
1

2
U(φ2

0), (2.64)

Ji =
2
∑

A=1

[

ΠA√
γ
∂iφA

]

, (2.65)

J i =

2
∑

A=1

[

−ΠA√
γ
γij∂jφA

]

, (2.66)

Sij =
1

2

2
∑

A=1

{

2∂iφA∂jφA + γij

[

Π2
A

γ
− γpq∂pφA∂qφA

]}

− 1

2
γijU(φ2

0). (2.67)

Additionally, we need to compute the trace of the spatial stress tensor, S ≡ Sii as well as the

combination ρ+ S. These are given by

Sii =
1

2

2
∑

A=1

[

3
Π2
A

γ
− γij∂iφA∂jφA

]

− 3

2
U(φ2

0), (2.68)

ρ+ S =

2
∑

A=1

[

2
Π2
A

γ

]

− U(φ2
0). (2.69)

2.3.2 Noether Charge

The invariance of the Klein-Gordon lagrangian density, equation (2.51), under a global U(1) sym-

metry transformation Φ → Φeiǫ gives rise to a conserved current density according to Noether’s

theorem. Roughly, this result can be obtained as follows:

First, consider the Klein-Gordon action as a functional of the inverse metric, the scalar field

and its first covariant derivative, instead of the inverse metric and the scalar field alone, as in the

last subsection:

SKG[gab,Φ,∇aΦ] =

∫

M

LKG(gab,Φ,∇aΦ). (2.70)

Also note that for a scalar field we have ∇aΦ = ∂aΦ. Defining the variation of a functional or

function with respect to a parameter ǫ as:

δS[Φǫ] ≡
dS

dǫ

∣

∣

∣

∣

ǫ=0

and δΦ ≡ dΦ

dǫ

∣

∣

∣

∣

ǫ=0

, (2.71)

the variation of the Klein-Gordon action functional can then be expanded as:
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δSKG =

∫

M

δSKG
δgab

δgab +
δSKG
δΦ

δΦ +
δSKG
δ(∂aΦ)

δ(∂aΦ). (2.72)

Our interest here is in variations that keep the action functional constant; that is, variations such

that δSKG = 0. The inverse metric gab is invariant under the action of a U(1) transformation:

δgab = dgab

dǫ |ǫ=0 = 0, and the first term in the equation (2.72) drops out. Further simplification of

equation (2.72) results from noting that the variation with respect to the field derivative can be

rewritten as:

δ(∂aΦ) =
d(∂aΦ)

dǫ

∣

∣

∣

∣

ǫ=0

= ∂a

(

dΦ

dǫ

) ∣

∣

∣

∣

ǫ=0

= ∂a(δΦ), (2.73)

since ordinary derivatives commute. Inserting the above relationship in equation (2.72), we have

after some simple algebraic manipulation:

δSKG =

∫

M

{[

δSKG
δΦ

− ∂a

(

δSKG
δ(∂aΦ)

)]

δΦ + ∂a

(

δSKG
δ(∂aΦ)

δΦ

)}

. (2.74)

The first term of the equation above is simply the Klein-Gordon equation of motion which vanishes

identically. The second term is a total divergence that can be converted to a surface term using

Stokes theorem, and which also has to vanish if the action is supposed to be invariant under the field

variation δΦ. This then implies that the current density, ja, associated with the U(1) symmetry

and defined by

ja ≡ δSKG
δ(∂aΦ)

δΦ, (2.75)

is conserved

∂aj
a = 0. (2.76)

A conserved (Noether) charge, QN , is associated with the “time” component of the current

density:

QN =

∫

Σt

jt, (2.77)

where Σt is a spacelike hypersurface as previously, and a fixed volume element, e, Σt is understood

in the integration.

To compute the explicit form of the Noether current we apply eq. (2.76) to the Klein-Gordon

lagrangian (2.51), obtaining

δLKG ≡ ∂a

(

δSKG
δ(∂aΦ)

δΦ +
δSKG
δ(∂aΦ⋆)

δΦ⋆
)

= ∂a

(

−1

2

√−ggab(∂bΦ⋆δΦ + ∂bΦδΦ
⋆)

)

, (2.78)

so the current density is

ja = −1

2

√−ggab(∂bΦ⋆δΦ + ∂bΦδΦ
⋆). (2.79)

For an infinitesimal U(1) transformation, Φ → Φ + iǫΦ, we have
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δΦ = iǫΦ and δΦ⋆ = −iǫΦ⋆, (2.80)

and we have

ja = −i1
2

√
−ggab(Φ∂bΦ⋆ − Φ⋆∂bΦ), (2.81)

where the constant ǫ has been factored out. Using the component form of the field, Φ = φ1 + iφ2,

this can also be expressed as:

ja =
√−ggab(φ2∂bφ1 − φ1∂bφ2). (2.82)

Finally the time component of the current density in a 3+1 coordinate basis assumes the following

form:

jt =
√−g

[

gtt(φ2∂tφ1 − φ1∂tφ2) + gti(φ2∂iφ1 − φ1∂iφ2)
]

=
√−g

[

− 1

α2
(φ2∂tφ1 − φ1∂tφ2) +

βi

α2
(φ2∂iφ1 − φ1∂iφ2)

]

= φ1Π2 − φ2Π1, (2.83)

where equation (2.57) was used to simplify the second line of the above, and to express ∂tφA in

terms of their respective conjugate momenta ΠA. Choosing the fixed volume element e on Σt to

be the coordinate volume element d3x, the Noether charge can be written as:

QN =

∫

Σt

(φ1Π2 − φ2Π1) d
3x (2.84)

and can be expected to be conserved: i.e. to have the same value on each slice Σt of the spacetime

foliation. This expression is used in Chap. 4 as one diagnostic to ensure that the numerical code

used to solve our model system is producing sensible results.
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2.4 Conformally Flat and Maximal Slicing Conditions

This section discusses in details how the CFA with maximal slicing condition are applied to the

EKG system and what the resulting equations of motion are. Sec. 2.4.1 briefly reviews the maximal

slicing condition as a way to fix the time coordinate. The reader should notice however that this

slicing condition is actually a necessary condition to be applied in addition to the CFA. As it

will become clearer later, when both conditions are applied together to the conformal Einstein

equations, the extrinsic curvature evolution equations can be neglected (except for its trace part).

Sec. 2.4.2 shows in details how to conformally decompose the 3 + 1 Einstein equations. Despite

this decomposition not being used in its full form later in this thesis, it is included here for sake of

completeness and to provide a framework in which the effects of the CFA on the Einstein equations

would be more evident. The key approximation used in this thesis is then exposed in Sec. 2.4.3 while

Sec. 2.4.4 presents in cartesian coordinates the whole set of equations for our model, the Klein-

Gordon field within the conformally flat approximation to general relativity. Sec. 2.4.5 discussed

several different strategies for supplementing the equations of motion with boundary conditions.

At last, Sec. 2.4.6 discuss the calculation of the ADM mass under these conditions.

2.4.1 Time Coordinate Choice: Maximal Slicing

In the initial value formulation or Cauchy formulation of the Einstein equations, the choice of

time coordinate is related to the choice of the spacelike hypersurface since the hypersurfaces are

level surfaces of the time coordinate. As briefly discussed in Sec. 2.2, the embedding of these

three dimensional hypersurfaces in the four dimensional spacetime is controlled by the extrinsic

curvature Kab. It is natural therefore to choose the time coordinate by imposing a condition on the

extrinsic curvature. One particular choice widely used in numerical relativity consists of imposing

the following condition on the trace of the extrinsic curvature tensor:

K ≡ Ka
a = 0 and ∂tK = 0. (2.85)

This choice is called maximal slicing and it is a particularly useful slicing for numerical compu-

tation since it tends to avoid any sort of spacetime singularity by freezing the slice time evolution

in regions close to singular points [109]. For a congruence of normal geodesics – observers trav-

elling normal to the hypersurface – the maximal slicing condition imposes that the expansion of

this congruence vanishes therefore avoiding them to focus and form caustics. This demand also

causes the volume of the hypersurface to be maximal. For a more detailed discussion of this slicing

condition and a proof of its properties, the reader should refer to Gravitation [110].

2.4.2 Conformal Decomposition

Conformal decompositions of the Einstein equations in the context of 3 + 1 formalism were first

introduced by Lichnerowicz in 1944 [30], with a proposal for conformal decomposition of the Hamil-

tonian constraint. The idea was to cast the Hamiltonian constraint in a pure elliptic form and

prove existence and uniqueness of the constraint solutions. Later on in the seventies, James York



CHAPTER 2. FORMALISM 29

[111, 112] worked on the problem of initial data by posing the question of which field variables are

freely specifiable on the initial slice and which one are constrained. In analogy to electromagnetism

where the field can be decomposed in longitudinal and transverse parts and thereby the gauge and

physical parts separated, a strong interest arose in tensor decompositions as well [113, 114, 115].

The main idea was that the covariant decomposition of symmetric tensors would provide at least

approximately or formally a solution to the constraint equations (and show that the solutions are

unique) besides characterizing the dynamical (unconstrained) variables covariantly. Of a particular

interest was the so called conformal transverse-traceless decomposition. This decomposition was

able to cast the constraints in an explicit elliptic form and consequently to prove the existence and

uniqueness of the constrained solutions. From these studies and the analysis of the asymptotic

behaviour of the Riemann curvature tensor by Newman-Penrose [116] emerged the notion that the

gravitational radiation may be represented by the transverse-traceless part of the pair 3-metric

and extrinsic curvature {γab,Kab} besides representing a pure spin 2 part of the tensors. This

interpretation is accepted in this section with no further discussion. For a comparison between the

formalisms the reader is refered to the paper by Thorne [117].

The main purpose of this section is to conformally decompose the 3 + 1 Einstein equations. It

is expected then to separate the coordinate from the dynamical part. This decomposition becomes

the basis for the approximation to be introduced in the next section: conformally flat condition on

a maximal slice. The discussion here follows approximately the lecture notes on 3 + 1 formalism

by Gourgoulhon [118] and, as mentioned before, it is included here for completeness.

The first step towards the conformal decomposition of the Einstein equations is to investigate

how each of the elements entering the equation changes under a conformal transformation. These

elements are basically the 3-metric γij , the connection Cijk associated with the choices of the

spatial covariant derivativesDi, the Ricci tensor for the Σt slicing geometry and finally the extrinsic

curvature Kij . Each of them is discussed below and all of them are put together in the Einstein

equations afterwards.

A conformal decomposition of the induced spatial metric γij means that a base, unphysical or

also called conformal metric γ̃ij is associated to the physical one through a strictly positive function

of the coordinates, the conformal factor ψ = ψ(xµ). This relationship is expressed as:

γij = ψ4γ̃ij (2.86)

and, since γijγ
jk = γ̃ij γ̃

jk = δki, the inverse relationship becomes:

γij = ψ−4γ̃ij . (2.87)

The covariant derivative can be defined in terms of the ordinary derivative operator:

Div
j = ∂iv

j + Γjikv
k, (2.88)

where vj is a spatial vector and Γjik is the Christoffel symbol. If the covariant derivative is associated

to the spatial metric, as it is going to be the case here, then Diγjk = 0 and the Christoffel symbol

is calculated in terms of the ordinary derivatives by the formula:
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Γjik =
1

2
γjl (∂iγkl + ∂kγil − ∂lγik) (2.89)

and the same is true for the covariant derivative associated to the conformal metric, D̃iγ̃jk = 0.

Both covariant derivatives can be related to each other through the connection tensor Cjik:

Div
j = D̃iv

j + Cjikv
k, (2.90)

where the connection is calculated in terms of the conformal covariant derivatives instead of ordi-

nary derivative operator (where it has the special name Christoffel symbol) for a covariant derivative

associated to the spatial metric Diγjk = 0:

Cjik =
1

2
γjl
(

D̃iγkl + D̃kγil − D̃lγik

)

(2.91)

and can be expressed in terms of the conformal metric by substituting equations (2.86)and(2.87)

into equation (2.91) and using the fact that the conformal covariant derivative is metric compatible

D̃iγ̃jk = 0:

Cjik = 2γ̃jl
[

D̃i (lnψ) γ̃kl + D̃k (lnψ) γ̃il − D̃l (lnψ) γ̃ik

]

, (2.92)

while tracing the equation above gives an useful expression for the divergence of a vector in terms

of the conformal covariant derivative and the conformal factor:

Div
i = D̃iv

i + Ciikv
k = D̃iv

i + 6D̃i (lnψ) vi =
1

ψ6
D̃i

(

ψ6vi
)

. (2.93)

The next object of interest to appear in the 3 + 1 equations is the Ricci tensor. The main

goal is to express the Ricci tensor associated with the physical metric Rik to the Ricci tensor

associated with the conformal metric R̃ik (and its covariant derivatives, connections, conformal

factor, etc...). In order to do that, one should start with the definition of the Riemann tensor

for the three dimensional spacelike hypersurface, equation (2.20), and express it in terms of the

connection tensor Cjik. From its definition:

R l
ijk wl = 2D[iDj]wk (2.94)

and from the generalization of the covariant derivative of a tensor of type (p, q):

DkT
i1...ip

j1...jq
= D̃kT

i1...ip
j1...jq

+

p
∑

l=1

CilksT
i1...s...ip

j1...jq
−

q
∑

l=1

CskjlT
i1...ip

j1...s...jq
, (2.95)

it can be shown, after a few algebraic simplification, that the Riemann tensor becomes:

R l
ijk = R̃ l

ijk − 2D̃[iC
l
j]k + 2Cmk[iC

l
j]m , (2.96)
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where by definition:

R̃ l
ijk wl = 2D̃[iD̃j]wk. (2.97)

On the other hand the Ricci tensor is obtained by tracing the second and forth indices of the

Riemann tensor, equation (2.96):

Rik = R̃ik − 2D̃[iC
l
l]k + 2Cmk[iC

l
l]m, (2.98)

that can be rewritten in terms of the conformal factor as:

Rik = R̃ik − 2D̃iD̃k (lnψ) − 2γ̃ikγ̃
lmD̃lD̃m (lnψ)

+ 4D̃i (lnψ) D̃k (lnψ) − 4γ̃ikγ̃
lmD̃l (lnψ) D̃m (lnψ) . (2.99)

The Ricci scalar is obtained by tracing the Ricci tensor, equation (2.99). That results into an

expression in terms of the conformal factor, conformal covariant derivatives and the Ricci scalar

associated with the conformal metric:

R ≡ γikRik = ψ−4
[

R̃ − 8γ̃ikD̃iD̃k (lnψ) − 8γ̃ikD̃i (lnψ) D̃k (lnψ)
]

= ψ−4R̃ − 8ψ−5γ̃ikD̃iD̃kψ, (2.100)

where R̃ ≡ γ̃ikR̃ik.

The last element to enter the Einstein equations that needs to be decomposed is the extrinsic

curvatureKij . In order to conform with the maximal slicing choice of time coordinate and make the

approximation to be applied later to the equations explicitly evident, it is convenient to decompose

the extrinsic curvature first in its trace and traceless part:

Kij = Aij +
1

3
Kγij and Kij = Aij +

1

3
Kγij , (2.101)

where Aij is by definition the extrinsic curvature traceless part, γijAij = 0, and K is its trace with

respect to the spatial metric, K ≡ γijKij .

The evolution equation for the spatial metric components, equation (2.40), provides a natural

framework to choose the scaling exponent s in the conformal relation for the traceless part of the

extrinsic curvature, Aij = ψsÃij :

Lmγij ≡ L(t−β)γij = −2αγikK
i
j , (2.102)

where ma = ta−βa = αna. Inserting the extrinsic curvature decomposition, equation (2.101), and

the conformal metric decomposition, the equation above becomes:

Lmγ̃ij = −2αψ−4Aij −
2

3
αKγ̃ij − 4γ̃ijLm (lnψ) . (2.103)

Note that the equation above has time derivatives (through the lie derivatives along ma) for both
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the conformal metric and conformal factor. One could say that it is a coupled evolution equation

for both quantities. Fortunately, tracing this equation with respect to the conformal metric γ̃ij does

the job of decoupling the evolution equation for the conformal metric from one for the conformal

factor:

γ̃ijLmγ̃ij = −2αK − 12Lm (lnψ) . (2.104)

From a well known relationship between the variation or derivative of the logarithm of the deter-

minant of a invertible matrix M and the trace of the matrix product of its inverse M−1 by its

variation or derivative, i.e. δ(ln detM) ≡ tr (M−1 × δM), the left-hand side of the equation above

can be expressed as:

γ̃ijLmγ̃ij = Lm (ln det γ̃ij) = Lm (ln γ̃) . (2.105)

It is usual to require in the conformal decomposition formalism that the determinant of the con-

formal spatial metric be Lie dragged from one slice to the other, i.e. Ltγ̃ = 0, preserving this way

a unit of volume between the hypersurfaces. After substituting this requirement, the expression

above becomes:

γ̃ijLmγ̃ij = −Lβ (ln γ̃) . (2.106)

Moreover, the left-hand side of the equation above can be reexpressed in terms of the trace of the

Lie derivative along the shift vector βi by the same sort of argument used to express determinants

in terms of traces. Therefore the expression above becomes:

γ̃ijLmγ̃ij = −γ̃ijLβ γ̃ij = −2D̃iβ
i. (2.107)

Once this relationship is inserted back into equation (2.104), it clearly provides an evolution equa-

tion only for the conformal factor:

(∂t − Lβ) lnψ =
1

6

(

D̃iβ
i − αK

)

, (2.108)

while the same relationship inserted back on equation (2.103) gives an evolution equation for the

conformal metric:

(∂t − Lβ) γ̃ij = −2αÃij −
2

3
γ̃ijD̃kβ

k, (2.109)

where Ãij = ψ−4Aij . Note that Ãij is still traceless: γ̃ijÃij = ψ4γijψ−4Aij = 0 and that its

bilinear dual form is obtained by raising the indexes with the inverse conformal factor, resulting

into:

Aij = ψ−4Ãij , (2.110)

what clearly suggests that the conformal exponent s for the traceless extrinsic curvature be adopted

as s = −4. This choice arose naturally from the decomposition of the evolution equation for the
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spatial metric. It is worth noting though that this choice is not unique. Another common choice that

was first adopted by Lichnerowicz [30] is s = −10. It also arises naturally from a decomposition

of one the Einstein equations but this time it comes from the decomposition of the momentum

constraint equations. As this particular decomposition is not applied in the approximation to be

presented in the next section, the reader is recomended to look at Gourgoulhon’s lectures [118] for

a more detailed discussion.

The decomposition of the extrinsic curvature allows to express its evolution equation (equa-

tion (2.41) in the 3+1 formalism) into two parts: one evolution equation for its conformal traceless

part and another for its trace part. The first step to rewrite equation (2.41) is substituting the

extrinsic curvature decomposition Kij = Aij + 1
3Kγij in the left-hand side of its lower index

version 4:

LmKij = −DiDjα+ α

[

Rij +KKij − 2KikK
k
j + 8π

(

1

2
γij(S − ρ) − Sij

)]

. (2.111)

Thus the left-hand side of the equation above becomes:

LmKij = LmAij +
1

3
γijLmK +

1

3
KLmγij = LmAij +

1

3
γijLmK − 2

3
αKKij, (2.112)

where the equation (2.102) was used in the last equality. Note also that the lie derivative of the

extrinsic curvature trace can be rewritten as:

LmK = Lm
(

γijKij

)

= γijLmKij +KijLmγij = γijLmKij + 2αKijK
ij , (2.113)

where the upper index version of equation (2.102) was used in the last equality. One last piece that

can be simplified in the equation above corresponds to the trace of equation (2.111):

γijLmKij = −γijDiDjα+ α
[

R +K2 − 2KijK
ij + 4π (S − 3ρ)

]

. (2.114)

Substituting the equation (2.114) into equation (2.113), results into:

LmK = −γijDiDjα+ α
[

R +K2 + 4π (S − 3ρ)
]

. (2.115)

By making use of the hamiltonian equation, equation (2.42), the equation above can be simplified

even further and be considered as the evolution equation for the trace part of the extrinsic curvature

tensor:

LmK ≡ (∂t − Lβ)K = −γijDiDjα+ α
[

KijK
ij + 4π (S + ρ)

]

. (2.116)

Replacing the evolution equation for the trace part, equation (2.115)5, and the evolution equation

4Note the presence of the term −2KikKk
j in the lower index version that is absent in the mixed index version,

equation (2.41).
5Using equation (2.115) doesn’t make use of the hamiltonian constraint yet as in equation (2.116) besides resulting

in the elimination of the density ρ in the subsequent equation.
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for the extrinsic curvature itself, equation (2.111), into the equation (2.112) provides an evolution

equation for the traceless part of the extrinsic curvature tensor, Aij :

LmAij = −DiDjα + α

[

Rij +
5

3
KKij − 2KikK

k
j − 8π

(

Sij −
1

3
γijS

)]

+
1

3
γij
[

γlkDlDkα− α
(

R +K2
)]

, (2.117)

that can be simplified further by introducing the expression for Kij decomposition into the right-

hand side of the expression above. After a little bit of manipulation that results into:

LmAij = −DiDjα + α

[

Rij +
1

3
KAij − 2AikA

k
j − 8π

(

Sij −
1

3
γijS

)]

+
1

3
γij
(

γlkDlDkα− αR
)

. (2.118)

At this point one can see that the evolution equation for the extrinsic curvature Kij were split

into its trace part, equation (2.116), and its traceless part, equation (2.118). It is still left to express

them in terms of the conformal quantities. The left-hand side of equation (2.118) can be rewritten

as:

LmAij = Lm
(

ψ4Ãij

)

= ψ4LmÃij + 4ψ3LmψÃij . (2.119)

The expression above can be simplified even further by substituting equation (2.108):

LmAij = ψ4

[

LmÃij +
2

3
Ãij

(

D̃lβ
l − αK

)

]

. (2.120)

After substituting back this last expression, equation (2.118) becomes then an evolution equation

for Ãij :

LmÃij = ψ−4

{

−DiDjα+ α

[

Rij +
1

3
KAij − 2AikA

k
j − 8π

(

Sij −
1

3
γijS

)]

+
1

3
γij
(

γlkDlDkα− αR
)

}

− 2

3
Ãij

(

D̃lβ
l − αK

)

. (2.121)

In order to keep up with the program of reexpressing equation (2.121) in terms of its conformal

quantities, the double covariant derivative of the lapse needs to be expressed in terms of the

conformal counterparts. That is realized as:
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DiDjα = D̃i (Djα) − Ckij (Dkα)

= D̃iD̃jα− CkijD̃kα

= D̃iD̃jα− 2D̃kα
[

D̃i (lnψ) δkj + D̃j (lnψ) δki − γ̃ij γ̃
klD̃l (lnψ)

]

= D̃iD̃jα− 2D̃i (lnψ) D̃jα− 2D̃j (lnψ) D̃iα+ 2γ̃ij γ̃
klD̃l (lnψ) D̃kα, (2.122)

where the definition given by equation (2.95) was used on the first line while equation (2.92) was

used in the third line. Tracing equation (2.122) one also gets another important relation entering

the evolution equations:

γijDiDjα = ψ−4γ̃ijDiDjα = ψ−4
[

γ̃ijD̃iD̃jα+ 2γ̃ijD̃i (lnψ) D̃jα
]

. (2.123)

Finally the last piece to be expressed in terms of its conformal counterparts is the contraction

between the extrinsic curvature tensor:

KijK
ij =

(

Aij +
1

3
Kγij

)(

Aij +
1

3
Kγij

)

= ÃijÃ
ij +

1

3
K2, (2.124)

where equation (2.110), its lower index version and the fact that Aij is traceless have been used.

With all the elements decomposed into their conformal parts, the evolution equation for the

conformal traceless part of the extrinsic curvature, equation (2.121), finally becomes after quite a

bit of algebraic simplification:

(∂t − Lβ) Ãij = ψ−4

{

−D̃iD̃jα+ 4D̃(i (lnψ) D̃j)α+
1

3
γ̃ij γ̃

kl
(

D̃kD̃lα− 4D̃k (lnψ) D̃lα
)

+ α

[

R̃ij −
1

3
γ̃ijR̃ − 2D̃iD̃j (lnψ) + 4D̃i (lnψ) D̃j (lnψ)

+
2

3
γ̃ij γ̃

kl
(

D̃kD̃l (lnψ) − 2D̃k (lnψ) D̃l (lnψ)
)

]}

+ α

[

KÃij − 2γ̃klÃikÃlj − 8π

(

ψ−4Sij −
1

3
γ̃ijS

)]

− 2

3
ÃijD̃lβ

l, (2.125)

where equations (2.99) and (2.100) were used for the Ricci tensor and scalar respectively, the lower

index version of equation (2.110) for Aij and equations (2.122) and (2.123) for the lapse double

covariant derivatives expressions.

On the other hand, the evolution equation for the trace part of the extrinsic curvature, equa-

tion (2.116), can also be expressed in terms of conformal quantities as:

(∂t − Lβ)K = −ψ−4γ̃kl
[

D̃kD̃lα+ 2D̃k (lnψ) D̃lα
]

+ α

[

ÃklÃ
kl +

1

3
K2 + 4π (S + ρ)

]

, (2.126)
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where equations(2.123) and (2.124) have been used.

The hamiltonian constraint, equation (2.42), can be expressed in terms of conformal quantities

by use of equations (2.100) and (2.124):

γ̃klD̃kD̃lψ − 1

8
ψR̃ +

(

1

8
ÃklÃ

kl − 1

12
K2 + 2πρ

)

ψ5 = 0. (2.127)

In order to rewrite the momentum constraint, first note that:

DjK
ij = DjA

ij +
1

3
γijDjK

= D̃jA
ij + CijkA

jk + CjjkA
ik +

1

3
ψ−4γ̃ijD̃jK

= D̃jA
ij + 4D̃j (lnψ)Aij + 6D̃j (lnψ)Aij +

1

3
ψ−4D̃iK

= D̃jA
ij + ψ−10D̃j

(

ψ10Aij
)

+
1

3
ψ−4D̃iK, (2.128)

where equation (2.101) is used in the first line; on the second line, equation (2.95) along with the

fact that the derivatives are identical on scalar functions, i.e. DiK ≡ D̃iK; the expressions for the

connection, equation (2.92), and the fact that Aij is traceless are used to simplify the third line.

Inserting equation (2.128) into the momentum constraint, equation (2.43), results into:

D̃jA
ij + ψ−10D̃j

(

ψ10Aij
)

− 2

3
ψ−4D̃iK = 8πJ i, (2.129)

that finally can be expressed in terms of the conformal quantities as:

D̃jÃ
ij + 6D̃j (lnψ) Ãij − 2

3
D̃iK = 8πψ4J i. (2.130)

This section has reached its goal of conformally decomposing the Einstein equations in the

3 + 1 formalism. To gain some perspective on how to solve this set of equations and on how a

possible approximation modify them, it is convenient to gather all of them together. Therefore,

equations (2.108), (2.109), (2.126), (2.125), (2.127) and (2.130) are rewritten below as the evolution

equation for the conformal factor ψ, or the trace part of equation (2.40):

(∂t − Lβ)ψ =
1

6
ψ
(

D̃iβ
i − αK

)

, (2.131)

the evolution equation for the conformal spatial metric γ̃ij , or the traceless part of equation (2.40):

(∂t − Lβ) γ̃ij = −2αÃij −
2

3
γ̃ijD̃kβ

k, (2.132)

the evolution equation for the extrinsic curvature trace K, trace part of equation (2.41):

(∂t − Lβ)K = −ψ−4γ̃kl
[

D̃kD̃lα+ 2D̃k (lnψ) D̃lα
]

+ α

[

ÃklÃ
kl +

1

3
K2 + 4π (S + ρ)

]

, (2.133)
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the evolution equation for the extrinsic curvature traceless part Ãij , traceless part of equation (2.41):

(∂t − Lβ) Ãij = ψ−4

{

−D̃iD̃jα+ 4D̃(i (lnψ) D̃j)α+
1

3
γ̃ij γ̃

kl
(

D̃kD̃lα− 4D̃k (lnψ) D̃lα
)

+ α

[

R̃ij −
1

3
γ̃ijR̃ − 2D̃iD̃j (lnψ) + 4D̃i (lnψ) D̃j (lnψ)

+
2

3
γ̃ij γ̃

kl
(

D̃kD̃l (lnψ) − 2D̃k (lnψ) D̃l (lnψ)
)

]}

+ α

[

KÃij − 2γ̃klÃikÃlj − 8π

(

ψ−4Sij −
1

3
γ̃ijS

)]

− 2

3
ÃijD̃lβ

l, (2.134)

the hamiltonian constraint equation:

γ̃klD̃kD̃lψ − 1

8
ψR̃ +

(

1

8
ÃklÃ

kl − 1

12
K2 + 2πρ

)

ψ5 = 0, (2.135)

and the momentum constraint equation:

D̃jÃ
ij + 6D̃j (lnψ) Ãij − 2

3
D̃iK = 8πψ4J i. (2.136)

The system of equations (2.131)–(2.136) consists in the conformal 3 + 1 Einstein equations. It

can be solved in terms of the conformal unknowns γ̃ij , Ãij , ψ and K. In order to recover the

physical quantities, spatial metric and extrinsic curvature, the equations (2.86) and (2.101) are

applied afterwards:

γij = ψ4γ̃ij , (2.137)

Kij = ψ4

(

Ãij +
1

3
Kγ̃ij

)

. (2.138)

2.4.3 Conformally Flat Metric

The conformally flat condition fixes the conformal metric as a flat metric, γ̃ij ≡ γ̂ij . Moreover,

this choice is taken along with the coordinate freedom to choose the slicing. In particular the CFA

is applied along with the maximal slicing condition or K = 0. Both conditions together simplify

considerably the conformal 3 + 1 set of equations derived in the last section. Taken into account

that the conformal spatial covariant derivative is now associated to the flat metric, i.e. D̃i becomes

simply D̂i and that the Ricci tensors and scalars vanish for flat metric, i.e. R̂ij = 0 and R̂ = 0, the

system of equations (2.131)–(2.136) immediately reduce to the evolution equation for the conformal

factor ψ, or the trace part of equation (2.40):

(∂t − Lβ)ψ =
1

6
ψD̂iβ

i, (2.139)
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the evolution equation for the conformal spatial flat metric γ̂ij , or the traceless part of equa-

tion (2.40):

(∂t − Lβ) γ̂ij = −2αÃij −
2

3
γ̂ijD̂kβ

k, (2.140)

the evolution equation for the extrinsic curvature trace K, trace part of equation (2.41), now

vanishes due to the maximal slicing condition and gives rise to an elliptic equation for the lapse

function:

0 = −ψ−4γ̂kl
[

D̂kD̂lα+ 2D̂k (lnψ) D̂lα
]

+ α
[

ÃklÃ
kl + 4π (S + ρ)

]

, (2.141)

the evolution equation for the extrinsic curvature traceless part Ãij , traceless part of equation (2.41):

(∂t − Lβ) Ãij = ψ−4

{

−D̂iD̂jα+ 4D̂(i (lnψ) D̂j)α+
1

3
γ̂ij γ̂

kl
(

D̂kD̂lα− 4D̂k (lnψ) D̂lα
)

+ α
[

−2D̂iD̂j (lnψ) + 4D̂i (lnψ) D̂j (lnψ)

+
2

3
γ̂ij γ̂

kl
(

D̂kD̂l (lnψ) − 2D̂k (lnψ) D̂l (lnψ)
)

]}

+ α

[

−2γ̂klÃikÃlj − 8π

(

ψ−4Sij −
1

3
γ̂ijS

)]

− 2

3
ÃijD̂lβ

l, (2.142)

the hamiltonian constraint equation:

γ̂klD̂kD̂lψ +

(

1

8
ÃklÃ

kl + 2πρ

)

ψ5 = 0, (2.143)

and the momentum constraint equation:

D̂jÃ
ij + 6D̂j (lnψ) Ãij = 8πψ4J i. (2.144)

Equation (2.140) deserves special attention. By hypothesis the flat metric is fixed on each slice,

what results into ∂tγ̂ij = 0. The equation then becomes an expression for the traceless part of the

extrinsic curvature Ãij in terms of the covariant derivatives of the shift vector:

Ãij =
1

2α

(

γ̂kjD̂iβ
k + γ̂ikD̂jβ

k − 2

3
γ̂ijD̂kβ

k

)

(2.145)

or, using the flat metric to raise the indexes, the upper index version reads as:

Ãij =
1

2α

(

γ̂ikD̂kβ
j + γ̂jkD̂kβ

i − 2

3
γ̂ijD̂kβ

k

)

. (2.146)

The 5 components of the traceless part of the extrinsic curvature become therefore 5 dependent

variables intead of independent ones. The contraction of the two equations above with each other

gives rise to a common expression entering the equations of motion in terms of the covariant

derivatives of the shift vector:

ÃijÃ
ij =

1

2α

(

γ̂kj γ̂
ilD̂iβ

kD̂lβ
j + D̂kβ

iD̂iβ
k − 2

3
D̂iβ

iD̂jβ
j

)

. (2.147)
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Note also that according to equation (2.124) and the maximal slicing choice, the contraction above

actually corresponds to the contraction of the extrinsic curvature itself, i.e. KijK
ij = ÃijÃ

ij .

Another useful result entering the equations of motion for the conformally flat condition on

the conformal 3 + 1 equations is the divergence of Ãij . The divergence of equation (2.146) then

becomes:

D̂jÃ
ij =

1

2α
D̂j

(

γ̂ikD̂kβ
j + γ̂jkD̂kβ

i − 2

3
γ̂ijD̂kβ

k

)

− 1

α
D̂jαÃ

ij

=
1

2α

(

γ̂jkD̂kD̂jβ
i +

1

3
γ̂ikD̂kD̂jβ

j − 2ÃijD̂jα

)

. (2.148)

Inserting equations (2.148) and (2.146) into the momentum constraint, equation (2.144), one

obtains the first equation used in the approximation: an elliptic equation for the shift vector given

by:

γ̂jkD̂kD̂jβ
i = −1

3
γ̂ikD̂kD̂jβ

j + 2Ãij
[

D̂jα− 6αD̂j (lnψ)
]

+ 16παψ4J i

= −1

3
γ̂ikD̂kD̂jβ

j +

[

γ̂ikD̂kβ
j + γ̂jkD̂kβ

i − 2

3
γ̂ijD̂kβ

k

]

D̂j

[

ln

(

α

ψ6

)]

+ 16παψ4J i. (2.149)

The hamiltonian constraint, on the other hand, provides an elliptic equation for the conformal

factor ψ:

γ̂klD̂kD̂lψ = −
[

1

16α

(

γ̂kj γ̂
ilD̂iβ

kD̂lβ
j + D̂kβ

iD̂iβ
k − 2

3
D̂iβ

iD̂jβ
j

)

− 2πρ

]

ψ5. (2.150)

The evolution equation for mean extrinsic curvature K along with the maximal slicing choice of

time coordinate gives an elliptic equation for the lapse function:

γ̂klD̂kD̂lα = −2γ̂klD̂k (lnψ) D̂lα+ ψ4α
[

ÃklÃ
kl + 4π (S + ρ)

]

= −2γ̂klD̂k (lnψ) D̂lα+
1

2
ψ4

[

γ̂kj γ̂
ilD̂iβ

kD̂lβ
j + D̂kβ

iD̂iβ
k − 2

3
D̂iβ

iD̂jβ
j

]

+ 4πψ4α (S + ρ) . (2.151)

Note that equations (2.149), (2.150) and (2.151) consist of a sufficient set of equations to determine

the 4-dimensional metric gµν . Once they are solved, the 4-dimensional metric is simply built from

the 3 + 1 line element:
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ds2 = gµνdx
µdxν

= −α2dt2 + γij
(

dxi + βidt
) (

dxj + βjdt
)

= −α2dt2 + ψ4γ̂ij
(

dxi + βidt
) (

dxj + βjdt
)

. (2.152)

One last topic is missing to discuss in order to cast the equations above into a form convenient

for numerical computation. The choice of spatial coordinates for the flat metric allows finally to

specialize these set of equations into a set of partial differential equations ready for computation.

Next subsection discuss this last topic and write down the equations in the cartesian coordinate

system.

2.4.4 Specialization to Cartesian Coordinates

The choice of spacial coordinates represent another crucial step towards the solution of the Ein-

stein’s equation coupled to matter. Usually when the spacetime is known to hold some sort of

symmetry, the spatial coordinate system is chosen such as to adapt to the symmetry. The main

advantage is a considerable simplification of the equations of motion. Usually though this adapted

coordinate system does not cover the entire manifold of events. For example, a spherical polar

coordinate system is very useful to label the manifold events for spherically symmetric spacetimes.

However, this system does not cover the “z axis”, i.e. this system cannot label this axis uniquely –

a necessary condition to define a coordinate system (or a chart) in a particular region of the

manifold. Most of the metric components along with the matter source field components become

ill-behaved in the neighbourhood of these points or regions of the spacetime where the coordinate

system does not cover. Special treatments to regularize those components in that neighbourhood

are necessary although not always sufficient to cure the function pathologies in that neighbourhood.

An ultimate goal of the work described here is the study of boson star binaries, and this

type of solution will not have any specific simple symmetry that would motivate the adoption of

some special curvilinear coordinates. We thus adopt (topologically) cartesian coordinates, (x, y, z),

which have the advantage of covering the spatial hypersurfaces in a smooth fashion (i.e. without

any coodinate singularities or other pathologies) provided that there are no physical singularities

on the slices.

In addition to having cartesian topology, and in contrast to some previous related work (most

notably that of Wilson, Mathews, Marronetti, ..., [14]) we require our coordinate system to be

“asymptotically inertial”, i.e. we demand that at large distances from the matter sources the metric

components approach those of flat spacetime in an inertial frame, gµν → ηµν = diag(−1, 1, 1, 1). In

the work of Wilson and collaborators the coordinate system was typically chosen to be in corotation

with the binary system being studied. Finally, we emphasize that the topology of the hypersurfaces

is taken to be R
3, so that the slices are infinite in extent in all three directions. Naturally, this has

significant implications for the numerical treatment of boundary conditions in our model as will be

discussed in following sections.
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Thus, from this point on, the set of field variables defining our model system, namely α,ψ,βi,

φA, ΠA, i = 1, 2, 3, A = 1, 2, are all to be understood to be functions of (t, x, y, z), and we now

have the following for the conformally flat 3-dimensional line element is simply:

(3)ds2 = ψ(t, x, y, z)4(dx2 + dy2 + dz2). (2.153)

We can now display the equations of motion in essentially the form that will be used for our

numerical computations. We start with the evolution equations for the complex scalar field, (2.60)

and (2.61), which become

∂tφA =
α

ψ6
ΠA + βi∂iφA, (2.154)

∂tΠA = ∂x
(

βxΠA + αψ2∂xφA
)

+ ∂y
(

βyΠA + αψ2∂yφA
)

(2.155)

+ ∂z
(

βzΠA + αψ2∂zφA
)

− αψ6 dU(φ2
0)

dφ2
0

φA.

Continuing, the energy-momentum quantities defined by (2.64)-(2.69) are

ρ =
1

2

2
∑

A=1

[

Π2
A

ψ12
+

1

ψ4

[

(∂xφA)
2

+ (∂yφA)
2

+ (∂zφA)
2
]

]

+
1

2
U(φ2

0), (2.156)

Ji =
2
∑

A=1

[

ΠA

ψ6
∂iφA

]

, (2.157)

J i =

2
∑

A=1

[

−ΠA

ψ10
∂iφA

]

, (2.158)

Sij =
1

2

2
∑

A=1

{

2∂iφA∂jφA + ψ4δij

[

Π2
A

ψ12

− 1

ψ4

[

(∂xφA)
2

+ (∂yφA)
2

+ (∂zφA)
2
]

]}

− 1

2
ψ4δijU(φ2

0), (2.159)

Sii =
1

2

2
∑

A=1

[

3
Π2
A

ψ12
− 1

ψ4

[

(∂xφA)
2

+ (∂yφA)
2
+ (∂zφA)

2
]

]

− 3

2
U(φ2

0), (2.160)

ρ+ S =

2
∑

A=1

[

2
Π2
A

ψ12

]

− U(φ2
0). (2.161)

Next, we have the equations that constrain the geometric variables. The maximal slicing con-

dition for the lapse function becomes

∂2α

∂x2
+
∂2α

∂y2
+
∂2α

∂z2
= − 2

ψ

[

∂ψ

∂x

∂α

∂x
+
∂ψ

∂y

∂α

∂y
+
∂ψ

∂z

∂α

∂z

]

+ αψ4
(

ÃijÃ
ij + 4π (ρ+ S)

)

, (2.162)

while the Hamiltonian constraint (2.150) for ψ is
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∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= −ψ

5

8

(

ÃijÃ
ij + 16πρ

)

. (2.163)

where the source term ÃijÃ
ij is given by

ÃijÃ
ij =

1

2α2

[(

∂βx

∂x

)2

+

(

∂βx

∂y

)2

+

(

∂βx

∂z

)2

+

(

∂βy

∂x

)2

+

(

∂βy

∂y

)2

+

(

∂βy

∂z

)2

+

(

∂βz

∂x

)2

+

(

∂βz

∂y

)2

+

(

∂βz

∂z

)2

+

(

∂βx

∂x

∂βx

∂x
+
∂βy

∂x

∂βx

∂y
+
∂βz

∂x

∂βx

∂z

)

+

(

∂βx

∂y

∂βy

∂x
+
∂βy

∂y

∂βy

∂y
+
∂βz

∂y

∂βy

∂z

)

+

(

∂βx

∂z

∂βz

∂x
+
∂βy

∂z

∂βz

∂y
+
∂βz

∂z

∂βz

∂z

)

− 2

3

(

∂βx

∂x
+
∂βy

∂y
+
∂βz

∂z

)2 ]

. (2.164)

Finally, from the momentum constraints (2.149), we have the three equations that fix the compo-

nents of the shift vector:

∂2βx

∂x2
+
∂2βx

∂y2
+
∂2βx

∂z2
= −1

3

∂

∂x

(

∂βx

∂x
+
∂βy

∂y
+
∂βz

∂z

)

+ αψ4 16πJx (2.165)

− ∂

∂x

[

ln

(

ψ6

α

)][

4

3

∂βx

∂x
− 2

3

(

∂βy

∂y
+
∂βz

∂z

)]

− ∂

∂y

[

ln

(

ψ6

α

)][

∂βx

∂y
+
∂βy

∂x

]

− ∂

∂z

[

ln

(

ψ6

α

)][

∂βx

∂z
+
∂βz

∂x

]

,

∂2βy

∂x2
+
∂2βy

∂y2
+
∂2βy

∂z2
= −1

3

∂

∂y

(

∂βx

∂x
+
∂βy

∂y
+
∂βz

∂z

)

+ αψ4 16πJy (2.166)

− ∂

∂y

[

ln

(

ψ6

α

)][

4

3

∂βy

∂y
− 2

3

(

∂βx

∂x
+
∂βz

∂z

)]

− ∂

∂x

[

ln

(

ψ6

α

)][

∂βx

∂y
+
∂βy

∂x

]

− ∂

∂z

[

ln

(

ψ6

α

)][

∂βy

∂z
+
∂βz

∂y

]

,

∂2βz

∂x2
+
∂2βz

∂y2
+
∂2βz

∂z2
= −1

3

∂

∂z

(

∂βx

∂x
+
∂βy

∂y
+
∂βz

∂z

)

+ αψ4 16πJz (2.167)

− ∂

∂z

[

ln

(

ψ6

α

)][

4

3

∂βz

∂z
− 2

3

(

∂βx

∂x
+
∂βy

∂y

)]

− ∂

∂y

[

ln

(

ψ6

α

)][

∂βz

∂y
+
∂βy

∂z

]

− ∂

∂x

[

ln

(

ψ6

α

)][

∂βx

∂z
+
∂βz

∂x

]

.

The four hyperbolic scalar field evolution equations, equations (2.154) and (2.156) along with
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the five elliptic equations, equations (2.162)-(2.167), constitute the basic set of equations for our

model problem (hereafter often simply ”our model”) of a Klein-Gordon field within the conformally

flat approximation to general relativity. Of course, however, this set of PDEs must be supplemented

by boundary and initial conditions in order to complete the mathematical prescription of the model,

and these will be discussed in the sections that follow.

Before moving on to that discussion though, it is worth mentioning that the derivation of

equations of motion such as the above set is a non-trivial and error prone process. It is therefore

very useful to use symbolic manipulation software to check calculations, and we have done so.

Specifically, after having been derived by hand, the equations presented in this thesis were checked

using Maple [119], including a tensor manipulation package due to Choptuik [120].

2.4.5 Boundary Conditions

In this section we discuss the spatial boundary conditions that are applied to the equations of

motion. As already mentioned, a key issue is the fact that the spatial domain is infinite while, of

course, any specific numerical computation based on a discretization technique such as the finite

differencing used in this thesis, employs a finite number of discrete unknowns.

Three different basic strategies for boundary conditions were considered during the course of

this project:

1. Compactification of the spatial domain

2. Asymptotic conditions

3. Truncation (fixed Dirichlet conditions imposed at a finite distance)

We discuss each in term, highlighting specific challenges that arise, and indicating possible future

directions for improvement. We note that parts of the discussion rely on computational concepts

and techniques that are discussed in detail in Chap. 3. The reader may thus wish to postpone a

detailed study of this part of the thesis until after a perusal of that chapter.

Space Compactification

The space compactification was the first strategy used to deal with the practical issue of handling

an infinite domain of integration in a computer. This technique consists in mapping the whole

spatial domain into a finite region of the space, i.e. in choosing a map f such that:

f : R
3 → U ⊂ R

3 | U = [−1, 1]× [−1, 1]× [−1, 1]. (2.168)

Note that as the interval [−1, 1] can be remapped into any other finite interval belonging to R,

there is no loss of generality in choosing the interval [−1, 1] for each of the coordinate directions.

All that it is left is to choose a particular function whose domain is R and the image range [−1, 1].

Besides, it is desirable that this map be smooth or at least C2. One particular choice is to use the

hyperbolic tangent function. So each spatial coordinate can be compactified as:
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ξ(x) = tanhx, η(y) = tanh y, ζ(z) = tanh z. (2.169)

Naturally the equations of motion are affected by the way the differential operators are expressed

under this new compactified coordinate system. Thus, the first order derivative operator transforms

under this specific map to:

d

dx
=
dξ

dx

d

dξ
= (1 − tanh2 x)

d

dξ
= (1 − ξ2)

d

dξ
, (2.170)

while the second order derivative operator becomes:

d2

dx2
= (1 − ξ2)

d

dξ

[

(1 − ξ2)
d

dξ

]

= (1 − ξ2)2
d2

dξ2
− 2ξ(1 − ξ2)

d

dξ
. (2.171)

Inserting (2.169)-(2.171) into the equations of motion, we obtain therefore its compactified form.

This kind of compactification has been applied successfully before for hyperbolic equations such as

those arising from the black-string problem [121] or those coming from the modelling of binary-

black-hole spacetimes [38, 122]. However, to the best of our knowledge, it has not been applied yet

to equations of type elliptic. We report thus the challenges involved in the implementation of this

kind of compactification for elliptic equations and point out possible solutions for this problem. In

order to understand the source of problem though it is more convenient to restrict our attention to

a model problem. The poisson equation is then the best candidate that still captures the essential

features of the elliptic equations of motion derived on the previous sections:

∇2u = ρ ⇐⇒ ∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= ρ(x, y, z), (2.172)

where u = u(x, y, z) is the unknown function while ρ(x, y, z) is the source. The Poisson equa-

tion assumes the following compactified form when the second order operator are replaced by its

compactified version:

(1 − ξ2)2
∂2ū

∂ξ2
+ (1 − η2)2

∂2ū

∂η2
+ (1 − ζ2)2

∂2ū

∂ζ2
−

2ξ(1 − ξ2)
∂ū

∂ξ
− 2η(1 − η2)

∂ū

∂η
− 2ζ(1 − ζ2)

∂ū

∂ζ
= ρ(ξ, η, ζ), (2.173)

where ū = ū(ξ, η, ζ) = u(x, y, z). Now, since −1 ≤ ξ, η, ζ ≤ 1 the issue of assigning a boundary

condition to the equation at infinity disappeared. One can just set Dirichlet boundary conditions,

i.e. ū = constant, at the faces, edges and corners of the cube formed by the boundary of the region

[−1, 1]3. As mentioned before, the same sort of compactification applied to Poisson equation can

also be employed to the elliptic equations for the metric variables. Despite the increase of the

number of terms and factors in the equations, the compactification is quite advantageous and

desirable in order to set the physical boundary conditions exactly. As said before, the lapse and

conformal factor at the boundary of the cubic domain are set to their flat values, equals to 1, while
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the shift vector vanishes, also a restraint physically in accordance to the values the shift vector

would have in the Minkowski spacetime with cartesian coordinates.

Despite the appealing simplicity of this strategy to implement the boundary conditions, a serious

disadvantage arises. Suppose, for example, that the Poisson equation is written with coefficients

A, B and C accompanying its derivative terms:

A
∂2u

∂x2
+B

∂2u

∂y2
+ C

∂2u

∂z2
= ρ(x, y, z). (2.174)

If the values of A, B and C differ considerably from each other, then the equation is said to

be anisotropic. Note also that the anisotropic character of the equation can change through the

domain of integration. Therefore, only some regions at particular instant of time (if the coefficients

are time dependent as well) may be considered anisotropic. The equation (2.173), for example,

describing the compactified form of Poisson equation shares this property.

The trouble with anisotropic elliptic equations comes from a technical issue on the numerical

method to solve these sort of equations, the multigrid method6. As it is going to be mentioned

again in Chap. 3, the multigrid method is the most efficient numerical algorithm to solve PDEs of

the type elliptic. The amount of computational work usually required to obtain the solution scale

linealy with the number of unknowns, i.e. it scale as O(N) where N is the number of unknowns. As

the name already suggests, the multigrid method makes use of several different grids with different

spacings between the grid points in order to solve the equations.

At the heart of a good multigrid solver lies the relaxation method. Its main function is to smooth

the solution found on a particular grid (and because of this feature is also called smoother) before

transfering that solution to a coarser or finer grid. Usually the smoother used acts on the equation

at each point of the grid per sweep, i.e. the equations are locally solved on each point of the mesh

whenever that point is visited through an iterative process. For most problems involving elliptic

equations, this pointwise smoothing process along with the other usual multigrid components are

good enough to obtain the solution as the expected O(N) amount of numerical work.

For the case of anisotropic elliptic equations though, this smoothing process is not efficient to

smooth the solution error along directions of weak coupling of the unknowns. For example, suppose

that B ≃ C >> A in the equation (2.174). In this case the equation is said to be anisotropic along

the weak coupling direction, the x direction. If the usual smoother is applied to solve the equation

in this case, it would fail to make the whole solver to converge with the order expected. On

the other hand, if a more sophisticated smoother like a line smoother were applied along the x

direction, then the efficient convergence properties of the multigrid solver would be recovered. The

line smoother solves the equations simultaneously for a line of grid points where the unknowns are

weakly coupled.

While the line smoothers or more generally the block smoothers (for a block of unknowns weakly

coupled) are methods of choice for anisotropic problems, they introduce also new challenges. For

example, when the number of unknowns becomes sufficiently large, it turns out to be impossible

to solve the equations by making use only of the computational resources, memory and CPU

time, of one computer. It is required then that the computational domain be decomposed into

6The reader unfamiliar with the multigrid jargon should refer to Chap. 3 before reading the end of this section.
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several pieces to be handled by different processors and therefore to share the computational cost

of obtaining the equations solutions; it is required then that the problem be parallelized. It turns

out that the parallelization of a block smoother may be quite far from trivial. For special cases

when the direction or region of the weak coupling is known a priori, it may be possible to assign a

domain decomposition such that those regions are not decomposed. However, as it is the case of the

compactified Poisson equation above, equation (2.173), or the compactified form of the equations

of motion of the last section, that region or direction is not particularly clear and worse it may

change with the resolution of the grid used. That requires an even more sophisticated smoother to

capture this feature. Usually a smoother that alternates the smoothing directions of weak coupling

is robust enough to be applied to several different problems and does a good job in smoothing the

solution error. However this kind of smoothers are extremely hard to effectively parallelize.

The difficulty in parallelizing the alternating line smoothers, for example, forces one to look for

another strategy to supplement the equations of motion with boundary conditions. Nonetheless,

as this strategy still seems quite appealing for its simplicity and correctness, it is still an on-

going project to look for alternatives to solve the compactified elliptic equations. One that seems

extremely promising is to keep the pointwise smoother and alter the other multigrid components

such as the coarsening direction. The idea is to coarsen the grid along one direction first and by

doing so transforming the supposed direction of weak coupling into a strong one, where a pointwise

smoother perfects at the job. Alternating the directions of coarsening could lead to a robust

method to deal with a priori unknown weak regions of coupling. Furthermore, this change on the

coarsening procedure of the multigrid algorithm, called alternate semi-coarsening, promises to be

easily parallelizable since it is a local operation, i.e. it applies to each grid point at the time.

Sommerfeld-like Boundary Conditions

While the first strategy for assigning boundary conditions are still under investigation, a second

strategy was implemented. This consists in truncating the domain of integration to a finite region

and evaluating the behaviour of the several unknown variables as they approach infinity in order

to carefully assign a boundary condition that captures this feature. As mentioned earlier the

spacetime for isolated bodies is asymptotically flat. Therefore both the metric components and

the matter fields are expected to approach infinity such that they differ from the spatial flat

metric diag(1, 1, 1) by terms O(1/r) (as r → ∞)[103], where r is the usual variable from the

spherical polar coordinate system and can be written in terms of cartesian coordinates by the

usual formula: r =
√

x2 + y2 + z2. The main disadvantage of this approach when compared to

the compactification of the spatial domain resides on the lack of a priori knowledge of the region

where the asymptotically flatness condition is valid. To overcome this problem though it is possible

to push the coordinate of the boundaries of the domain as far as possible from the main region

of interest where the stars coalesce. The domain of integration in this procedure becomes then

0 ≤ t ≤ tmax, xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax and zmin ≤ z ≤ zmax. For the

metric components carrying the static or Newtonian-like behaviour of the gravitational field the

asymptotic behaviour can be translated as:
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u = u∞ +
k

r
, (2.175)

where k is a unknown constant depending of the particular component being considered while

u = u(r) represents the metric component itself and u∞ is its expected value at spatial infinity.

The equation (2.175) can be expressed in a more convenient form where the explicit knowledge

of the constant k is not necessary. Taking its derivative with respect to the coordinate r and

substituting back the value of k in terms of u and u∞, the condition becomes:

ru,r + u− u∞ = 0, (2.176)

where u,r ≡ ∂u
∂r . Performing the coordinate transformation from the spherical polar coordinates

back into cartesian ones and applying the chain rule for the derivative with respect to r, i.e.

inserting the following expression:

u,r = u,x
∂x

∂r
+ u,y

∂y

∂r
+ u,z

∂z

∂r
= u,x

x

r
+ u,y

y

r
+ u,z

z

r
(2.177)

into equation (2.176), the boundary condition finally becomes:

xu,x + yu,y + zu,z + u− u∞ = 0. (2.178)

This sort of boundary condition is called Robin boundary condition since it specifies both the

function and its derivatives at the boundary. It is also known as mixed boundary conditions.

The same idea can be applied to the radiative components of the metric (that it is absent in

the case of conformally flat condition) and to the scalar field components. However, the wave-like

behaviour has to be taken into account in this case. So a function of the coordinate combination

r − t captures this feature. This condition is also known as Sommerfeld boundary condition. Let

the fall-off be expressed then by the following function:

v =
h(r − t)

r
, (2.179)

where h(r− t) is a unknown outgoing wave profile and v = v(t, r) represents one of the scalar field

variables. The same trick can be applied in this case as well. Differentiate with respect to time

and coordinate r separately and use the results to eliminate h(r − t) from the condition:

v̇ = −h
′(r − t)

r
and v,r =

h′(r − t)

r
− h(r − t)

r2
, (2.180)

where the prime differentiation refers to the variable p ≡ r − t. Eliminate h′ by equating both

expressions and insert the value of h(r − t) in terms of v and r, and the boundary condition for

radiative variables becomes:

rv̇ + rv,r + v = 0, (2.181)

that can also be transformed back into cartesian coordinates with the final result given by:
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√

x2 + y2 + z2 v̇ + xv,x + yv,y + zv,z + v = 0. (2.182)

This condition, equation (2.182) was applied successfully for the complex scalar field compo-

nents. The discrete version of this equation 7 is centered between the last two grid points along

each of the 3 possible directions, i.e. the physical boundary condition expressed through equa-

tion (2.182) does not coincide with grid boundaries, it is centered between the last 2 grid points,

one belonging to the face boundary and the other to the interior domain. The grid points at the

boundaries are then expressed in terms of the interior grid points through the discrete version of

equation (2.182). It is worth mentioning the edges and corners of the cubic boundary requires to be

handle with a little more carefully. There the physical boundary condition is actually centered at

the square formed by the 4 grid points at the edge boundary and centered at the the cube formed

by the 8 grid points at the corner boundary.

On the other hand, the implementation of the equation (2.178) as boundary condition for the

elliptic equations brought up some issues that are still under investigation. Despite the convergence

of the relaxation method employed and the smootheness of its solution attained, the multigrid

algorithm fails to converge. The reason comes from the disalignment of the points where the

physical boundary conditions are imposed on the several grids of the multigrid hierarchy. As the

grids get coarser and coarser the physical boundary resides more and more inside the domain of

integration spoiling the convergence properties of the whole algorithm. It is worth mentioning that

this problem did not show up for the scalar field components case since the numerical technique

employed there to solve those evolution equations did not require a hierarchy of grids with different

spacings between the grid points.

One possible solution for this problem is the adoption of ghost points around the boundary of

the domain instead of insisting in applying the physical boundaries in between the last two grid

points. This way both the boundary condition equations and the PDEs are supposed to be solved at

the boundary. The idea is that the boundary condition equations be used to modify the equations

of motion at the boundary points whenever a derivative operator references a ghost point. Despite

the implementation of this modification be quite straightforward in 1D and 2D domains, it is not

trivial for 3D domains. Due to the geometry that a cubic domain introduces (that would not be

present on a square 2D domain, for example, where it is easily tractable) along with the presence

of mixed derivatives in the equations of motion, the problem became hard to solve and it is still an

open problem under investigation. Besides the pure geometric difficulty, another problem can make

the implementation even more difficult. As the boundaries have PDEs to be solved, they require

an special treatment regarding the smoothing process as well as the various transfers between grids

of different resolutions. The bottom line is that a successful implementation of Sommerfeld-like

boundary condition for the elliptic equations requires a careful study of the geometry close to the

edges and corners of the cubic domain besides the implementation of a more sophisticated multigrid

solver. It is still an on-going project.

7See Chap. 3 for a detailed discussion on discretization of PDEs.
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Truncated Boundary Conditions

Finally the last strategy on implementing the boundary condition consists in applying Dirichlet

conditions, i.e. all the variables are set to a constant at the boundaries of the domain. As in the

case of Sommerfeld-like boundary conditions, the domain of integration is also truncated to a finite

region, 0 ≤ t ≤ tmax, xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax and zmin ≤ z ≤ zmax.

Since in this case the behaviour of the several functions as r → ∞ is neglected by simply setting

their known values at infinity at a finite value of r, essentially it is a cruder approximation than

the Sommerfeld-like boundary condition. However, due to the simplicity in implementing this

boundary condition, it is a strategy worth pursuing. One hopes that by pushing the boundaries

of the truncated domain further away from the region of strong gravitational field where the two

boson stars coalesce, the error associated with the boundary approximation be neglegible to the

main physical properties of the system. Fortunately it is possible to do so numerically by the use

of the technique called Adaptive Mesh Refinement. In essence this technique decreases or increases

the number of grid points in the whole domain according with the necessity of resolving features

of the solution. As the main features of the strong gravitation field are expected to happen in the

middle of the domain, the grid are more densely populated there. Naturally this frees computer

resources allowing then the use of larger domains of integration.

In short, at the boundaries of the cubic domain the lapse function α, the conformal factor ψ

and the 3 shift vector components are set equal to their values at infinity. The same is valid for

the 2 complex scalar field components φA and their conjugate momenta ΠA:

α = 1, ψ = 1, βi = 0, φA = 0, ΠA = 0. (2.183)

2.4.6 ADM/York Mass

In the hamiltonian formulation of general relativity the total spacetime energy, also called ADM

mass, is associated with the numerical value of the Hamiltonian for the solutions taken on a surface

∂V at spatial infinity i0 enclosing the whole volume V of the slice Σt. For an asymptotically flat

spacetime (M, gab), the total energy associated with the spacelike hypersurface Σt is just a surface

integral of metric component derivatives at i0. In terms of the 3 + 1 components and cartesian

coordinates, this expression reads as:

MADM ≡ E ≡ H∞

16π
=

1

16π
lim
r→∞

∮

∂V

(

∂γij
∂xi

− ∂γii
∂xj

)

N jdS, (2.184)

where r =
√

x2 + y2 + z2, H∞ is the hamiltonian numerical value at i0, N j is a unit vector pointing

outwards the surface ∂V and dS is the area element on this surface, i.e. dS =
√
q d2y with q being

the determinant of the induced metric at that surface ∂V and d2y the differentials corresponding

to the coordinates at the surface. For example, in case of ∂V being a spherical symmetric surface

at i0, the integral measure simply becomes dS =
√
qd2y = r2 sin θ dθdφ and N i = (1, 0, 0) in this

coordinate system.

When implemented numerically, most of the times the equation (2.184) is actually approximated

first by integrating along surfaces in which one of the coordinates is kept constant (particularly



CHAPTER 2. FORMALISM 50

true for cartesian coordinates) and second by evaluating the integral at finite r. The results are

certainly spoiled by the proximity of the boundaries and the boundary conditions implemented

there. Of coarse the best alternative for improvement is really pushing the boundaries and the

integration surface away from the compact support region, what can be quite restrictive on the

computation resources for 3D simulations.

Fortunately there is an alternative expression for the total mass present at the slice Σt due to

O’Murchadha and York [123]. They investigated the relationship between the ADM mass of two

spatial metrics conformally related, i.e. for γij = ψ4γ̃ij . Starting from the expression 2.184 for the

energy, they found out that the difference in energy is given by the following volume integral over

the spacelike hypersurface:

16π
(

MADM − M̃ADM

)

= −8

∫

V

√

γ̃
(

γ̃ij∂i∂jψ
)

d3x. (2.185)

This expression is particularly convenient when the conformal metric is flat, since the ADM mass

vanishes by definition8:

16πMADM = −8

∫

V

√

γ̂
(

γ̂ij∂i∂jψ
)

d3x. (2.186)

That in cartesian coordinates becomes:

MADM = − 1

2π

∫

V

(ψ,xx + ψ,yy + ψ,zz) d
3x. (2.187)

The last expression above is then used in this thesis as a diagnostic tool in order to identify

regimes in which the total mass/energy has been conserved during the construction of the numerical

solutions. It is thought to provide more accurate values than the equation (2.184) since the integral

is taken over the whole volume of the slice. Comparisons between the calculations performed by

the equation (2.187) on the evolution of one star and by the ADM mass on a spherically symmetric

boson star (in a 1D domain) showed good agreement. However, it is worth noticing that no other

theoretical investigation of conserved quantities under CFC has been pursued to date. Therefore

these empirical evidences that the ADM mass is conserved and still well-defined under CFC should

be taken with cautious.

8This result was generalized by the authors as a definition of the total energy valid only for asymptotically
conformally flat spacelike slices.
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2.5 Overview of the Equations of Motion

Previous sections discussed in detail the derivation of the equations of motion used in this thesis.

The goal of this section is summarize those equations, given by (2.154)-(2.164), and discuss briefly

some of their properties and how they were solved.

The equations of motion consist of a set of 5 quasi-linear, elliptic equations for the geometric

variables lapse function α, conformal factor ψ and shift vector βi coupled to each other and to the

set of 4 quasi-linear, hyperbolic equations to be solved for the components of the complex scalar

field matter, φ1 and φ2, and its conjugate momenta, Π1 and Π2.

The elliptic equations were derived as follows. The maximal slicing condition applied to the

trace of the evolution equation for the extrinsic curvature, Ki
j , resulted into an elliptic equation

for the lapse function α, equation (2.162), (after the hamiltonian constraint being used as well to

simplify the equations) that can be written schematically as follows:

α,xx + α,yy + α,zz = Nα
(

α, α,j , ψ, ψ,j, β
i
,j , φA,ΠA

)

, (2.188)

where Nα is a non-linear function of its arguments. Note that this includes first order derivatives

in the lapse function, conformal factor and shift vector.

The elliptic equation for the conformal factor ψ, equation (2.163) came exclusively from the

hamiltonian constraint equation and it is written in a compact notation as:

ψ,xx + ψ,yy + ψ,zz = Nψ
(

α, ψ, βi,j , φA, φA,j ,ΠA

)

, (2.189)

where Nψ is also a non-linear function of its arguments but this time the non-linearities originated

from first order derivatives are only for the shift vector and scalar field components.

At last, the momentum constraint equations were used to obtain the elliptic equations, equa-

tions (2.165)-(2.167), for the components of the shift vector (βx, βy, βz):

4

3
βx,xx + βx,yy + βx,zz = Nβx

(

α, α,j , ψ, ψ,j , β
x
,j, β

y
,y, β

y
,x, β

y
,xy, β

z
,z, β

z
,x, β

z
,xz, φA,x,ΠA

)

, (2.190)

βy,xx +
4

3
βy,yy + βy,zz = Nβy

(

α, α,j , ψ, ψ,j, β
y
,j , β

z
,z, β

z
,y, β

z
,yz, β

x
,x, β

x
,y, β

x
,yx, φA,y,ΠA

)

, (2.191)

βz,xx + βz,yy +
4

3
βz,zz = Nβz

(

α, α,j , ψ, ψ,j , β
z
,j, β

x
,x, β

x
,z, β

x
,zx, β

y
,y, β

y
,z, β

y
,zy, φA,z ,ΠA

)

, (2.192)

where the right-hand-side functions Nβx , Nβy and Nβz are highly non-linear functions of its argu-

ments, especially of derivatives of the shift vector components, inclusive with the presence of mixed

derivatives.

These five elliptic PDEs have to be suplemented by the boundary conditions. The results of
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the simulations shown on Chap. 4 used the following Dirichlet boundary conditions as representing

the asymptotic flat spacetime condition:

α = 1, ψ = 1, βx = 0, βy = 0, βz = 0. (2.193)

In order to solve this set of elliptic equations, the equations were discretized by finite difference

techniques and represented on a 3D discrete domain of grid points. Chap. 3 discusses in details

how to do the discretization (Sec. 3.1). The resulting set of discrete equations are then solved by

Multigrid techniques (see Sec. 3.3 for details on these techniques).

The four hyperbolic equations consist of the Klein-Gordon equations for a complex scalar field

cast into first order in time. They become two equations for the scalar field real and imaginary

components, φA for A = 1, 2:

φ̇A = NφA

(

α, ψ, βi, φA,j ,ΠA

)

(2.194)

and two equations for its conjugate momenta, ΠA for A = 1, 2:

Π̇A = NΠA

(

α, α,j , ψ, ψ,j , β
i, βi,i, φA, φA,j , φA,jj ,ΠA,ΠA,j

)

, (2.195)

where NφA
and NΠA

are non-linear function of their arguments. Both are suplemented by the

following Dirichlet boundary conditions:

φA = 0 and ΠA = 0. (2.196)

The hyperbolic equations were also discretized by finite difference techniques, more specifically,

the Crank-Nicholson finite difference scheme (see Sec. 3.1.2 for details). The set of algebraic

equations originated from this approximation is then solved by point-wise Newton-Gauss-Seidel

iterative technique (see App. D for details). Chap. 3 explains in detail all the numerical techniques

necessary to solve these equations. The pseudo code explaining how both set of equations are

solved together and in what order is discussed in detail on Sec. 4.1.

The last aspect to be dealt with in the formulation of the initial-boundary value problem

concerns the initial data specification. In principle any configuration of the scalar field would settle

the issue and in fact such a smooth configuration is used in Chap. 4 to investigate the correctness

of the numerical code. However, the interest in this thesis lies on the modelling of the astrophysical

scenario of two stars inspiriling towards each other. In order to specify this initial data, each of the

stars needs to be modelled individually first. Next section discusses the modelling of boson stars

in spherical symmetry and how the two stars are set together as initial data in order to fulfill the

astrophysical scenario of interest.
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2.6 Initial Data

The main goal of this section is to describe how to build the initial data configuration for the

boson star binary. The approach taken here consists of building first the spacetime for a spherically

symmetric Boson Star. More specifically, static solutions that represent Boson Stars in their ground

state. The star solution is then transfered to the 3D spacelike hypersurface Σt. The same process

is duplicated for the other star. The stars profiles are then located distant from each other in a

way that only a tiny tail of scalar field belonging to the each star is overlapped. It is expected

that gluing the two profiles far enough from each other the non-linearities naturally inherent in GR

would not play a significant role in approximating the spacetime with two stars as matter source. In

addition, the metric components describing the spherically symmetric spacetimes are also patched

together into the 3D domain. However they are only used as a first approximation to the binary

spacetime. The equations for the geometry are actually resolved using this approximation only as

a initial guess.

Boson stars in spherical symmetry has already been studied by a great number of authors.

Particularly though, this section follows closely the discussion on Boson Stars presented in Chap. 4

of Kevin Lai’s thesis [107] and the numerical relativity lecture notes by Matthew Choptuik [124].

Their main results as well as their assumptions and derivations are only summarized here. The

reader interested in further details on the derivations of the equations presented here should refer

to one of these references. On the other hand, the end of this section discusses in more detail the

derivation of the coordinate transformation law between the rest frame of the star and the lab

frame, where the star is boosted. Thus expressions for the boosted metric components and scalar

fields are found. The interpolation from the initial data calculated in spherical symmetry (1D) into

the 3D spatial domain is also discussed.

2.6.1 Spherically Symmetric Space-time

Birkhoff’s theorem ascertains that the only static spherically symmetric solution in vacuum, i.e.

when Rab = 0, is the Schwarzschild solution. As the spacetime solution being sought here is

in presence of matter, dynamics may arise and the spacetime wouldn’t be static anymore. This

subsection starts then with the most general spherically symmetric solution and specializes later to

the static case. Spherical symmetry is characterized by a group of symmetry, SO(3). The action of

this isometry into a collection of space points results into a 2-sphere. As SO(3) can be physically

associated with rotations, the metric components for a spherically symmetric spacetime remain

invariant under rotations. Adopting the usual spherical coordinates (r, θ, φ), the metric induced on

the 2-sphere is going to be a multiple of the unit 2-sphere line element:

dΩ2 = dθ2 + sin2 θdφ2 (2.197)

and results into the following general spatial line element that it is spherically symmetric:

(3)ds2 = a2(t, r)dr2 + r2b2(t, r)dΩ2. (2.198)



CHAPTER 2. FORMALISM 54

Note that the line element above is just a generalization of the flat line element in spherical

coordinates. The generalization just assumes that the otherwise constant coefficients now become

functions of the coordinates (t, r) in order to allow for curvature due to the presence of the star

[110]. The same argument can be applied to the construction of the 4-dimensional 3 + 1 line

element. However in this case one extra assumption must be taken. The shift vector must have

only the radial component, otherwise the spherical symmetry would be destroyed, i.e. if the shift

has only radial component, the 2-sphere would go to another 2-sphere from one slicing Σt to the

next one Σt+dt, while the presence of βθ or βφ prevents that to happen. So:

βi = (βr(t, r), 0, 0) ≡ (β, 0, 0). (2.199)

Finally then the most general 4d line element for a spherically symmetric spacetime in the 3 + 1

coordinate basis can be written as:

ds2 = (−α2 + a2β2)dt2 + 2a2β dtdr + a2dr2 + r2b2dΩ2. (2.200)

It is not hard to prove from the equation (2.40) that the extrinsic curvature corresponding to

the spatial metric γij has only two independent components:

Ki
j = diag(Kr

r(t, r),K
θ
θ(t, r),K

θ
θ(t, r)). (2.201)

Before writing down the Einstein’s equation in the 3+1 form for this spacetime, it is convenient

to introduce the following auxilliary fields to describe the massive complex scalar fields:

Φ(t, r) ≡ φ′(t, r) ≡ ∂rφ(t, r) and Π(t, r) ≡ a

α
(φ̇− βφ′). (2.202)

Note that besides its resemblance Π is not the conjugate momentum of the field φ. A factor of
√
γ/a

needs to be multiplied in order to make the expression the conjugate momentum. In terms of these

auxiliary variables, and according to the equations (2.36)-(2.39), the non-vanishing components of

the matter source stress-energy tensor becomes:

ρ =
|Φ|2 + |Π|2

2a2
+
U(|φ|2)

2
, jr = −Π∗Φ + ΠΦ∗

2a
= a2jr,

Srr = ρ− U(|φ|2), Sθθ =
|Π|2 − |Φ|2

2a2
− U(|φ|2)

2
,

Sφφ = Sθθ, S =
3|Π|2 − |Φ|2

2a2
− 3

2
U(|φ|2).

While the evolution equations for the complex scalar field and its auxiliary fields with a general

self-interaction potential U(|φ|2) are written as:
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φ̇ =
α

a
Π + βΦ, (2.203)

Φ̇ =
(α

a
Π + βΦ

)′

, (2.204)

Π̇ =
1

(rb)2

[

(rb)2
(

βΠ +
α

a
Φ
)]′

+ 2

[

αKθ
θ − β

(rb)′

rb

]

Π − αa
dU(|φ|2)
d|φ|2 φ. (2.205)

On the other hand, according to equation (2.40) the evolution equations for the spatial metric (γij)

functions in spherical symmetry becomes:

ȧ = −αaKr
r + (aβ)′, (2.206)

ḃ = −αbKθ
θ +

β

r
(rb)′. (2.207)

While, according to equation (2.41), the evolution equations for the extrinsic curvature Ki
j can be

written as:

K̇r
r = βKr

r
′ − 1

a

(

α′

a

)′

+ α

{

− 2

arb

[

(rb)′

a

]′

+KKr
r − 4π

[

2|Φ|2
a2

+ U(|φ|2)
]

}

, (2.208)

K̇θ
θ = βKθ

θ

′
+

α

(rb)2
− 1

a(rb)2

[

αrb

a
(rb)′

]′

+ αKKθ
θ − 4παU(|φ|2). (2.209)

At last, the hamiltonian constraint equation, equation (2.42), before and after the substitution

of the expressions for the Ricci scalar in terms of the metric functions and the energy density in

terms of the scalar fields:

R + 4Kr
rK

θ
θ + 2Kθ

θ

2
= 16πρ, (2.210)

− 2

arb

{

[

(rb)′

a

]′

+
1

rb

[

(

rb

a
(rb)′

)′

− a

]}

+ 4Kr
rK

θ
θ + 2Kθ

θ

2
= 8π

[ |Φ|2 + |Π|2
a2

+ U(|φ|2)
]

,

(2.211)

and equation (2.43), the momentum constraint:

Kθ
θ

′
+

(rb)′

rb

(

Kθ
θ −Kr

r

)

= 2π
Π∗Φ + ΠΦ∗

a
. (2.212)

These set of equations are the 3 + 1 equations for a time dependent spherically symmetric

spacetime whose matter source is a complex scalar field. They are still in a quite general form. To

cast them in a form appropriate for numerical calculation, the first step is to fix the coordinate

system to be used. In the 3 + 1 formalism that means to specify the values of the lapse, α, and

the shift vector component, β. There are different possibilities of doing so. Two of them though

are quite suitable for the task of generating astrophysically relevant initial data. Next subsection

specializes on maximal-isotropic coordinates, a coordinate system similar to the one adopted in
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the 3D evolution and therefore appropriate to specify its initial data. The subsection afterwards

discusses the other coordinate system, the polar-areal coordinates. The calculation of the initial

data is performed more easily in this system and for this reason this is the coordinate system of

choice to generate them.

2.6.2 Maximal-Isotropic Coordinates

In this coordinate system the slicing condition is chosen such that its mean extrinsic curvature

always vanishes, hence the slicing is maximal at any time t and position r on Σt:

K ≡ Ki
i = 0 and K̇(t, r) = 0. (2.213)

Note that as a consequence of this slicing choice one of the extrinsic curvature components can be

eliminated from the equations. Maximal slicing condition then implies:

K = 0 ⇒ Kθ
θ = −1

2
Kr

r. (2.214)

Once the slicing is imposed, only one coordinate freedom is left to be fixed. The choice of spatial

coordinate is achieved by the so called isotropic condition which demands:

a = b ≡ ψ2(t, r) (2.215)

such that the spherically symmetric spatial metric is manifestly conformally flat (or isotropic):

(3)ds2 = ψ4
(

dr2 + r2dΩ2
)

. (2.216)

The implementation of the isotropic condition requires that the initial data obeys the condition

a(0, r) = b(0, r) and that this condition holds for all times, i.e:

ȧ(t, r) = ḃ(t, r) (2.217)

should be satisfied for all t and r. According to equations (2.206) and (2.207), the isotropic

condition results then in an ordinary differential equation (ODE) for the shift component β:

r

(

β

r

)′

= α(Kr
r −Kθ

θ) (2.218)

or, using the maximal slicing condition:

r

(

β

r

)′

=
3

2
αKr

r. (2.219)

The maximal slicing and isotropic condition fix the coordinates through the specification of the

lapse function, α, and the shift vector component, β. The maximal slicing condition results in an

ODE for the lapse function. That comes from the tracing of the evolution equation for the extrinsic

curvature Ki
j , equation (2.41):
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K̇ = βK ′ − 1

a(rb)2

[

(rb)2

a
α′

]′

+ α
[

R +K2 + 4π (S − 3ρ)
]

. (2.220)

While adopting K = 0 and substituting the values for R, S and ρ in terms of the metric and scalar

field components, the equation above becomes a second order ODE for the lapse function α:

α′′ +
a

(rb)2

[

(rb)2

a

]′

α′ +

[

4πa2U(|φ|2) − 8π|Π|2 − 3

2
a2Kr

r
2

]

α = 0 (2.221)

that turns into the following equation after the isotropic condition is imposed:

α′′ +
2

rψ2

∂

∂r2
(

r2ψ2
)

α′ +

[

4πψ4U(|φ|2) − 8π|Π|2 − 3

2
ψ4Kr

r
2

]

α = 0, (2.222)

where the operator ∂/∂r2 is the derivative with respect to r2. The reason for this change of

operators from ∂/∂r to ∂/∂r2 is related to the regularity behaviour of these terms close to the origin.

On the continuum both operators are identical, however their second order discrete approximations

are distinct and only the discrete version of ∂/∂r2 preserves its continuum regularity behaviour.

Sec. 2.6.8 will be devoted to the discussion of these kind of operators.

The other two geometric variables to be determined, the conformal factor ψ and the extrinsic

curvature component Kr
r, can be evaluated either by the hamiltonian and momentum constraints

or by their respective evolution equations. Here they are updated through the constraints, a

scheme also known as a fully constrained scheme. The hamiltonian and momentum constraints,

equations (2.210) and (2.210), are then written as:

3

ψ5

d

dr3

(

r2
dψ

dr

)

+
3

16
Kr

r
2 = −π

( |Φ|2 + |Π|2
ψ4

+ U(|φ|2)
)

, (2.223)

Kr
r
′ + 3

(rψ2)′

rψ2
Kr

r = −4π

ψ2
(Π∗Φ + ΠΦ∗) . (2.224)

On the other hand, the klein-gordon equation in the maximal-isotropic coordinate system be-

comes:

φ̇ =
α

ψ2
Π + βΦ, (2.225)

Φ̇ =

(

α

ψ2
Π + βΦ

)′

, (2.226)

Π̇ =
3

ψ4

d

dr3

[

r2ψ4

(

βΠ +
α

ψ2
Φ

)]

− 2

[

1

2
αKr

r + β
(rψ2)′

rψ2

]

Π − αψ2 dU(|φ|2)
d|φ|2 φ. (2.227)

The set of equations (2.219), (2.222), (2.223), (2.224), (2.225), (2.226) and (2.227) fully deter-

mine the spherically symmetric Einstein-Klein-Gordon system in maximal-isotropic coordinates.

Note however that those equations must be supplemented by boundary conditions in order to pro-

vide a unique solution. Despite these equations were implemented here as an exercise it is not



CHAPTER 2. FORMALISM 58

the focus of this dissertation. Therefore for further information on the implementation details, the

reader should refer to appendix B of Lai’s thesis [107]. The focus of this section is on the initial

data generation. After introducing the polar-areal coordinates in the next subsection, the set of

equations in both coordinates will be then especialized to initial data calculation.

2.6.3 Polar-Areal Coordinates

This coordinate system imposes the slicing condition such that the mean extrinsic curvature reduces

to the following component of the extrinsic curvature:

K ≡ Ki
i = Kr

r. (2.228)

This slicing condition is called polar slicing [125]. The immediate consequence from this slicing

choice is the reduction of the number of components of the spherically symmetric extrinsic curva-

ture:

K ≡ Kr
r + 2Kθ

θ = Kr
r ⇒ Kθ

θ = 0, (2.229)

where the condition can be kept for all t and r by imposing:

Kθ
θ(t, r) = K̇θ

θ(t, r) = 0. (2.230)

The spatial coordinate is fixed by demanding that the coordinate r be associated with the proper

area. A constant r angular surface element dθ dϕ has an area associated to it that by definition

is r2 sin θ dθ dϕ. The coordinate r is endowed then of geometric meaning. This condition requires

then that the spherical symmetric component b(t, r) be constant for all t and r and equal to 1.

Applying the polar-areal condition to the evolution equation for b(t, r), equation (2.207), results in

a identically vanishing shift component β. The 3+1 line element in polar-areal coordinates reduces

then to:

ds2 = −α2dt2 + a2dr2 + r2dΩ2. (2.231)

One of the greatest advantages of the polar-areal coordinates is the considerable simplification

of the equations of motion. Again, adopting a fully constrained scheme, the only non-vanishing

component of the extrinsic curvature can be determined from the momentum constraint resulting

in the following algebraic expression:

Kr
r = −2πr

a
(Π∗Φ + ΠΦ∗) , (2.232)

while the hamiltonian constraint can be used to determine the metric component function a(t, r):

a′ =
1

2

{a

r

(

1 − a2
)

+ 4πra
[

|Φ|2 + |Π|2 + a2U(|φ|2)
]

}

. (2.233)

The equation for the lapse function α(t, r) originates from inserting the hamiltonian constraint into

the evolution equation for Kθ
θ:
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α′ =
α

2

{

a2 − 1

r
+ 4πr

[

|Φ|2 + |Π|2 − a2U(|φ|2)
]

}

. (2.234)

Finally the equations for the complex scalar field and its auxiliary variable turn out to be:

φ̇ =
α

a
Π, (2.235)

Φ̇ =
(α

a
Π
)′

, (2.236)

Π̇ = 3
d

dr3

[

r2
α

a
Φ
]

− αa
dU(|φ|2)
d|φ|2 φ. (2.237)

Equations (2.232), (2.233), (2.234), (2.235), (2.236) and (2.237) correspond to the fully con-

strained set of equations in polar-areal coordinates used to solve the EKG system in spherical

coordinate. Next subsection these equations are simplified even more by the static spacetime

requirement and used to determine the boson star initial data.

2.6.4 Static Solution Ansatz

A spherically symmetric, localized, time independent matter model configuration captures the

simplest notion of a star. Ideally this configuration also generates a spherically symmetric, time

independent gravitational field that is regular everywhere. Unfortunately, it is not possible to have

a time independent solution in case of the complex scalar field. Friedberg, Lee and Pang [126]

showed that in order to have the lowest energy solution, i.e. a boson star in its ground state, the

complex scalar field needs to have a time harmonic dependence. Therefore the following ansatz is

adopted for the complex scalar field modelling the boson star:

φ(t, r) = φ0(r)e
−iωt. (2.238)

Note that with this time dependence, the complex scalar field stress-energy-momentum tensor

becomes time independent. Consequently the spacetime sourced by this matter model is also

expected to be time independent.

An extra condition on the coordinates needs to be imposed in order to guarantee staticity. A

stationary spacetime is defined by the existence of a timelike killing vector field. A spacetime is

said to be static when it is a stationary spacetime with time reversal symmetry, i.e. the metric

is invariant under the transformation t → −t. This extra condition on a stationary spacetime

is achieved by demanding that the timelike killing vector field be orthogonal to the spacelike

hypersurfaces Σt. In practice, the implementation of this condition is done via the coordinate

requirement that the shift component vanishes for all times t, where t is the orbit of the timelike

killing vector field:

β(t, r) = 0. (2.239)

Note that this condition is already satisfied in the polar-areal coordinate system. On the other
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hand, it does needs to be imposed explicitly on the maximal-isotropic coordinates.

By the definition of the timelike killing vector field, all the time derivative of the metric compo-

nents vanish (ȧ = ḃ = 0). Thus the static ansatz implies that the extrinsic curvature components

also vanish:

Kr
r = Kθ

θ = 0, (2.240)

as can be seen from the evolution equations (2.206) and (2.207) for the metric component functions

a and b. As a consequence the polar slicing is also maximal for the static solution.

Note that the static ansatz implies the following simplifications on the complex scalar fields:

φ̇(t, r) = −iωφ0(r)e
−iωt, (2.241)

φ′(t, r) = φ′0(r)e
−iωt, (2.242)

which produce:

Π(t, r) = −iω a
α
φ0(r)e

−iωt ≡ Π0(r)e
−iωt, (2.243)

Φ(t, r) = φ′0(r)e
−iωt ≡ Φ0(r)e

−iωt, (2.244)

and

Π∗Φ + ΠΦ∗ = 0, (2.245)

which indicates that the momentum constraint, equation (2.212), is satisfied identically.

Inserting the static ansatz solution into the set of equations describing the spherically symmetric

EKG system in polar-areal coordinates simplifies considerably the equations of motion. After some

manipulation, the hamiltonian constraint (2.233), the slicing condition, (2.234), as well as the scalar

field equation (2.237) become the following system of coupled ODEs:

a′ =
1

2

{

a

r

(

1 − a2
)

+ 4πra

[

Φ2
0 + ω2 a

2

α2
φ2

0 + a2U(φ2
0)

]}

, (2.246)

α′ =
α

2

{

a2 − 1

r
+ 4πr

[

Φ2
0 + ω2 a

2

α2
φ2

0 − a2U(φ2
0)

]}

, (2.247)

φ′0 = Φ0, (2.248)

Φ′
0 = −

(

1 + a2 − 4πr2a2U(φ2
0)
) Φ0

r
+ a2

[

dU(φ2
0)

dφ2
0

− ω2

α2

]

φ0. (2.249)

This system of ODEs will be referred to from now on as the polar-areal ODE system.

Note that this system of ODEs is singular at r = 0. In order to make it regular, certain

conditions needs to be imposed on the functions a(r) and Φ0(r). Rigorously a function (or tensor)

is defined to be regular if its cartesian components can be expanded into a convergent Taylor series
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in a neighbourhood of r = 0 or equivalently x = 0, y = 0 and z = 0. It is possible to show

[125, 127, 128] that the resulting expansion is in even powers of x, y and z. Adopt here a simpler

analysis though. Suppose there is a convergent Taylor expansion of the metric component a(r)

around r = 0 written as follows:

a(r) = a0 + ra1 + r2a2 + . . . (2.250)

Insert this expansion into the singular term of equation (2.247) and require that the result be at

least O(r) in order to make that term regular:

a2 − 1 ≡
(

a2
0 − 1

)

+ 2a0a1r + 2a0a2r
2 + · · · = O(r), (2.251)

which is satisfied when a2
0 − 1 = 0 or a0 = ±1 (the choice of sign is arbitrary; here a0 = 1).

Therefore the first regularity condition is:

a(0) = 1. (2.252)

The same analysis goes to make the singular term at equation (2.249) regular at r = 0 and the

second regularity condition becomes:

Φ0(0) = 0. (2.253)

The polar-areal ODE system need 4 conditions to fix all its integration constants. Two of them

were already given by the regularity conditions (2.252) and (2.253). The requirement that the

spacetime be asymptotically flat implies that the scalar field should vanish at infinity. This results

then into the first outer boundary condition:

lim
r→∞

φ(r) = 0. (2.254)

The last boundary condition is a condition on the lapse function. It is obtained by the com-

parison of the Schwarzschild and polar-areal line element in the region where they coincide. The

Schwarzschild spacetime metric components can be read from:

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2dΩ2 (2.255)

and becomes the limiting case of the polar-areal metric components:

ds2 = −α2dt2 + a2dr2 + r2dΩ2, (2.256)

when r → ∞. Therefore the following limits are valid:
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lim
r→∞

a(t, r)2 =

(

1 − 2M

r

)−1

, (2.257)

lim
r→∞

α(t, r)2 =

(

1 − 2M

r

)

(2.258)

and provide the lapse function outer boundary condition in terms of the metric component a:

lim
r→∞

α(t, r) =
1

a(t, r)
. (2.259)

The limit (2.257) also suggests the definition of a useful diagnostic function, the mass aspect

function:

M(t, r) ≡ r

2

(

1 − 1

a(t, r)2

)

, (2.260)

such that for r → ∞ it recovers the Schwarzschild mass, also identified as the spacetime ADM

mass:

lim
r→∞

M(t, r) = M ≡MADM . (2.261)

The polar-areal ODE system supplemented by the regularity conditions, equations (2.252) and

(2.253), and the outer boundary conditions, equations (2.254) and (2.259), consists of an eigenvalue

problem with eigenvalue ω parametrized by the central scalar field value φ0 ≡ φ0(0), viz ω = ω(φ0).

This means that for any particular value of φ0 there will be a unique solution satisfying the polar-

areal ODE system supplemented with the regularity and boundary conditions only for some specific

values of ω. For each φ0, it is expected then a discrete spectrum of values for ω , each associated

with a solution profile with an increasingly number of nodes. Clearly only the solution with no

nodes, the so called ground state of this system, is of interest to model a star-like solution.

Note that the implementation of the boundary condition (2.259) can be simplified by taking

into account the homogeneity and linearity of the slicing condition equation (2.247). Since the

lapse function can be arbitrarily rescaled without changing the equation, its central value is chosen

as opposed to the boundary condition (2.259) and it is set to:

α(0) = 1. (2.262)

After the integration of the ODE system, then both the lapse function α and the eigenvalue ω

needs to be rescaled in order to satisfy the outer boundary condition for α:

α(r) → c α(r), (2.263)

ω → c ω, (2.264)

where c is the rescaling constant calculated at the coordinate boundary of the numerical domain,
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rmax by:

c =
1

a(rmax)α(rmax)
. (2.265)

The set of conditions a(0) = 1, α(0) = 1 and Φ(0) = 0 is used then to integrate the polar-

areal ODE system for a given a value for the central scalar field, φ0. The method for finding the

eigenvalue ω consists of the shooting method. A bracket [ωhi, ωlow] around the possible values for

ω needs to be found before applying the shooting method. ωlow is value of ω that results into a

solution so that limr→∞ φ(r) = −∞. While the ωhi value is such that limr→∞ φ(r) = ∞. The

shooting method adjusts the value of ω between these two values of the bracket such that the

asymptotic behaviour for the scalar field is satisfied: limr→∞ φ(r) = 0. This method was encoded

in a FORTRAN subroutine called bsidpa that takes care of the integration of the polar areal ODE

system, the shooting process per se and the functions rescaling. Appendix A describes in detail its

user interface.

Once the polareal solution is computed, a coordinate transformation can be performed from

the areal to isotropic coordinates. Remember that for the static solution the polar slicing is also

maximal. The coordinate transformation involves the solution of the following ODE:

r|R=Rmax
=

[

(

1 +
√
a

2

)2
R

a

]

R=Rmax

,

dr

dR
= a

r

R
, (2.266)

where R is the areal radial coordinate and r(R) is the isotropic radial coordinate. It is possible to

show that the lapse is the same on both coordinates9 and that the conformal factor can be obtained

from the following expression:

ψ(r) =

√

R

r(R)
with ψ(0) =

√

1

r′(0)
, (2.267)

where ′ represents the derivative with respect to R.

2.6.5 Family of Spherically Symmetric Solutions - Properties

Figure 2.1 shows typical solutions of the polar-areal ODE system. They represent a static spheri-

cally symmetric boson star and are parametrized by the central scalar field value φ0(0). Note that

the star becomes more compact, meaning that its radius turns out to be smaller, as the central

scalar field value increases. The star lapse function and the conformal factor, on the other hand,

have their central value decreased and increased respectively as the star becomes more compact.

Note that both approach unity at large r as expected from the asymptotically flat condition. The

mass aspect function of each configuration is also shown and it converges to a constant value,

defined as the ADM mass of the spacetime, as r → ∞. All star profiles shown on figure 2.1 are

9See appendix D of Lai’s thesis for further details [107].
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members of one-parameter family of solutions. More specifically they are spherically symmetric

solutions stable against radial perturbations.

Figure 2.2 shows the ADM mass MADM as a function of the central scalar field value φ0(0) on

the left panel and the ADM mass as a function of the star radius on the right panel. The plot of

the ADM mass against φ0(0) has an absolute maximum at φ0(0) ≈ 0.08 of Mmax ≈ 0.633M2
pl/m

(where Mpl is the planck mass and m is the mass of the boson constituent particle). This result

is analogous to the Chandrasekhar limit for white dwarfs and neutron stars in which above some

mass limit there is no static configuration and the star is prompt to collapse into a black-hole. Note

however that there is no degeneracy pressure in the case of boson stars. The supporting pressure

against the gravity pressure can be thought as coming from the uncertainty principle if the system

is studied semiclassically or from the wave dispersive nature of the Klein-Gordon field if the system

is studied classically as it is the case in this thesis.

It is possible to show from perturbation analysis or full evolution of the equations of motion

[129, 130, 131, 107] that the stars belonging to the branch φ0(0) . 0.08 (left panel of figure 2.2)

are stable against radial perturbation. This branch is called then the stable branch. On the other

hand, stars with φ0(0) & 0.08 are unstable against radial perturbations and therefore belong to

the unstable branch of the family of solutions. On every extremum of the plot an additional mode

of the perturbation becomes unstable. All stars evolved as initial data in this thesis belong to the

stable branch.

The solid triangles on both plots represent samples of stable stars belonging to the set φ0(0) ∈
{0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}. As φ0(0), belonging to the stable branch, increases the star

ADM mass also increases as can be seen from left panel of figure 2.2. On the right panel, however,

an increase of the ADM mass is associated with a decrease of the star radius for the same set of

φ0(0) values. This plot shows the dependency of the ADM mass to the radius of the star. The

radius of the star is defined either as the radius containing 99% of the star ADM mass, R99, or

containing 95% of the star ADM mass, R95. Both definitions are common in the literature and

they are kept here for the sake of comparison.
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Figure 2.1: Static spherically symmetric solutions. These plots shows the values of
φ0(r), ψ(r), α(r) and M(r) for boson stars with the modulus of the central scalar
field value ranging as φ0(0) = 0.01, 0.03, 0.05 and 0.07 in polar-areal coordinates.
These configurations correspond to stable boson stars. They become more compact
and increase their average density as the central value of the field is raised.
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Figure 2.2: ADM mass MADM as a function of central scalar field value φ0(0) and the star
radius R. The plot on the left panel shows the ADM mass MADM as a function
of the central scalar field value φ0(0). There is a global maximum at φ0(0) ≈ 0.08
of Mmax ≈ 0.633M2

pl/m above which no static solution exists. The solid triangles
represent members of the stable branch of the one-parameter family of solutions,
φ0(0) ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}. The inside panel zooms in the stable
branch range in order to show the details and help to visualize the difference in mass
for the several φ0(0). The plot on the right panel shows the ADM mass as a function
of the star radius. The solid line plots in terms of R99, the star radius contaning
99% of the star ADM mass, M(R) = 99%M(∞) = 99%MADM , and the dashed line
in terms of R95, the star radius contaning 95% of the star mass. The solid triangles
represent the same set of stable solution members introduced on the plot of the left
panel.
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2.6.6 1d to 3d Initial Data Interpolation

The complete set of one dimensional functions in polar-areal coordinates to be interpolated into

the 3D maximal-isotropic numerical domain consists of {α(R), ψ(R), φ0(R)}, where R is the areal

radius. The conformal factor ψ(R) was obtained by the transformation (2.267). The transformation

from 1D areal to 1D isotropic coordinates is trivially obtained10 by simply considering α(r) ≡ α(R),

ψ(r) ≡ ψ(R) and φ0(r) ≡ φ0(R), where r(R) is the isotropic radius obtained by the integration

of equation (2.266). With these remarks in mind, the set of functions to be interpolated into

the 3D isotropic domain becomes then {α(r), ψ(r), φ0(r)}. The interpolation is performed by first

mapping the 3D coordinate values into the 1D isotropic coordinates. This is achieved by use of

the coordinate transformation law from cartesian to polar-spherical coordinates. Each point of the

3D domain in which the 3D functions are evaluated are then mapped to their equivalent radial

positions r3d in the 1D isotropic coordinates by:

r3d =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 (2.268)

for a star centered at the (x0, y0, z0) position in the 3D domain. Then a quadratic lagrange

polynomial interpolation is applied to the set {α(r), ψ(r), φ0(r)} in order to obtain the function

values at r3d, viz {α(r3d), ψ(r3d), φ0(r3d)}. Once the lagrange interpolation is performed, it is just

a matter of copying the values of the 1D functions back to the ones on the 3D domain:

α(x, y, z) ≡ α(r3d), ψ(x, y, z) ≡ ψ(r3d), φ0(x, y, z) ≡ φ0(r3d) (2.269)

and the interpolation procedure from 1D to 3D is complete.

If a second star is supposed to be interpolated in the 3D domain as well, then the procedure

explained above is repeated and the solutions corresponding to each star are superposed as:

α(x, y, z) = α(1)(x, y, z) + α(2)(x, y, z) − 1, (2.270)

ψ(x, y, z) = ψ(1)(x, y, z) + ψ(2)(x, y, z) − 1, (2.271)

φ0(x, y, z) = φ
(1)
0 (x, y, z) + φ

(2)
0 (x, y, z), (2.272)

where the superscripts (1) and (2) refer to the interpolated solution of each star. Note that the

superposition of the star solutions are such that the overlap of scalar matter is negligible, i.e.

only the scalar tails of each star reach the other star. This minimizes possible non-linear effects

originating from such initial data construction. It is worth noticing however that the initial data

corresponding to the metric components α(x, y, z) and ψ(x, y, z) are used only as initial guesses

for the multigrid solver. The multigrid solver will then be responsible to calculate the appropriate

metric component initial data for the star binary. See section 4.1 on how the initial data and the

multigrid solvers are integrated on the whole solution scheme.

10According to appendix D of Lai’s thesis [107]
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2.6.7 Lorentz Boosted Initial Data

Last subsection described how to interpolate a static spherically symmetric solution for the EKG

system into a three dimensional domain. The stars were not only interpolated but also translated

into the 3D domain. This subsection supplements the binary initial data construction by providing

the stars with speeds along the x direction. In order to do so a lorentz transformation of the metric

and scalar field related quantities from the star rest frame to the boosted or lab frame needs to be

performed. This subsection discusses in detail how this transformation is done.

Let the primed coordinates (t′, x′) to represent the star rest frame coordinates and the unprimed

coordinates (t, x) to be the lab frame coordinates. Consider a star boosted with velocity v along

the negative x direction. So the lorentz coordinate transformation reads as11:

x = γ(x′ + vt′), (2.273)

t = γ(t′ + vx′), (2.274)

while the inverse lorentz transformation is:

x′ = γ(x− vt), (2.275)

t′ = γ(t− vx). (2.276)

Note that throughout this subsection the y and z coordinates of both systems will be supressed

considering that they do not enter in the lorentz transformation law in a non-trivial form, i.e.

y′ = y and z′ = z, for the boost in the x direction.

The real and imaginary components of the scalar field in the star rest frame follow from the

static ansatz, equation (2.238):

φ′1(t
′, x′) = φ0(x

′) cos (ωt′), (2.277)

φ′2(t
′, x′) = −φ0(x

′) sin (ωt′), (2.278)

while their time derivatives are:

Π̄′
1(t

′, x′) = −ωφ0(x
′) sin (ωt′), (2.279)

Π̄′
1(t

′, x′) = −ωφ0(x
′) cos (ωt′). (2.280)

As the scalar field is invariant under coordinate transformations, the solution in the lab frame

becomes:

11Remember that c = 1.
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φ1(t, x) ≡ φ′1(t
′, x′) = φ0(t, x) cos [ωγ(t− vx)], (2.281)

φ2(t, x) ≡ φ′2(t
′, x′) = −φ0(t, x) sin [ωγ(t− vx)], (2.282)

where the inverse lorentz transformations, equations (2.275) and (2.276), have been inserted. The

solution for the scalar field components in the lab frame at t = 0 becomes:

φ1(0, x) = φ0(0, x) cos (−ωγvx) = φ0(γx) cos (ωγvx), (2.283)

φ2(0, x) = −φ0(0, x) sin (−ωγvx) = φ0(γx) sin (ωγvx), (2.284)

where

φ0(t, x) = φ0 [γ(x− vt)] ⇒ φ0(0, x) = φ0(γx) (2.285)

has been used. As a remind, φ0(γx) is just the 1D solution interpolated in the 3D boosted domain,

i.e. the following expression for the 3D isotropic radius is used instead of equation (2.268):

r3d =
√

(γx− x0)2 + (y − y0)2 + (z − z0)2. (2.286)

Their time derivatives are also scalar fields and thus invariant under coordinate transformation

as well. In order to write down an expression for them in the lab frame, one needs to go through

the coordinate transformation in more details though. First note that the chain rule can be used

to express the time derivatives at the star frame in terms of derivatives of the boosted (lab) frame:

Π̄1(t, x) ≡ Π̄′
1(t

′, x′) =
∂φ′1
∂t′

(t′, x′) =
∂φ1

∂t′
(t, x) =

∂φ1

∂x
(t, x)

∂x

∂t′
+
∂φ1

∂t
(t, x)

∂t

∂t′
, (2.287)

Π̄2(t, x) ≡ Π̄′
2(t

′, x′) =
∂φ′2
∂t′

(t′, x′) =
∂φ2

∂t′
(t, x) =

∂φ2

∂x
(t, x)

∂x

∂t′
+
∂φ2

∂t
(t, x)

∂t

∂t′
. (2.288)

The derivatives appearing on the expressions above can be calculated from the equations (2.281)

and (2.282):

∂φ1

∂x
(t, x) =

∂φ0

∂x
(t, x) cos [ωγ(t− vx)] + ωγvφ0(t, x) sin [ωγ(t− vx)], (2.289)

∂φ2

∂x
(t, x) = −∂φ0

∂x
(t, x) sin [ωγ(t− vx)] + ωγvφ0(t, x) cos [ωγ(t− vx)] (2.290)

and considering that

∂φ0

∂t
(t, x) =

∂φ0

∂x′
(x′)

∂x′

∂t
= −γv ∂φ0

∂x′
(x′)

∣

∣

∣

∣

x′=γ(x−vt)

, (2.291)

then
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∂φ1

∂t
(t, x) =

∂φ0

∂t
(t, x) cos [ωγ(t− vx)] − ωγφ0(t, x) sin [ωγ(t− vx)]

= −γv ∂φ0

∂x′
(x′)

∣

∣

∣

∣

x′=γ(x−vt)

cos [ωγ(t− vx)] − ωγφ0(t, x) sin [ωγ(t− vx)] (2.292)

and

∂φ2

∂t
(t, x) = −∂φ0

∂t
(t, x) sin [ωγ(t− vx)] − ωγφ0(t, x) cos [ωγ(t− vx)]

= γv
∂φ0

∂x′
(x′)

∣

∣

∣

∣

x′=γ(x−vt)

sin [ωγ(t− vx)] − ωγφ0(t, x) cos [ωγ(t− vx)]. (2.293)

Inserting equations (2.289), (2.290), (2.292) and (2.293) back into equations (2.287) and (2.288)

results into:

Π̄1(t, x) = γv

[

∂φ0

∂x
(t, x) − γ

∂φ0

∂x′
(x′)

]

cos [ωγ(t− vx)] − ωφ0(t, x) sin [ωγ(t− vx)],(2.294)

Π̄2(t, x) = γv

[

γ
∂φ0

∂x′
(x′) − ∂φ0

∂x
(t, x)

]

sin [ωγ(t− vx)] − ωφ0(t, x) cos [ωγ(t− vx)],(2.295)

where the derivative with respect to x′ is supposed to be evaluated at x′ = γ(x− vt). The solution

in the lab frame at t = 0 becomes then:

Π̄1(0, x) = γv

[

∂φ0

∂x
(γx) − γ

∂φ0

∂x′
(x′)

∣

∣

∣

∣

x′=γx

]

cos(ωγvx) + ωφ0(γx) sin(ωγvx), (2.296)

Π̄2(0, x) = γv

[

∂φ0

∂x
(γx) − γ

∂φ0

∂x′
(x′)

∣

∣

∣

∣

x′=γx

]

sin(ωγvx) − ωφ0(γx) cos(ωγvx). (2.297)

In order to completely determine the initial data, the metric components need to be boosted as

well. The metric components for the static star is simply given by:

g′µν(t
′, x′) =













−α′2(t′, x′) 0 0 0

0 ψ′4(t′, x′) 0 0

0 0 ψ′4(t′, x′) 0

0 0 0 ψ′4(t′, x′)













. (2.298)

A coordinate transformation is supposed to relate the metric components from the static star frame

to the boosted one:

gλδ(t, x) =
∂x′µ

∂xλ
∂x′ν

∂xδ
g′µν(t

′, x′), (2.299)

where the lab frame metric components gλδ(t, x) is written as:
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gλδ(t, x) =

(

−α2(t, x) + γijβiβj βk(t, x)

βl(t, x) γlk(t, x)

)

(2.300)

and the lorentz boost transformation as:

Λµλ =
∂x′µ

∂xλ
=













γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1













. (2.301)

For example, the g0x component of the boosted metric would be simply given by the following

transformation:

g0x ≡ βx(t, x) = Λµ0Λ
ν
xg

′
µν =

(

Λ0
0g

′
0ν + Λx0g

′
xν

)

Λνx (2.302)

that results into the following expression:

βx(t, x) = γ2v
[

α′2(t′, x′) − ψ′4(t′, x′)
]

. (2.303)

Analogously, it is possible to show that the boosted spatial metric is related to the static metric

by:

γij =







γ2
[

ψ′4(t′, x′) − v2α′2(t′, x′)
]

0 0

0 ψ′4(t′, x′) 0

0 0 ψ′4(t′, x′)






, (2.304)

what results then into the following form for the shift vector x component:

βx(t, x) =
v
[

α′2(t′, x′) − ψ′4(t′, x′)
]

[ψ′4(t′, x′) − v2α′2(t′, x′)]
. (2.305)

Remember, however that the static metric components must be time independent. So the shift

vector x component becomes:

βx(t, x) =
v
[

α′2(x′) − ψ′4(x′)
]

[ψ′4(x′) − v2α′2(x′)]
(2.306)

and restricting to the initial time t = 0, the equation assumes its final form:

βx(0, x) =
v
[

α′2(γx) − ψ′4(γx)
]

[ψ′4(γx) − v2α′2(γx)]
. (2.307)

Applying a derivation analogous to the one used for βx(0, x), it is possible to show that the

lapse function at t = 0 can be expressed as:

α(0, x) =
α′(γx)ψ′2(γx)

γ
√

ψ′4(γx) − v2α′2(γx)
, (2.308)
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while the conformal factor is simply:

ψ(0, x) = ψ′(γx). (2.309)

Finally, with the results from equations (2.283), (2.284), (2.296), (2.297), (2.307), (2.308) and

(2.309), the initial data for the scalar field conjugate momentum can be written as:

Π1(0, x) =
ψ6(0, x)

α2(0, x)

[

Π̄1(0, x) − βx(0, x)
∂φ1

∂x
(0, x)

]

, (2.310)

Π2(0, x) =
ψ6(0, x)

α2(0, x)

[

Π̄2(0, x) − βx(0, x)
∂φ2

∂x
(0, x)

]

. (2.311)

To summarize, equations (2.283), (2.284), (2.310) and (2.311) initialize the scalar field com-

ponents and their conjugate momenta in the boosted or lab reference frame. They are used as

sources by the the multigrid solver. On the other hand, equations (2.307), (2.308) and (2.309) are

used either as initial guesses for the shift vector x component, lapse function and conformal factor,

respectively, or they are used to construct the initial data for the scalar field conjugate momenta,

equations (2.310) and (2.311). If a second star is added, then the same equations are used to set its

initial data as well. The two sets of initial data corresponding to the two stars are then superposed

as:

φ1(0, x) = φ
(1)
1 (0, x) + φ

(2)
1 (0, x), (2.312)

φ2(0, x) = φ
(1)
2 (0, x) + φ

(2)
2 (0, x), (2.313)

Π1(0, x) = Π
(1)
1 (0, x) + Π

(2)
1 (0, x), (2.314)

Π2(0, x) = Π
(1)
2 (0, x) + Π

(2)
2 (0, x), (2.315)

βx(0, x) = βx (1)(0, x) + βx (2)(0, x), (2.316)

α(0, x) = α(1)(0, x) + α(2)(0, x) − 1, (2.317)

ψ(0, x) = ψ(1)(0, x) + ψ(2)(0, x) − 1, (2.318)

where the superscrips (1) and (2) refers to the solution of each star individually. Therefore the

scalar field real component, φ1, imaginary component, φ2, and their conjugate momenta, Π1 and

Π2, are specified for the binary star at the initial time step according to equations (2.312)-(2.315).

They are used then as sources for the multigrid solver. The multigrid solver, on the other hand,

accepts as initial guesses for the x component of the shift vector, βx, the lapse function, α and the

conformal factor, ψ, as evaluated by equations (2.316)-(2.318). The multigrid solver then finds the

solution for the complete set of geometric variables {α, ψ, βx, βy, βz}.
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2.6.8 Note on ∂/∂rp operators

Equation (2.222) had one of its differential operators replaced from ∂/∂r to ∂/∂r2. Other equations

in this section had similar replacements as well. This subsection goal is to briefly discuss the reasons

behind these operator modifications. First the equivalence between the two differential operators is

shown and then an explicit example is worked out in order to show their similarities and differences.

The replacement of the differential operators is related to the necessity of keeping the metric

functions regular at r = 0. A tensor quantity is said to be regular at r = 0 when its components

relative to the cartesian coordinates (related to the spherical coordinates by the usual transfor-

mation law12) can all be expanded in non-negative integer powers of x, y and z [125]. In other

words, when its cartesian components can be represented by a convergent Taylor series around

r = 0 [128]. Loosely speaking, all that it is required is that the tensor components do not diverge

as radial coordinate approaches to r = 0.

Let then f(t, r) be a regular function with the following leading order behaviour as r approaches

to zero:

lim
r→0

f(t, r) = rpfp(t) +O(rp+2), (2.319)

where p is a positive integer. Its first derivative with respect to r is simply:

lim
r→0

∂rf(t, r) = prp−1fp(t) + (p+ 2)O(rp+1). (2.320)

However the leading order dependence on r can be eliminated immediately by differentiating with

respect to rp instead:

lim
r→0

∂rpf(t, r) = fp(t) +
(p+ 2)

p
O(r2) (2.321)

and can be recovered by multiplying the equation above by prp−1:

lim
r→0

prp−1∂rpf(t, r) = prp−1fp(t) + (p+ 2)O(rp+1). (2.322)

Therefore, as r goes to zero, ∂rf can be written as:

∂rf(t, r) = prp−1∂rpf(t, r) +O(rp+1). (2.323)

This expression then ends the proof of the equivalence between this two differential operators.

Let consider now an example that show the differences that arise between them when they are

approximated by standard second-order centered finite difference operators. Suppose a laplacian

term is part of a differential equation to be second-order discretized:

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

(2.324)

12x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ
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and ψ(t, r) has to satisfy the regularity condition by:

lim
r→0

ψ(t, r) = ψ0(t) + ψ2(t)r
2 +O(r4). (2.325)

In this case, the laplacian becomes more natural if expressed in terms of derivatives of r3 as can

be noted by inserting the ψ regularity condition on the laplacian term:

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

≃ 1

r2
∂

∂r

[

r2
∂

∂r

(

ψ0(t) + ψ2(t)r
2
)

]

=
1

r2
∂

∂r

(

2ψ2(t)r
3
)

(2.326)

and the last term of the line above can either be expressed as:

1

r2
∂

∂r

(

2ψ2(t)r
3
)

=
6ψ2(t)r

2

r2
= 6ψ2(t) or

1

r2
∂

∂r

(

2ψ2(t)r
3
)

= 3
∂

∂r3
(

2ψ2(t)r
3
)

= 6ψ2(t)

(2.327)

that the results are identical. On the other hand, when both operators are discretized the results

turn out to be different. Let the usual second-order discretization approximate13 the laplacian

term:

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

≃ 1

r2j

[

r2
j+ 1

2

(

ψnj+1 − ψnj
)

− r2
j− 1

2

(

ψnj − ψnj−1

)

]

(rj − rj−1)
2 , (2.328)

where ψnj represents ψ(t, x) at time level n and grid point j, rj+ 1
2

= (rj+1 +rj)/2 and rj− 1
2

= (rj+

rj−1)/2. Inserting the expansion for ψ, equation (2.325), into the finite difference approximation

above results into:

6ψ2(t) +
1

2
ψ2(t)

(rj+1 − rj)
2

r2j
, (2.329)

where ψ2(t) is understood to be evaluated at time level n. Note that this result does differ from the

continuum one, equation (2.327). The discretization of the laplacian with the r derivative replaced

by the derivative with respect to r3 is achieved by:

3
∂

∂r3

(

r2
∂ψ

∂r

)

≃ 3
(

r3
j+ 1

2

− r3
j− 1

2

)

[

r2j+ 1
2

(

ψnj+1 − ψnj
)

(rj − rj−1)
− r2j− 1

2

(

ψnj − ψnj−1

)

(rj − rj−1)

]

. (2.330)

Inserting the equation (2.325) on the expression above results exactly into:

6ψ2(t), (2.331)

the same result as obtained by the continuum version, equation (2.327).

As a conclusion both differential operators are identical on the continuum domain for regular

functions with behaviour given by equation (2.325). On the other hand, their second order discrete

approximations are distinct and only the discrete version of ∂/∂r3 preserves the function continuum

13See Chap. 3 for full details on how differential operators are approximated by finite difference operators
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regularity behaviour. For this reason, whenever the function behaviour as r → 0 were identified

on the equations appearing in this section, the operators were replaced by their counterparts that

preserve the regularity conditions on the discrete domain.
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CHAPTER 3

NUMERICAL ANALYSIS AND TECHNIQUES

This chapter discusses the numerical methods and analysis employed to find a numerical solution –

besides testing it for its correctness – for the partial differential equations (PDE) comprising the

Einstein-Klein-Gordon system under Conformal Flat Condition. Some topics here are discussed in

more details than others but in essence all necessary concepts are mentioned. The contents of this

chapter are heavily based on the Choptuik’s numerical analysis for numerical relativists lecture

notes [132] and the reader is referred to these notes for examples and a more detailed discussion of

the concepts. Also the numerical analysis book by Burden and Faires [133] provides an excellent

introduction to the field.

As mentioned in the last chapter, the Einstein-Klein-Gordon system under CFA comprises of a

system of 4 first order hyperbolic and 5 second order elliptic equations coupled to each other. Since

the equations are of a different kind, it is natural to expect that different numerical schemes are

applied in order to obtain their numerical solution. In brief, the hyperbolic equations are solved

in this thesis by an iterative Crank-Nicholson scheme while the solution of the elliptic equations

are obtained through a multigrid technique. Both of them will be described in this chapter with a

greater emphasis to the multigrid method.

Another key ingredient to find the solutions of PDEs concerns the discretization approach. The

one adopted here is the finite difference approximation. It consists of substituting the differential

operators present in the PDEs by appropriate finite difference operators. While the differential

operators are applied on functions defined on a particular subdomain Ω of the continuum R
3, the

discrete operators are only applied to functions defined on a grid Ωh. One section is devoted on

the derivation of the finite difference operators and the App. C describes the use of a set of Maple

procedures created to automatically do the discretization of any PDE.

This chapter is organized as follows. Sec. 3.1 introduces the main concepts related to the finite

difference discretization of partial differential equations. It also derives the discrete operators that

approximate the differential operators appearing at the PDEs describing the EKG system under

CFA. Sec. 3.2 introduces the analysis tools used to show the correctness of the numerical solution.

Finally, Sec. 3.3 discusses in detail the multigrid technique. This is a numerical technique used to

solve the system of algebraic equations originated from the discretization of the elliptic PDEs.
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3.1 Discretization of Partial Differential Equations: Finite

Difference Approximation

The fundamental assumptions of the finite difference approximation (FDA) of PDEs are:

1. Given boundary and/or initial conditions, there is a unique solution of the system of PDEs

to be discretized.

2. This unique solution is smooth.

As argued in Chap. 2, the solution of the coupled elliptic-hyperbolic system of equations character-

izing the boundary-initial value problem to be solved in this thesis is expected to be smooth once

the prescribed initial data is smooth. Therefore the choice of finite difference approximation as the

discretization approach becomes a natural one for the problem at hand.

The first step on the discretization of PDEs consists on the definition of a grid (or mesh) over

the function domain of integration Ω ⊂ R
n. Loosely speaking the grid is defined as a set of points

from this domain that obey some criteria. These criteria can be as diverse as the physical problems

governed by PDEs. In general though the grid generation is governed by the geometry of the

domain boundaries and the coordinate system in which the PDE is written. For boundaries with

very complex geometries for example it is common to use unstructured grids that adapt themselves

to the geometry. Grids used on simulations of car crash or airplane flight are usually of this kind.

On the other hand, a physical problem with spherical symmetry for example has a coordinate

system adapted to the symmetry. It is natural therefore to use a curvilinear grid that mimics

the symmetry of the problem. In the case of the Einstein-Klein-Gordon system under CFA the

coordinate system in which the equations are written is simply the cartesian coordinates. Thus, as

anticipated, the grid adopted in their discretization should also be cartesian. Besides, the lack of

complicated boundary geometries finally suggests the use of the simplest grid possible: a uniform

cartesian grid. For a 3D spatial domain Ω ⊂ R
3, for example, this consists of an ordered set of

points (xi, yj , zk) ≡ Ωh ⊂ Ω such that their separation in the domain Ω is constant and equals to

h:

xi+1 − xi = h, yj+1 − yj = h, zk+1 − zk = h, (3.1)

where h is called mesh or grid spacing and acts as a control parameter of the discretization. In the

remainder of this chapter, only a single discretization scale h is considered.

Certainly the total number of grid points is finite considering the finite computational resources

available. The uniform cartesian grid points are obtained from the coordinate range of the problem.

In general for:

xmin ≤ x ≤ xmax, (3.2)

ymin ≤ y ≤ ymax, (3.3)

zmin ≤ z ≤ zmax, (3.4)
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the grid points are obtained by:

xi = xmin + (i− 1)h, i = 1 . . . nx, (3.5)

yj = ymin + (j − 1)h, j = 1 . . . ny, (3.6)

zk = zmin + (k − 1)h, k = 1 . . . nz, (3.7)

such that:

x1 = xmin and xnx
= xmax, (3.8)

y1 = ymin and yny
= ymax, (3.9)

z1 = zmin and znz
= zmax. (3.10)

The grid points are then used to define the grid functions uh : Ωh → R. For the 3D grid used as

an example in this section, the grid function uh is simply equivalent to uijk defined on every grid

point (xi, yj , zk). Such kind of grids are also called vertex centered grids since the unknowns are

defined on the grid points instead of, for example, at the center of a cubic cell or at the faces of a

cube formed by 8 neighbouring grid points. Fig. 3.2 shows a sample of a vertex centered 3D grid.

The derivative operators used in the PDEs are approximated by finite difference operators. Each

finite difference operator is usually characterized by its difference stencil or difference star. This

consists of the set of neighbouring grid points entering in the definition of the difference operator.

For example, if the real function of one variable u : R → R is restricted to its values at the one

dimensional grid Ωh, then the second order derivative of u could be approximated by using the

following combination of the grid functions uh : Ωh → R:

d2

dx2
u(x) ≈ ui−1 − 2ui + ui+1

h2
. (3.11)

The stencil of this derivative operator (see Fig. 3.1) has an overall multiplicative factor, 1/h2, and

it is weighted by the ordered set of integers (1,−2, 1) corresponding to the relative weight that

neighbour grid functions have in the approximation of the differential operator. A later subsection

will be devoted to the derivation and error analysis of these stencils. The focus now should shift

on the meaning of this sort of approximation and on the basic concepts related to it.

App. C introduces a set of Maple procedures written by the author with the intention of

automate the derivation of finite difference operators of any order and the subsequent discretization

of partial differential equations of any order as well. Several examples illustrate how to use the

procedures at the same time that output the most commonly used finite difference operators. A

couple of PDEs are also discretized in order to demonstrate the flexibility of these routines. Please

refer to App. C to more details.
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xi+1xixi−1

tn

Figure 3.1: Second-order spatial derivative operator stencil.
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Boundary grid points

Interior grid points

(xmax, ymax, zmax)

hz
z = 0

hy

hx

(xmin, ymin, zmin)

Figure 3.2: 3d grid sample. This figure shows a 3D grid drawn in perspective. This partic-
ular grid is composed by 5 × 5 × 5 grid points covering the cartesian coordinates
from (xmin, ymin, zmin) to (xmax, ymax, zmax). The solid circles represent interior
grid points, while the hollow squares denote boundary grid points. The grid spacings
were drawn out of scale for the sake of clarity. Here and throughout this manuscript:
hx = hy = hz ≡ h.
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3.1.1 Basic Concepts Related to FDAs

Consider a system of differential equations described abstractly by:

Lu− f = 0, (3.12)

where, in its all generality, L is a set of differential operators acting on a vector u of unknown

dependent functions u = (u1, . . . , um) of n independent variables, ui = ui(x1, . . . , xn) for i =

1 . . .m, and f a prescribed n-dimensional function, also known as the source of the differential

system.

The finite approximation of this generic differential system results into a system of algebraic

equations. The number of algebraic equations and unknowns naturally depends on the number of

grid points and therefore can be parametrized by the mesh spacing h. To reflect this fact, it is

usual to write the FDA of equation (3.12) as:

Lhuh − fh = 0, (3.13)

where the operator Lh is the FDA of the differential operator L, uh the discrete solution of the

algebraic equations and fh the values of the source function f restricted to the grid points. The

solution of the PDE u : Ω → R is approximated therefore by the solution of the algebraic system

of equations, uh : Ωh → R.

In order to capture and quantify how much the discrete solution uh deviates from the continuum

solution u in a given calculation for a fixed value of h, it is natural to define the solution error as:

eh ≡ uh − u. (3.14)

It is assumed that the solution error does depend on the finite value of h. The analysis of ap-

proximation schemes try to answer questions associated to the relation between the solution error

and the mesh spacing h as this tends to zero: does the discrete solution approaches the continuum

one? if yes, at what rate? Roughly speaking, numerical analysts judge the quality of the finite

difference approximation by how fast the error goes to zero as a function of h. That motivates the

introduction of the concept of convergence of the approximate solution. The approximation is said

to converge iff:

lim
h→0

uh = u or lim
h→0

eh = 0. (3.15)

The order of convergence measures the rate in which the error converges to zero. If

lim
h→0

eh = O(hp), (3.16)

then the discrete solution is said to converge to the continuum one with order p. More specifically

if p = 1 the solution is said to converge linearly and if p = 2 quadratically, for example.

The discrete solution uh of the algebraic system of equations, equation (3.13), can be calculated

exactly (for a system that admits a non-singular solution). In the context of numerical computa-
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tions, exact means as accurate as the floating-point number representation allows to be, i.e. down

to machine precision. However, the calculation of the exact solution for systems where the number

of unknowns is large may be computationally prohibitly expensive to obtain. This is usually the

case for systems defined on 2D or 3D grids. There the usual ordering of the unknowns results into

extremely large banded matrices whose bands increase with the total number of unknowns. As a

result it is more advantageous to calculate an approximate solution through the so called iterative

methods instead of obtaining the exact solution by direct methods as in the case of small systems.

The iterative methods, as the name suggests, iterates into a sequence of approximated solutions

ũh starting from an initial guess for what the solution should be. Each member of this sequence

satisfies the equation (3.13) only approximately. The level of deviation from satisfaction of the

FDA that the approximate solution produces is called residual rh and it is defined as:

rh ≡ Lhũh − fh. (3.17)

Consequently, to solve the equation (3.13) by an iterative process actually means to drive the

residual to 0. The iterative process is said to converge if there is an arbitrarily small positive

number ǫ > 0 such that rh < ǫ for all members of the approximate solution sequence coming after

a finite number N > 0 of members.

So far the two new concepts introduced, solution error and residual, are related somehow to the

solution itself. One last question is missing in the analysis: how good is the FDA Lh with respect

to its continuum counterpart L? In order to answer this question it is convenient to introduce a

measure of this discrepancy. It is known in the literature as truncation error and it is defined as:

τh ≡ Lhu− fh, (3.18)

where u is the continuum solution of the differential system, equation (3.12). Note that if equa-

tion (3.12) is evaluated at the grid points then the subtraction of equation (3.18) gives exactly the

truncation error, what is left1 from a Taylor expansion of Lh in terms of L:

(Lh − L)u = τh. (3.19)

The FDA is said to be consistent (with the PDE) if the truncation error goes to zero as h tends to

zero:

lim
h→0

τh = 0 (3.20)

and the FDA is declared to be p-th order accurate if:

lim
h→0

τh = O(hp). (3.21)

The discretization of a PDE through finite differences addresses the question of what the trun-

cation error τh functional form would be. Based on this information we should address what the

functional form of the solution error would be.

1See App. B.
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Richardson’s Ansatz assumes that the solution for a centered, O(hp) (where p is an even integer),

finite difference approximation to the partial differential equation can be expanded in even powers

of h. The argument comes from the following reasoning. The solution u of the differential equation

can be viewed or interpreted as the result of the integration of the PDE. The centered FDA

approximating the PDE has an associated truncation error of the following form:

τh = hpτp(t, x, y, z) + hp+2τp+2(t, x, y, z) + hp+4τp+4(t, x, y, z) + . . . (3.22)

It is natural then to suppose that the error in the integration also preserves the same form as long

as τp, τp+2, τp+4, etc... do not depend on the mesh parameter h. The solution error should then

be2:

eh = hpep(t, x, y, z) + hp+2ep+2(t, x, y, z) + hp+4ep+4(t, x, y, z) + . . . (3.23)

This observation about the solution error is due to Richardson [134] and it is known in the literature

as Richardson’s Ansatz. We can argue then that consistency leads to convergence:

lim
h→0

τh = O(hp) ⇒ lim
h→0

eh = O(hp). (3.24)

In general it is not possible to prove the existence of Richardson’s ansatz. One can prove though

for simple cases in which the PDE and its discretization are amenable to a closed form analysis.

See page 111 of reference [135] for an example. In practice though the existence of the expansion

is proven by construction. If the discrete solution obtained is consistent and convergent then the

Richardson’s ansatz exists.

3.1.2 Crank-Nicholson Discretization Scheme

To conclude this section it is worth working out an example of discretization of a time dependent

PDE as well as some related concepts. The problem considered here is the advection equation.

However the technique can be generalized to virtually any system of first order time dependent

PDE. The end of this subsection shows how.

The one dimensional advection equation is an example of first order hyperbolic PDE. Without

loss of generality this equation and its initial-boundary condition can be written as:

∂u(t, x)

∂t
=

∂u(t, x)

∂x
− xmin < x < xmax , t ≥ 0, (3.25)

u(0, x) = u0(x), (3.26)

u(t, xmin) = 0, (3.27)

u(t, xmax) = 0. (3.28)

The best strategy for discretizing PDEs is to try to keep the stencils as centered as possible.

2This argument can be extended as well for off-centered FDAs as long as odd terms of the expansion in terms of
h are also included
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Besides reducing the number of points required in the calculation, the symmetry of centered schemes

translates into symmetric systems of linear equations. The properties of symmetric matrices are

well known in the literature and usually used to prove existence and uniqueness of solutions for

systems of this kind. The stability theorems of iterative techniques to solve linear systems of

algebraic equations also makes use of this symmetry to state their results. Without elongating this

discussion any further, consider then the following discrete domain (tn, xi):

tn ≡ n∆t, n = 0, 1, 2, . . . (3.29)

xi ≡ xmin + (i− 1)h, i = 1, 2, . . . nx, (3.30)

uni ≡ uh(tn, xi), (3.31)

h =
(xmax − xmin)

(nx − 1)
, (3.32)

∆t = λh, (3.33)

where λ is known as Courant factor.

The Crank-Nicholson discretization scheme is a two-level, second order approximation scheme

centered both in space and time around the fictitious grid point (tn+1/2, xi), as shown on Fig. 3.3.

One obvious advantage of this method regards the use of only two time levels. Another not so

obvious advantage – see [132]for a proof – is that Crank-Nicholson minimizes the truncation error

for a certain mesh space h. In general, the Crank-Nicholson discretization also tends to minimize

possible instabilities.

tn+1

tn

xi+1xixi−1

Figure 3.3: Crank-Nicholson stencil.

The advection equation discretized by the Crank-Nicholson scheme is written as follows:

un+1
i − uni

∆t
= µt

(

uni+1 − uni−1

2∆x

)

, (3.34)

where the operator µt is a O(∆t2) time average operator. Its action on a grid function consists in

averaging its values between the time levels tn and tn+1:

µtu
n
i =

1

2

(

un+1
i + uni

)

. (3.35)

Inserting the definition of the average operator into equation (3.34) results into the following
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expression:

un+1
i − uni

∆t
=

1

2

[

un+1
i+1 − un+1

i−1

2∆x
+
uni+1 − uni−1

2∆x

]

, (3.36)

that can be rewritten as follows:

−λ
8
un+1
i+1 + un+1

i +
λ

8
un+1
i−1 = uni +

λ

8

(

uni+1 − uni−1

)

. (3.37)

This form along with the boundary conditions is clearly a linear system for the unknowns un+1
i ,

i = 1, 2, . . . , nx of the following form:

Aun+1 = b. (3.38)

Note however that this system does couple the unknowns at advanced time level and for this reason

it is called an implicit scheme. The matrix A in this case is not diagonal. From equation (3.37) it

is clear that A is actually a tridiagonal matrix, i.e. only the elements of its diagonal, the immediate

upper and lower diagonals are non-vanishing. Note that this kind of system can be solved very

efficiently, O(nx), using specialized algorithms. LAPACK [136] is a linear algebra software package

commonly used that contains plenty of such algorithms efficiently encoded.

The evolution equations used in this dissertation was cast in a system of first order, four

dimensional PDEs, also known as canonical form, each of them taking the following general form:

∂u(t, x, y, z)

∂t
= F (x, y, z, u, ux, uxx). (3.39)

Their discretization was performed by a second-order accurate Crank-Nicholson scheme. As ex-

plained earlier for the advection equation, this consists in approximate the time derivative by a

O(h2) finite difference operator centered at t = tn + ∆t/2:

∂u(t, x, y, z)

∂t
=
un+1
ijk − unijk

∆t
+O(∆t2), (3.40)

while the spatial part is averaged between the advanced and present time levels using the time

average operator µt. The net result of the operation on a general spatial right hand side is just as

follows:

F (x, y, z, u, ux, uxx) =
1

2

(

Fn+1
ijk + Fnijk

)

+O(∆t2). (3.41)
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3.2 Numerical Analysis Tools

This section introduces two numerical analysis tools employed to evaluate the correctness of the

numerical solution and the FDA itself. First the convergence factor Qh(t) is defined and its func-

tional properties analysed. Second the notion of independent residual evaluation is presented along

with its expected behaviour as the numerical solution approaches its continuum counterpart.

3.2.1 Convergence Factor

In order to test for the convergence of the FDA solution to the continuum PDE solution, we need

first to calculate the solution at three different levels of resolution. The solutions uh, u2h and u4h

correspond to FDA solutions with grid spacings of h, 2h and 4h, respectively. They are generated

using the same initial data (but in different meshes). Also the grids containing the solutions are

supposed to align with the coarsest grid, i.e. the coarsest grid with spacings 4h for example is a

subset of a finer grid with 2h spacings and the later is a subset of the finest grid with the mesh

distance of h. Second, we need to find a convenient way to compare these three solutions at different

resolutions in a way to capture the behaviour of the discrete solution as h → 0. The convergence

factor is a function of the solution at different resolutions and it does provide a convenient way to

test for convergence of the discrete solution. It is defined as a function of time as:

Q(t) ≡ ||u4h − u2h||
||u2h − uh|| , (3.42)

where || · || is any appropriate lp norm, like l2 or l∞ norm, or root-mean-square norm:

||uh||rms =
1√
n
||uh||2 =

1√
n

[

n
∑

i=1

|uhi |2
]1/2

, ||uh||∞ = max
1≤i≤n

|uhi |. (3.43)

According to the Richardson’s Ansatz (as discussed above, the solution for a centered FDA can

be expanded in even powers of h. Here the ansatz is generalized to a O(hp) discretization scheme

where p is a even integer. The solutions with the different discretizations can then be expanded as

a function of the three grid mesh spacings:

uh = u+ hpep + hp+2ep+2 + . . . (3.44)

u2h = u+ (2h)pep + (2h)p+2ep+2 + . . . (3.45)

u4h = u+ (4h)pep + (4h)p+2ep+2 + . . . (3.46)

Subtracting the solutions at the same grid points, taking the appropriate norm and considering

Ep = ||ep|| the following expressions can be found:
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||u4h − u2h|| = 2p
[

(2p − 1)hpEp + (16 · 2p − 4)hp+2Ep+2 + . . .
]

, (3.47)

||u2h − uh|| = (2p − 1)hpEp

[

1 +
(4 · 2p − 1)

(2p − 1)
h2Ep+2

Ep
+ . . .

]

. (3.48)

As long as Ep+2 < Ep, as it tends to be the case if the continuum solution is analytic, then for

h→ 0 the taylor expansion of one over the equation (3.48) becomes:

1

||u2h − uh|| =
1

(2p − 1)hpEp

[

1 − (4 · 2p − 1)

(2p − 1)
h2Ep+2

Ep
+

(4 · 2p − 1)
2

(2p − 1)
2 h4

(

Ep+2

Ep

)2

+ . . .

]

. (3.49)

After a bit of simplification the multiplication of equations (3.47) and (3.49) provide an useful

formula for the convergence factor:

Q(t) = 2p

[

1 + 3
(4 · 2p − 1)

(2p − 1)
h2Ep+2

Ep
− 3

(4 · 2p − 1)2

(2p − 1)
2 h4

(

Ep+2

Ep

)2

+ . . .

]

. (3.50)

In particular for second order centered schemes, p = 2, Q(t) becomes:

Q(t) = 4 + 60h2E4

E2
− 300h4

(

E4

E2

)2

+ . . . (3.51)

Therefore if the discrete solution uh of the FDA converges to the continuum solution u of the PDE,

the convergence factor must approach to 2p (or 4 for second order schemes) as the mesh spacing h

tends to zero:

lim
h→0

Q(t) = 2p. (3.52)

Note that to perform a good convergence test it is desirable that the terms of order h2 or

higher be small in the expression for convergence factor, equation (3.50). Assuming that the terms

containing the higher derivatives of u becomes smaller in the Richardson’s expansion (in analogy

to Taylor expansion where those terms become increasingly smaller especially due to 1/n! factor

term accompanying them), i.e. Ep+2 < Ep, how close Q(t) is to 2p is controlled by how small h is.

Also, an ideal convergence test would calculate Q(t) for at least three different base resolutions and

compare the resulting function to see if it goes to 2p quadratically as h → 0, i.e. calculate Qh for

{uh, u2h, u4h}, Q2h for {u2h, u4h, u8h} and Q4h for {u4h, u8h, u16h} then Q4h−Q2h ≈ 4 ·(Q2h−Qh).
This provides therefore an even stronger evidence that the solution is actually converging with the

order of convergence expected from the FDA discretization scheme.

3.2.2 Independent Residual Evaluation

Suppose we evaluate the numerical solution from the FDA to some PDE and we find out, through

the convergence factor for example, that the solution actually converges to the continuum one.



CHAPTER 3. NUMERICAL ANALYSIS AND TECHNIQUES 88

Before consider the problem as solved though, we should ask if the continuum solution, to which

the numerical solution converges, is actually the solution to the PDE proposed to be solved ini-

tially. The reason that someone should take this issue seriously comes from the usual complexity

involved in the algorithms to solve the FDA along with its encoding in a particular programming

language. There are simply too many places in this solution process where things could go subtly

and unexpectly awry. Fortunately there is an independent way of evaluating if the whole scheme

is consistent with the PDE supposed to be approximated. Consider the PDE:

Lu− f = 0 (3.53)

and its supposedly correct FDA:

Lhuh − fh = 0. (3.54)

Suppose for example that the approximate discrete solution ũh is found and showed to second order

converge to a continuum solution ū. Therefore, by Richardson’s Ansatz, the solution error comes

from the expansion:

ũh = ū+ h2e2 +O(h4), (3.55)

where ũh actually satisfies the residual equation to an arbitrary precision ǫ:

Lhũh − fh = rh < ǫ (3.56)

and it is the correct form as far as convergence is concerned in this example. What is missing to

show is if u ≡ ū is actually true. The missing test should aim therefore at evaluating if Lh was

actually implemented correctly; if it is in fact a valid approximation to L. In order to implement

this test consider an independent, distinct discretization of the PDE:

L̂hûh − fh = 0. (3.57)

This new discrete operator L̂h can be expanded in terms of the differential operator L and the

truncation error in the same fashion as Lh could:

L̂h = L+ h2τ2 +O(h4) = L+ τ̂h. (3.58)

The independent residual evaluation consists then in inserting the approximate solution of the

original discrete system ũh into this new discretization scheme. As a result the new residual Ih

can be easily read off from this operation as it is evident in the following expression:

Ih ≡ L̂hũh − fh =
[

L+ h2τ2 +O(h4)
] [

ū+ h2e2 +O(h4)
]

− fh = Lū− fh +O(h2). (3.59)

If the continuum solution is not a solution of the original PDE, i.e ū = u + e0 then the in-

dependent residual converges to a number different from zero as h → 0 and takes the following
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form:

Ih ≡ L̂hũh − fh = Lu− fh + Le0 +O(h2) = Le0 +O(h2) = O(1). (3.60)

Unless Le0 = 0, an extremely improbable event despite possible, the O(1) convergence is an

indication that something went wrong in the original discretization or through the process of

obtaining the discrete solution. On the other hand, if ū = u then the independent residual becomes:

Ih ≡ L̂hũh − fh = Lu− fh +O(h2) = O(h2), (3.61)

which means that Ih goes to zero quadratically or with the same rate as the truncation error τ̂h of

the new approximation scheme L̂h. This is then a strong indication that the approximate discrete

solution ũh is actually converging to the true continuum solution u of the PDE.

The choice of the operator L̂h for the independent residual evaluation is arbitrary. It is not

necessary that the scheme be stable since it is not used to obtain the discrete solution but only

as a posteriori check. The order of the operator doesn’t need to match the original one either.

For example the independent residual discretization operator for the time derivatives used in the

evolution equations (Klein-Gordon equations) were chosen to be first order forward in time while

the Crank-Nicholson was the discretization scheme used to get the numerical solution. So for the

time derivatives the discretization was:

L̂huh ≡
un+1
ijk − unijk

λh
=
∂u(t, x, y, z)

∂t
+O(h). (3.62)

On the other hand all spatial differential operators entering both the evolution and constraint

equations were replaced by second order forward discrete operators. So for example a first order

derivative along the x coordinate would have the following independent discretization:

L̂huh ≡
−3unijk + 4uni+1 jk − uni+2 jk

2h
=
∂u(t, x, y, z)

∂x
+O(h2), (3.63)

in contrast with a centered scheme used to solve the original discrete set of equations. The exception

to this rule comes from a region of the grid domain where the discrete forward operators refers to

grid points outside the domain of integration. In this case, the appropriate backward difference

operator replaces the forward one. Chap. 4 presents the results of several different simulations for

distinct sets of initial data and analyses the correctness of the results through the independent

residual evaluation and convergence factor.
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3.3 Multigrid Techniques

3.3.1 Introduction

Iterative techniques3 such as the point-wise Newton-Gauss-Seidel (NGS) one are quite efficient to

solve systems of non-linear algebraic equations resulting from the discretization of hyperbolic or

parabolic PDEs. However, when applied to the FDAs originated from the discretization of elliptic-

like PDEs their efficiency is only marginal. It is possible to show [132] that NGS convergence

deteriorate as the mesh spacing tends to zero. For example, the Poisson equation in one spatial

dimension:

uxx = f(x) (3.64)

is finite differenced by a centered O(h2) discretization scheme:

ui−1 − 2ui + ui+1

h2
− fi = 0 (3.65)

and has the i-th component of its running residual defined according to equation (D.13) by:

r
(k)
ii =

ũ
(k)
i−1 − 2ũ

(k−1)
i + ũ

(k−1)
i+1

h2
− fi. (3.66)

Each iteration is supposed to bring the approximate solution ũ
(k)
i closer to the exact discrete

solution ui. The convergence of this process can also be viewed in terms of the reduction of the

running residual. The effect of the iteration on the running residual vector is usually described by

the residual amplification matrix A, transforming the residual at iteration k to the one at iteration

k + 1:

r(k+1) = Ar(k). (3.67)

An ideal iterative method would have the spectral radius of the amplification matrix close to

zero, i.e. ρ(A) ≪ 1. Unfortunately the spectral radius for NGS amplification matrix ANGS when

applied to the Poisson equation above turns out to be dependent on the number of unknowns of

the system or equivalently to the mesh spacing h. Its dependence on h have the following general

form:

ρ(ANGS) = 1 −O(h2). (3.68)

This means that as the resolution increases, or, in other words, as the mesh spacing goes to zero,

the amplification matrix spectral radius approaches unity, slowing considerably the rate by which

the residuals are reduced to zero. The same sort of poor convergence appears virtually for all

elliptic operators in spatial dimensions other than one, i.e. d = 1, 2, 3. This general behaviour of

the NGS iterative method applied to FDAs originated from elliptic equations practically rule out

3See App. D for a short discussion.
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its applicability as an equation solver.

On the other hand, expanding the residual vector in terms of the eigenvectors of the amplifica-

tion matrix is possible to show that the asymptotic convergence is dominated by the eigenvectors

with long wavelength associated to them. In other words, as the amplification matrix is applied

to the residual vector its short wavelength components (or high frequency) are rapidly suppressed

while its long wavelengths (low frequency) slowly converge to zero. This smoothing behaviour is

typical of the NGS iteration when applied to elliptic-type FDAs. In this context the NGS iteration

belongs to a class of methods known as relaxation methods where their prime feature is the ability

to smooth both the solution and residual errors.

Fortunately there is an extremely efficient algorithm for solving the FDAs introduced by elliptic

equations. The Multigrid Methods [137] are known to converge to the solution with O(N) of

computational work and storage (where N is the total number of unknowns) not only for particular

cases but for a whole class of problems. Furthermore its convergence rate is independent of the

mesh spacing h.

The basic ideas behind the multigrid techniques reside on two simple principles. The first one

consists in using relaxation methods to smooth both the solution and residual errors on a particular

grid. The idea is not to try to solve the system of equations but only to smooth its errors. Therefore

a few iterations should be enough for this task. Note that a smooth function on a finer grid can

be well represented on a coarser grid. This fact gives rise to the second principle. This consists on

transferring the problem of reducing the errors, or equivalently the solution convergence, from a

finer grid to a coarser one. The slowly converging long wavelength components of the error on a fine

grid have their wavelengths shortened when represented on a coarser grid. Applying the smoothing

principle on the coarser grid then effectively and cheaply reduces these longer wavelength error

components. The multigrid uses these two principles on a hierarchy of grids, where the coarser

grids are used to quickly eliminate the smooth components of the fine grid errors, resulting therefore

in a fast rate of convergence. Next subsection expose these ideas in more details for a particular

multigrid technique specialized on the solution of non-linear problems, the so called FAS algorithm.

3.3.2 FAS Algorithm

Let a non-linear system of elliptic PDEs be written as:

N [u] = f, (3.69)

where N represents the set of non-linear differential operators acting on the solution vector u and

f is a source function independent of u or its derivatives. Their finite difference approximation is

parametrized by the grid spacing h and is then expressed as:

Nh[uh] = fh, (3.70)

whose solution is expected to be built through some iterative process. Each step of the iteration

defines the residual vector rh corresponding to the approximate solution ũh:
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rh ≡ Nh[ũh] − fh. (3.71)

The goal of the iterative process is to drive the residual to zero or equivalently to reduce to zero the

error vh of the approximate solution relative to the exact discrete solution uh, where vh is defined

by the following expression:

uh = ũh + vh. (3.72)

As mentioned in the last section, relaxation methods such as NGS iterative technique are

excellent smoothers. The multigrid method takes advantage of this fact to smooth the correction

vh on each grid of a hierarchy of grids. The hierarchy is usually composed such that hl+1 = 1
2hl,

where l labels the grids in the hierarchy (l = 1 corresponding to the coarsest and l = lmax to the

finest grid). After a few iterations of NGS relaxation, the problem of finding uh is then transfered

to a coarser grid. Note that in order to pose a coarse grid correction the residual and error on the

fine grid needs to be smooth and thus have an accurate representation on a grid with mesh spacing

2h.

In order to define the coarse grid correction, first note that one could naively claim that applying

the operator Nh to equation (3.72) would result in:

Nh[uh] = Nh[ũh + vh] = Nh[ũh] +Nh[vh] = rh + fh +Nh[vh], (3.73)

that could be simplified to:

Nh[vh] = −rh. (3.74)

This result is true, and actually it is the basis of a multigrid version called linear correction scheme,

when the operatorNh is linear, since Nh[ũh+vh] = Nh[ũh]+Nh[vh] takes into account its linearity.

Nonetheless Nh is by hypothesis a non-linear operator, what prevents this naive but convenient

analysis to proceed in this case. On the other hand, the equation (3.74) suggests a similar treatment

for the non-linear case. Subtracting the residual equation (3.71) from the FDA equation (3.70)

results into:

Nh[uh] −Nh[ũh] = Nh[ũh + vh] −Nh[ũh] = −rh. (3.75)

Therefore instead of ending up with an equation for the correction vh only, equation (3.74), equa-

tion (3.75) poses the problem to be solved for a full approximation uh = ũh + vh, hence the

denomination of the method as “Full Approximation Scheme” or FAS algorithm.

The idea of the coarse grid correction is to transfer all smoothed grid functions from the fine grid

to the coarser grid, pose and solve the following coarse problem in analogy to the equation (3.75):

N2h[u2h] −N2h[I2h
h ũh] = −I2h

h rh, (3.76)

where I2h
h is an appropriate transfer operator or in this case a restriction operator responsible to
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set the values of the residual and approximate solution in the coarse grid. The equation (3.76)

should then be solved for the unknown u2h. After that the fine grid unknown is then updated by:

ũh = ũh + Ih2h
(

u2h − I2h
h ũh

)

, (3.77)

where Ih2h is the prolongation operator responsible to interpolate the grid functions from the coarse

grid into the finer one.

Equations (3.76) and (3.77) corresponds to the basic equations employed by the FAS algorithm.

The point of view presented so far also corresponds to the canonical point of view of a multigrid

solver as a solver that uses a hierarchy of coarser grids to accelerate the convergence of long

wavelengths error components defined on a finer grid. Nevertheless the multigrid process can also

be viewed as the fine grids providing high accurate corrections to the coarse grid equations in order

to accelerate their convergence to the continuum PDEs. This dual point of view generates an

algorithm equivalent to the one shown above however it relies on the concept of truncation error

instead of residual. The idea is as follows:

The notion of truncation error, according to the definition by equation (3.18), arises from the

replacement of the continuum operator N acting on the continuum solution u by the discrete

operator Nh acting on the continuum solution. The truncation error is simply the error associated

with this approximation:

τh ≡ Nh[u] − fh, (3.78)

that can be written in a more convenient form for this subsection by subtracting the FDA (3.70)

from the equation (3.78):

τh = Nh[u] −Nh[uh]. (3.79)

If it was possible to know the exact value of the truncation error τh in advance and that quantity

was added to the right hand side of the FDA (3.70), i.e.:

Nh[uh] = fh + τh, (3.80)

then the discrete solution uh of the system above would be identical to the continuum solution u

of the PDE (3.69) when restricted to the mesh points. Unfortunately the exact knowledge of τh

requires the knowledge of u that it is actually the solution being sought. However the message

here is that adding some sort of approximation τ̃h of the truncation error to the right-hand side of

equation (3.70) actually results in a better approximation of the discrete system:

Nh[uh⋆ ] = fh + τ̃h, (3.81)

where the solution error is improved: uh⋆ − u < uh − u.

Fortunately the multigrid hierarchy provides an excellent framework for estimating the approxi-

mate truncation error. First note that analogously to the definition of truncation error, the relative

truncation error τ2h
h is the error associated by the replacement of Nh, the operator on grid functions
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with mesh spacing h, by the ones acting on grids with mesh spacing 2h, N2h. Then in analogy to

equation (3.79), the relative truncation error is defined as:

τ2h
h ≡ N2h[I2h

h uh] − I2h
h

(

Nh[uh]
)

, (3.82)

that can be promptly rewritten as:

N2h[u2h] = f2h + τ2h
h . (3.83)

Therefore, in analogy with the role played by τh, τ2h
h is interpreted as a correction of the source

term on the coarse grid in order to make the coarse solution to coincide with the fine solution.

After the coarse grid correction equations (3.83) being smoothed by NGS iterations the solution

correction is then updated on the fine grid by equation (3.77).

The FAS algorithm posits the coarse grid correction recursively in a alternating sequence of

smoothing and transference to coarser grid operations. Eventually the coarsest grid is reached.

At this point it is computationally cheap to obtain the exact discrete solution and that is usually

achieved by NGS iterations with a more stringent tolerance. Once the coarsest grid solution is

evaluated, then another alternating sequence of smoothing, interpolation and update operations

is performed until the solution on the finest grid is updated. This cycle is known as V -cycle in

analogy with going down the V leg to evaluate the coarse grid corrections and coming back up the

V leg updating the solutions. Its pseudo-code is given by Fig. (3.4).

The elliptic equations appearing in this thesis were discretized using a second order centered

scheme and their non-linear FDAs were solved by the FAS algorithm just described above. The

sources of the elliptic equations were the Klein-Gordon complex scalar field and its conjugate mo-

menta, while the elliptic equations were solved for the geometric variables. As a last technical

comment, the ordering applied by the NGS iterations was the red-black ordering and the transfers

operators used were full-weighted restriction operator and tri-linear interpolation operator as pro-

longation. The reader should refer to one of the multigrid references cited on the beginning of this

section for further details.
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subroutine MG_update()

cycle = 1

do while (residual > tolerance)

call vcycle(lmax,cycle,p,q)

cycle = cycle + 1

end do

end subroutine

subroutine vcycle(lmax,cycle,p,q)

do l = lmax to 1 ( cycle from fine to coarse levels )

if cycle = 1 or l not equal to lmax then

repeat p times:

perform a NGS relaxation sweep on level(h[l]):

u[l] = relax_rb_NGS(u[l],f[l],h[l])

restrict grid functions to level(h[l-1]):

u[l-1] = I[l-1][l] u[l]

compute the relative truncation error of the solution

on level(h[l-1]):

tau[l-1][l] = N[l-1] I[l-1][l] u[l] - I[l-1][l] N[l] u[l]

compute the new RHS vector for level(h[l-1]), by adding the

restricted RHS to the truncation error:

f[l-1] = tau[l-1][l] + I[l-1][l] f[l]

end if

end do

solve the system of FDAs on level(h[1]) exactly:

do while (residual > coarsest grid tolerance)

u[1] = relax_rb_NGS(u[1],f[1],h[1])

end do

do l = 2 to lmax ( cycle from coarse to fine levels )

compute the CGC from level(h[l-1]) to level(h[l])

and apply the CGC to unknown variables at level(h[l]):

u[l] = u[l] + I[l][l-1] ( u[l-1] - I[l-1][l] u[l] )

repeat q times:

perform a relaxation sweep on level(h[l]):

u[l] = relax_rb_NGS(u[l],f[l],h[l])

end do

end subroutine

Figure 3.4: A pseudo-code representation of the FAS, V -cycle multigrid algorithm.
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CHAPTER 4

CODE VALIDATION AND RESULTS

This chapter presents some results of the integration of the system of PDEs derived on Chap. 2 and

overviewed on Sec. 2.5. These results are for the mini-boson stars, i.e. stars with the self-interaction

potential U(|φ|2) = m2|φ|2 where, without loss of generality, the mass m of the constituent particle

associated to the scalar field is kept constant: m = 1. The first part of the chapter is devoted

to the validation of the numerical code. All functions involved were convergence tested and had

their respective independent residual equations evaluated. The independent residual evaluation and

convergence factors calculation are considered the strongest tests of self-consistency and correctness

of the solution. They are tests independent of any previous assumption on the solution, aside from

its smoothness, as it was detailed on Chap. 3. Besides these two tests, conservation of ADM mass

and Noether charge tests were added to strength the pool of tests. After a brief description on how

the unigrid (as opposed to AMR and parallel) numerical code works on Sec. 4.1, Sections 4.2-4.4

are dedicated to show the correctness of the results for 3 different types of initial data set. Despite

only one set of smooth initial data profile be enough to judge about the rightness of the solution,

the other sets were important to evaluate the correctness of the initial data itself. Thus Sec. 4.3

presents the results for a spherically symmetric initial data and discusses some issues related to its

smoothness while Sec. 4.4 brings the results for the evolution of a boosted spherically symmetric

initial data.

The second part of the chapter focus on the dynamics of two boson stars. Sec. 4.5 presents the

simulation of a head-on collision between two boson stars. Sec. 4.6 discusses the orbital motion for

three different initial configurations. It shows first the result of a long time evolution in which the

stars orbit each other. The second result consists of an interrupted orbital motion with a final object

being a rotating boson star. The section ends by presenting also an interrupted orbital motion but

this time with a final object conjectured to be a black-hole. All simulations had an independent

residual evaluated. Some of them were included and discussed in their respective sections. Finally,

Sec. 4.7 summarizes the main results and proposes directions for further develpments of this project.

All the simulations presented here were run on single nodes of either vnfe5 or vnfe4 clus-

ters located at UBC. Each node of the vnfe5 cluster consists of four 2.4 GHz Dual-Core AMD

Opteron(tm) processors with a total of 4 GB of memory. The vnfe4 nodes, on the other hand,

constitute of two 2.4 GHz Intel(R) Xeon(TM) CPUs and a total of 2 GB of memory. The most

expensive calculations were run on the vnfe5 cluster and last approximately 260 hours with use of

approximately 700 MB of memory. Larger simulations, up to 1 GB, were possible but unpractical

to provide reasonable results in a timescale of at least a few days and for that reason was avoided.

In order to facilitate the presentation of the numerical results in this chapter, consider the

following definitions. The number of grid points of a particular simulation can be stored in a

vector called shape and it is defined as:
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shape = [Nx, Ny, Nz], (4.1)

where Nx, Ny and Nz are the number of grid points per edge. Therefore this grid has Nx grid

points along the x direction, Ny grid points along the y direction and Nz along z direction with a

total of Nx ×Ny ×Nz grid points. Also associated with the number of grid points is the concept

of level. Let N = min {Nx, Ny, Nz}, therefore the level l associated with the grid is such that:

N = 2l + 1. (4.2)

Another convenient definition regards the range of coordinates of a particular grid. The bounding

box vector bbox is defined such that:

bbox = [xmin, xmax, ymin, ymax, zmin, zmax], (4.3)

where {xmin, xmax} corresponds to the range of the coordinates along x direction, {ymin, ymax}
along y direction and {zmin, zmax} along z.

As a last remark, it is worth noticing that the grid lines on the surface plots presented in this

chapter do not represent the actual grid structure where the simulations were performed. They are

all for visual aid only. On the same plots, unless otherwise stated, the height of the surface plots

correspond to the function values.

4.1 Unigrid code

The set of PDEs comprising the boundary-initial-value problem described on Chap. 2 was dis-

cretized with the techniques presented on Chap. 3. To be more specific the second order accurate

Crank-Nicholson discretization scheme was applied to the hyperbolic equations; those describing

the time evolution of the real and imaginary components of the complex scalar field {φ1, φ2} and

their conjugate momenta {Π1,Π2}. Additionally, a second order accurate centred FDA was em-

ployed to discretize the set of elliptic PDEs; those originated from the slicing condition, hamiltonian

and momentum constraints solving for the geometric quantities lapse function, conformal factor

and shift vector respectively, {α, ψ, βx, βy, βz}. Dirichlet boundary conditions were enforced on all

variables for the simulations presented in this chapter.

A numerical code was written to solve the FDAs originated from the discretization of the

boundary-initial-value problem. Since part of the equations are elliptic and part are hyperbolic in

nature, different numerical strategies were required. The hyperbolic FDA equations were encoded

through RNPL (Rapid Numerical Prototyping Language) [138, 139] where a pointwise Newton-

Gauss-Seidel iterative technique was applied. To solve the elliptic FDA equations, a numerical code

was written in FORTRAN to implement the FAS multigrid algorithm as described in Chap. 3.

The flow of the numerical code is presented in Fig. 4.1 as a pseudo-code. The program starts

its execution by calling the initial value solver routine. This consists of a set of subroutines used to

generate a static solution of spherically symmetric boson stars. Chap. 2 describes in detail how this

1D solution is obtained and appendix A describes the user interface of its main subroutine, bsidpa,
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written with the purpose of finding the spherically symmetric solution not only for mini-boson stars

but also for boson stars with any self-interaction potential.

Once the one dimensional solution is obtained, the following set of spherically symmetric func-

tions in polar-areal coordinates {α, a, φ,Φ} is interpolated in the maximal-isotropic 3D numerical

domain according to Sections 2.6.6 and 2.6.7. If two stars are to be generated, then the initial

data process is duplicated and the solution superimposed. The stars are considered far enough

from each other such that the scalar field superposition happens in a region of weak field where

linear superposition of solutions still holds. The interpolated—and possibly boosted— scalar field

variables {φ1, φ2,Π1,Π2} are then used as sources for the multigrid solver. On the other hand,

the geometric variables interpolated, {α, ψ, βx} (recall that the boost is only implemented in the x

direction), are used as initial guesses for the multigrid V -cycle. After convergence of the multigrid

iteration, the control is given back to the main routine where it proceeds with the Crank-Nicholson

iteration to update the scalar field variables. The role of sources and unknown variables are re-

versed and the pointwise NGS step applied to the evolution equations. This cycle repeats itself

until the norm of the scalar field residuals is driven below an arbitrarily small tolerance (10−7 in the

simulations presented here). At this point the time step is then updated and the solution analysed

(independent residual evaluated, mass and noether charges calculated) and written to disk. The

whole time step is repeated until a maximum value for time tmax is reached. Fig. 4.1 synthesizes

the flow of the code explained in this section.
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f(t) = scalar field variables at time t

g(t) = geometry variables at time t

t = 0

call IVP_solver[f(t),g(t)]

do while (t < tmax)

call initial_guess[f(t) -> f(t+dt), g(t) -> g(t+dt)]

do while (residual[f(t+dt)] > tolerance)

call MG_update[source = f(t+dt); solve for g(t+dt)]

call CN_update[source = g(t),g(t+dt),f(t); solve for f(t+dt)]

call evaluate_residual[f(t+dt)]

end do

call swap_levels[f(t) <--> f(t+dt); g(t) <--> g(t+dt)]

t = t + dt

call analysis[g(t),g(t+dt),f(t),f(t+dt)]

end do

Figure 4.1: A pseudo-code representation of the unigrid code.
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4.2 Generic Initial Data

The easiest way to test for convergence and consistency of the numerical solution is to assign a

smooth, generic and closed form initial data and evaluate the results of its time evolution. The

initial configuration presented in this section was modelled by a gaussian lump of scalar field given

by the following formula:

φ(x, y, z) = φ0 exp

[

−
(

x− x0

δx

)2

−
(

y − y0
δy

)2

−
(

z − z0
δz

)2
]

. (4.4)

The freely specifiable variables {φ1, φ2,Π1,Π2} were initialized as follows. φ1 was assigned the

formula (4.4) with (x0, y0, z0) = (0, 0, 0) (centered at the origin), a central amplitude φ0 = 0.05

and a slightly prolate gaussian width of (δx, δy, δz) = (4.5, 4, 4) (in order induce some non-trivial

dynamics). In order to try to mimic a spherically symmetric star (at least a perturbed version) as

much as possible with this initial data Π2 was assigned such that Π2 = −3φ1 while φ2 = Π1 = 0.

The bounding box of this simulation was bbox = [−15, 15,−15, 15,−15, 15]. Three different grids

with resolutions on the proportion 2 : 1 were used for the convergence tests and independent residual

evaluations. The grid with the finest resolution, level 7, had a shape of shape = [129, 129, 129],

while for the coarsest shape = [33, 33, 33]. The courant factor adopted here and for all simulations

showed in this chapter was λ = 0.4.

Fig. 4.2 shows a short period of the evolution of this initial data configuration. Despite the trial

to mimic static stars, the resemblance is minimum. The solution oscillation probably reflects the

fact that a gaussian profile can also be represented by a superposition of the excited boson star

solutions, each with a particular mode of oscillation. It is not the goal here to determine this series

though. What it is important to note here is the fact that the solution remains considerably smooth

during this evolution. As a result the convergence factor Q for various quantities remain close to its

theoretical value, 4, as it is expected for a second order accurate discretization scheme according to

equation (3.51). Left panels of Figures 4.3 to 4.5 show the convergence factor as a function of time

for all variables. Their right panels, on the other hand, show the l2-norm of the independent residual

equations, I, for all variables as a function of time. The geometry variables {α, ψ, βx, βy, βz} had

their respective PDE equations discretized with second order accurate forward difference operators

(note that this is a different set of FDAs from the ones used to obtain the solution) and for this

reason it is expected to have I converging to zero as O(h2). An eye ball inspection of the plots shows

evidence of this convergence. Furthermore the shape of the various functions I(t) does not change

much as the resolution is increased. This observation support the statement that the independent

residual goes as:

Ih = I2(t)h
2 and not as Ih = I2(t, h)h

2. (4.5)

The same is true for the scalar field variables {φ1, φ2,Π1,Π2}, except that the convergence in this

case is linear, O(h), since the independent discretization of the time derivatives was a first order

forward stencil.

Fig. 4.6 shows the ADM mass MADM and the noether charge QN as a function of time for
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levels 5, 6 and 7. As the resolution increases, the functions tends to constant functions of time

resulting therefore in the conservation of each quantity as a function of time. It is estimated from

the plot that the rate of convergence is also O(h2).

In the approximation of the differential operator to the finite difference, the error associated

is composed of two main parts. First, there is a power of h, the discretization parameter or

mesh spacing, characterizing the order of convergence of the approximation. For second order

schemes, for example, the error is a function of h2. Second, multiplying the factor h, there is a

continuum function of higher derivative of the solution being sought. For example, a second order

approximation of the first order derivative of the function u can be written as:

ui+1 − ui−1

2h
≡ u(x+ h) − u(x− h)

2h
= u′(x) +

h2

12
u′′′(ξ), (4.6)

where ξ ∈ [x− h, x+ h] and h2/12u′′′(ξ) represents the error of the approximation. Note however

that this error term is applicable only if u′′′ exists and it is continuum in the approximation interval.

This remark emphasizes the care that the reader has to take while interpreting the results from

the independent residual evaluations as well as from the convergence factors. Most of the times

such results will be only an approximation to its theoretical prediction. That is understandable in

terms of the smoothness of the solution function calculated numerically uh. Such a solution may

be approximating a continuum solution that do not have a continuum third derivative for example

and the error formula is not applicable anymore. The natural way to overcome this problem is to

increase the number of grid points of the domain of computation where the function is represented

as well as to push the boundaries (specially when truncated boundary conditions are applied 1.)

away from the region where the solution changes considerably when compared to the mesh spacing

h. That may be an unsurmountable task for 3D domains where limitations on the computer

physical memory constrains to a reasonably low number of grid points. This caveat should be

taken into account when interpreting the code validation results, especially for unigrid code tests.

Next section an example will be worked out to show how small non-smoothness of the solution can

destroy the results of these tests.

1See Sec. 2.4.5
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Figure 4.2: Evolution of a Gaussian Lump as Initial Data. These plots are snaphots of the
modulus of the scalar field |φ(t, x, y, z)| for a short time evolution of the coupled
system of elliptic-hyperbolic equations describing the Einstein-Klein-Gordon system
under Conformally Flat Condition. The real component of the scalar field initial data
is modelled by a gaussian function with a central value field φ0 = 0.05. The evolution
shows an oscillatory solution with an increase in the scalar field amplitude. Note,
however, that the amplitude is bounded at this time interval: 0 ≤ |φ(t, x, y, z)| ≤
0.117.
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Figure 4.3: Q and I for α, ψ and βx. The left panels show the plots of the convergence factor
Q as a function of time t for the lapse function α, the conformal factor ψ and the
x component of the shift vector βx. Note that for βx the first data point is set to
zero since βx(0, x, y, z) = 0. The right panels show the L2-norm I of the independent
residual equations for the same set of variables as a function of time.
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Figure 4.4: Q and I for βy, βz and φ1. The left panels show the plots of the convergence factor
Q as a function of time t for the y and z shift components, βy and βz , and the real
component of the complex scalar field, φ1. The right panels show the L2-norm I of
the independent residual equations for the same set of variables as a function of time.
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Figure 4.5: Q and I for φ2, Π1 and Π2. The left panels show the plots of the convergence factor
Q as a function of time t for imaginary component of the complex scalar field φ2

and the real and imaginary components of its conjugate field, Π1 and Π2. The right
panels show the L2-norm I of the independent residual equations for the same set of
variables as a function of time.
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Figure 4.6: ADM mass MADM and Noether charge QN for Gaussian initial data as a function of
time t. Both plots indicate a trend to conservation of the quantity with a convergence
rate of O(h2).

4.3 Static Spherically Symmetric Initial Data - 1 star

Last section used a generic type of initial data to test for the correctness of the numerical code.

The convergence tests and independent residual evaluations there were quite satisfatory in assuring

that the equations of motion were implemented correctly and that the numerical solution obtained

converged to the continuum solution. Those are already strong enough tests of the validity of the

numerical code. This section continues the battery of tests though with a slightly different goal.

The equations of motion is already known to be correctly implemented. Any possible deviation

found here or elsewhere should be related then to the initial data itself or the resolution in which

the code was run for that particular initial data set. The testing idea behind this section is therefore

twofold. First, the static spherically symmetric initial data, calculated according to the ansatz for

the complex scalar field (see Subsection 2.6.4):

φ(t, r) = φ0(r)e
−iωt, (4.7)

has not been tested yet in the evolution context. It is expected then that such initial data sets do

not show any dynamics as the time evolution occurs. The second goal of these experiments is to

compare the results between two static stars with different total masses. The idea is to clarify if

a strong gravitational field initial data would lead to poorer results as opposed to weak field ones

when all the other grid parameters are kept the same.

In order to pursue the goals briefly described on last paragraph, two members of the family

of static spherically symmetric boson stars are used as initial data in this section. Both belong

to the stable branch of the family (see Fig. 2.2) and have as the central value for the scalar field

φ0 ≡ φ0(0) = 0.03 and φ0 ≡ φ0(0) = 0.06 respectively. The scalar field configuration with φ0 = 0.03
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is less massive and thus less compact than the one parametrized by φ0 = 0.06, as can be inferred

from Fig. 2.1. The grid parameters used in the evolution of both fields are the same as the ones

used for the generic initial data, in Sec. 4.2. So, bbox = [−15, 15,−15, 15,−15, 15] and the finest

shape = [129, 129, 129].

Figures 4.7 and 4.8 show some snapshots of the time evolution of the initial data parametrized

by φ0 = 0.03 and φ0 = 0.06 respectively. A naked eye inspection of both figures confirm that

both evolutions are time independent. As a conclusion, the set of initial data seems to be static as

expected and the first goal of this experiment seems to be fulfilled.

On the other hand, as Figures 4.9, 4.10 and 4.11 can attest, the convergence factor Q for each

of the variables of the set {α, ψ, βx, βy, βz , φ1, φ2,Π1,Π2} fails to approach its predicted theoretical

value of 4 when the φ0 = 0.03 initial data set is used in the evolution. That is a strong evidence that

there is something wrong with this initial data set (since the possibility of a wrong implementation

of the equations of motion has already been discarded with the use of a generic initial data). The

star configuration with φ0 = 0.06 shows a reasonably clean convergence for the geometric variables

and a not so immaculate one, but with a strong trend to, in the case of the scalar fields (Note that

there is a large glitch for QΠ1 for t ≤ 2 in Fig. 4.11).

Naturally a non-convergent solution does not satisfies its independent residual equation. That

can be testified on Figures 4.12, 4.13 and 4.13 where plots of the l2-norm of the independent

residual equations, I, for all variables as a function of time are displayed for three different levels of

resolution. Note that on the left panels are the plots for φ0 = 0.06 configuration while on the right

for φ0 = 0.03 one. The shift vector equations and the scalar field conjugate momenta equations

for φ0 = 0.03 case are affected the most and show the poorest independent residual results. In the

case of φ0 = 0.06 basically all independent residual l2-norms are driven to zero as the resolution

increases. It is worth noting though that IΠ1 is on the verge of failing this test.

Regarding the mass and noether charge conservation displayed on Fig. 4.15, both cases seems

to have them conserved. However it is clear from the top left panel that the convergence for the

constant mass is not even close to O(h2) rate.

It would be natural to suppose that when one of the spherically symmetric star solutions fails

to converge or to be consistent to the continuum solution then this failure would be associated

with the most relativistic, compact configuration. Surprisingly, the results discussed so far reveal

exactly the opposite. In both configuration cases then there is enough points to represent the

stars without a great loss of accuracy, discarding thus the hypothesis that huge gradients on the

most relativistic solution function would be spoiling its smoothness on the grids shown here. What

is left of the analysis so far is the boundary conditions. As discussed on Subsection 2.4.5 the

boundary conditions applied on these simulations were of Dirichlet type. That can be a pretty

good approximation of the physical boundary conditions at the spatial infinity as long as they are

kept far enough from the compact object being modelled. Clearly that it is not the case for the

configuration φ0 = 0.03.

A closer look on the frame t = 3.0 of Fig. 4.7, as showed in Fig. 4.16, reveals a discontinous wave

of scalar matter originated at the boundaries of the numerical domain and propagating inwards.

The jump in the solution is estimated to be of the order of 1% of its central value φ0. This apparently
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small spurious boundary effect has drastic effects on the solution convergence. Both the convergence

factor and the independent residual assume that the continuum solution of a system of PDEs is

smooth. That is the uttermost hypothesis behind the finite difference approximation of partial

differential equations. The star profile with φ0 = 0.03 (see Figures 2.1 and 2.2) has a long tail that

eventually had to be truncated to fit on the numerical domains of the present simulations. That

discontinuity between the last two grid points of the domain spoils the smoothness of the initial

data. As the solution evolves, this discontinuity propagates over the whole domain of integration

ruining the smoothness of the whole solution and causing the convergence tests to fail.

A look on Fig. 4.17, on the other hand, shows that this boundary discontinuity is much smaller

than any length scale of the problem. That means that whatever the discontinuity is its effects on

the system of FDAs are smaller than or of the order of the truncation error associated or in simpler

words it goes unnoticeable as far as the solution is concerned. φ0 = 0.06 is an example then of a

smooth initial data set where the approximation of the boundary conditions to Dirichlet type is

considered satisfactory for the current grid and coordinate bounding box set up.
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Figure 4.7: Evolution of a φ0 = 0.03 Spherically Symmetric Star as Initial Data. This plot shows
some snapshots of the time evolution of a spherically symmetric star parametrized
by a central value field of φ0 = 0.03. The evolution does not reveal any apparent
dynamics as it is expected of a static initial data set.
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Figure 4.8: Evolution of a φ0 = 0.06 Spherically Symmetric Star as Initial Data. This plot shows
some snapshots of the time evolution of a spherically symmetric star parametrized
by a central value field of φ0 = 0.06. The evolution does not reveal any apparent
dynamics as it is expected of a static initial data set.
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Figure 4.9: Q for α and ψ. Plots of the convergence factor for the lapse function, α and the
conformal factor ψ as a function of time. The functions are plotted for two different
values of the central scalar field: φ0 = 0.03 and φ0 = 0.06. The improvement is
noticeable as the star turns into a more compact one and the computational boundary
becomes further apart from the star surface.
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Figure 4.10: Q for βi. Plots showing the convergence factor Q for all shift vector components
βi. The functions are plotted for two different values of the central scalar field:
φ0 = 0.03 and φ0 = 0.06. Note again that as the star turns into a more compact one
and the computational boundary becomes further apart from the star surface the
convergence factor approaches its expected value of 4. Also, due to the symmetry
of the shift vector equations with respect to each of its components in addition to
the identical vanishing initial data for all three components, the results presented
in these plots seem practically identical.
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Figure 4.11: Q for φA and ΠA. These set of plots display the convergence factor for the real and
imaginary components of the complex scalar field and its conjugate momenta field.
The functions are plotted for two different values of the central scalar field, φ0 = 0.03
and φ0 = 0.06, in order to highlight the boundary effects on the convergence of the
solutions.



CHAPTER 4. CODE VALIDATION AND RESULTS 114

Figure 4.12: I for α, ψ and βx. The plots on the left column correspond to the L2-norm of the
independent residuals as a function of time for the lapse function α, the conformal
factor ψ and the x component of the shift vector βx. The left column results are
based on a calculation for a star whose its initial central value field is φ0(0) = 0.06.
The right column plots the same quantities as the left but for a star with initial
central value field of φ0(0) = 0.03. On the left, the independent residuals drop to
zero as the level of resolution is increased. The rate of convergence is roughly O(h2).
The same seems to happen on the right column with the exception of the bottom
panel for Iβx . It is evident then that the discrete equations are not consistent with
their continuum counterpart for this initial data.
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Figure 4.13: I for βy, βz and φ1. The plots on the left column result from a calculation for a
star whose its initial central value field is φ0(0) = 0.06, while plots on the right
column are for φ0(0) = 0.03 stars. These plots correspond to the L2-norm of the
independent residuals as a function of time for the y and x components of the shift
vector, βy and βz. On the left, the independent residuals drop to zero as the level
of resolution is increased. The rate of convergence is roughly O(h2) for the shift
components and O(h) for the real component of the scalar field. The same seems
to happen on the right column, except for the shift components, where it is evident
that the discrete equations are not consistent with their continuum counterpart for
that initial data.
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Figure 4.14: I for φ2, Π1 and Π2. Again plots on the left column refer to stars with φ0 = 0.06,
while plots on the right one to stars with φ0 = 0.03. The L2-norm of the independent
residuals as a function of time for imaginary component of the scalar field, φ2 and
both real and imaginary parts of the conjugate field, Π1 and Π2, are plotted. All
quantities plotted here use first order in time discretization entering the independent
residual equations. It is expected then that the residuals I drop to zero with O(h).
Clearly that fails for IΠ1 and it is not convincing for IΠ2 on the right. For the more
compact star, on the left column, all of them seem to approach zero with the rate
expected. Note that the result for IΠ1 is not totally convincing though.
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Figure 4.15: ADM mass MADM and Noether charge QN for spherical symmetric initial data.
Plots showing the conservation of ADM mass MADM and Noether charge QN as a
function of time for different levels of resolution. Again, results on the left correspond
to stars with φ0 = 0.06 and those on the right to stars with φ0 = 0.03.
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Figure 4.16: Evolution Frame Zoomed at t = 3.0 for φ0 = 0.03 Spherically Symmetric Star as
Initial Data. The jump in the solution is estimated to be of the order of 1% of φ0.
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Figure 4.17: Evolution Frame Zoomed at t = 3.0 for φ0 = 0.06 Spherically Symmetric Star as
Initial Data. Virtually impossible to “eye ball” estimate at the spurious jump in the
solution coming from the boundary.
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4.4 Lorentz Boosted Spherically Symmetric Initial Data -

1 Star

Last section tested the static spherically symmetric solution as initial data. The results were con-

sidered satisfactory what testify in favor of the correctness of the implementation of the initial

value problem solvers. One last piece of these solvers is left untested though. Once the spherically

symmetric solution is generated and interpolated in the 3D numerical domain, according to Sub-

section 2.6.6, the star profile needs to be boosted, according to Subsection 2.6.7, in order to initiate

the orbital motion for example. This section applies then the same battery of tests as the previous

Sec. 4.3 in order to test this last non-trivial step to obtain this special initial data set, the boosted

spherically symmetric solution.

Fig. 4.18 displays some snapshots of the evolution of a boosted solution. The spherically sym-

metric solution used is parametrized by φ0 = 0.06, being therefore a member of the stable branch.

The boost velocity adopted in this simulation was vx = −0.1. The snapshots show that the star is

slowly moving along the x direction towards x = −15. A rough numerical estimate gave the value

∆x/∆t ≈ −0.1 according to the expected. The grid parameters used here was the same as in the

previous sections: bbox = [−15, 15,−15, 15,−15, 15] and the finest shape = [129, 129, 129].

The left panels of Figures 4.19, 4.20 and 4.21 attest that the boosted solution is converging.

The convergence factor approaches to 4 for all variables. The right panels of the same set of figures

indicates that besides being convergent the solution is also consistent. The independent residuals of

variables do converge to zero with the rate expected: O(h) for the scalar field variables and O(h2)

for the geometric variables. At last, Fig. 4.22 shows that both ADM mass and noether charge are

being conserved.

After this extensive battery of tests on all different kinds of initial data used in this dissertation

the reader should be convinced about the correctness of the implementation of the equations of

motion and the smoothness of all initial data sets used. Next section starts then second part of

this chapter, the investigation of the collision between two stars.
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Figure 4.18: Snapshots of the Evolution of a Boosted φ0 = 0.06 Spherically Symmetric Star as
Initial Data. A static spherically symmetric star with central value field of φ0 = 0.06
is boosted along the x direction with boost speed of vx = −0.1. Note that a rough
numerical estimation of this velocity was possible and provided a consistent result,
i.e. the numerically measured quantity ∆x/∆t ≈ −0.1.
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Figure 4.19: Q and I for α, ψ and βx for a boosted star. The left panels show the plots of the
convergence factor Q as a function of time t for the lapse function α, the conformal
factor ψ and the x component of the shift vector βx. The right panels show the
L2-norm I of the independent residual equations for the same set of variables as
a function of time. The results reported here are for a boosted star along the x
direction with speed v = −0.1. The central value of the scalar field parametrizing
this star is φ0 = 0.06.
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Figure 4.20: Q and I for βy, βz and φ1 for a boosted star. The left panels show the plots of the
convergence factor Q as a function of time t for the y and z shift components, βy and
βz, and the real component of the complex scalar field, φ1. The right panels show
the L2-norm I of the independent residual equations for the same set of variables
as a function of time. The results reported here are for a boosted star along the x
direction with speed v = −0.1. The central value of the scalar field parametrizing
this star is φ0 = 0.06.
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Figure 4.21: Q and I for φ2, Π1 and Π2 for a boosted star. The left panels show the plots of the
convergence factor Q as a function of time t for imaginary component of the complex
scalar field φ2 and the real and imaginary components of its conjugate field, Π1 and
Π2. The right panels show the L2-norm I of the independent residual equations for
the same set of variables as a function of time. The star with a central value field
of φ0 = 0.06 is boosted along the x coordinate with boost speed of v = −0.1.
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Figure 4.22: ADM mass MADM and Noether charge QN for boosted spherical symmetric initial
data as a function of time t. Both plots indicate a trend to conservation of the
quantity with a convergence rate of O(h2).

4.5 Head-on Collision of Two Boson Stars

Head-on collision of boson stars have been investigated both on newtonian regime [140] as well

as in the full relativistic regime [107, 6]. A solitonic behaviour of the solution was first shown

to exist in the newtonian regime by Choi [140]. This behaviour was also confirmed in the full

general relativist case in axisymmetry by Lai [107]. This section has the purpose of reproducing

this solitonic behaviour for the Einstein-Klein-Gordon system of equations (boson star) under the

conformally flat condition.

The experiment was prepared as follows. Two spherically symmetric boson stars were generated

each with the central value field of φ0 = 0.02. The stars were interpolated into the 3D numerical

domain, bbox = [−50, 50,−25, 25,−25, 25], and centred at (25, 0, 0) (star 1) and (−25, 0, 0) (star 2).

An initial boost with velocity vx = 0.4 was given to both stars such that −v(2)
x = v

(1)
x = vx. Fig. 4.23

shows the evolution of these two stars on a grid with shape = [129, 65, 65] for 0 ≤ t ≤ 140. The

stars approach each other and start overlapping around t ≈ 30. It becomes hard then to disguish

between the two stars around t = 55. They are in a central region of the domain with a strong

interference between them. About t = 100 it is possible to distingsh again between the two stars

and they follow their paths in opposite directions towards the ends of the domain. During the time

interval they interact the modulus of the scalar field reaches a maximum of |φ(t, x, y, z)| ≃ 0.0472

returning afterwards to a value close to its initial configuration, |φ(t, x, y, z)| ≃ 0.0182.

This result is important to evaluate how good the conformally flat condition applied to the

Einstein-Klein-Gordon system is. This is the first experiment that allows to conclude something

about this approximation. Qualitatively, the solitonic behaviour was observed as in the axisymmet-

ric fully general relativistic case suggesting the viability of the CFC as a satisfactory approximation
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to general relativity in the context of head-on collision of stars.
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Figure 4.23: Boson star head-on collision: solitonic behaviour. Both stars are members of the
stable branch of the family of spherically symmetric solution with central value field
of φ0 = 0.02. The stars are initialized via interpolation, translation and boosting of
a spherically symmetric solution. The stars are initially centered at (25, 0, 0) and

(−25, 0, 0), with initial velocity −v(2)
x = v

(1)
x = vx = 0.4. The two stars start to

overlap at t ≈ 30, interfere with each other, and then separate at t ≈ 110. Through-
out the evolution 0.0 ≤ |φ(t, x, y, z)| ≤ 0.0472. Other simulation parameters are:
bbox = [−50, 50,−25, 25,−25, 25] and shape = [129, 65, 65]. Note that the time
snapshots showed in this figure are not uniformely distributed in time. There are
more snapshots during the time interval the stars overlap than when they are apart.
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4.6 Orbital Dynamics of Two Boson Stars

This section presents the results for three different cases of the orbital dynamics classified according

to the nature of the final configuration. Several different simulations were performed (but not all

shown in this chapter) corresponding to configurations with initial velocities along the x direction of

vx ∈ {0, 0.03, 0.05, 0.07, 0.08, 0.09, 0.1, 0.11}. The final result of the mergers could then be classified

as orbital motion for 0.09 ≤ vx ≤ 0.11; boson star formation when 0.07 ≤ vx < 0.09 and (possibly)

black-hole formation for vx in 0 ≤ vx < 0.07. Note however that the limits of the range of these

intervals are not precisely determined yet, they are just a rough estimate based on the results of the

few experiments performed. The first case showed consists of the two stars orbiting each other in a

slightly eccentric orbit. On the second case, the stars trajectories approach each other close enough

to initiate a grazing collision followed by the full merger of the two stars. The final object is still

a boson star as far as the simulations were run. The third and last result presents a very eccentric

orbit interrupted by the collision of the two compact bodies possibly resulting into a black-hole.

All the simulations presented in this section were performed with four different grid resolutions.

The grids are labelled such that G1, G2, G3, G4 represent the sequence of grids from the coarser to

the finer. Their several shapes are:

G1 : shape1 = [65, 65, 65], (4.8)

G2 : shape2 = [81, 81, 81], (4.9)

G3 : shape3 = [97, 97, 97], (4.10)

G4 : shape4 = [113, 113, 113]. (4.11)

The coordinate range for all grids used in this section are identical and stored into the bounding box

vector as bbox = [−60, 60,−60, 60,−60, 60]. All the surface and trajectory plots refer to the z = 0

slice of the numerical domain. The basic experiment set up consists of generating two individual 1D

spherically symmetric boson stars parametrized2 by φ0 = 0.02. Each of them are then interpolated

into the 3D domain and centred at (0, 20, 0) and (0,−20, 0) for all experiments presented in this

section. The stars interpolation and translation processes happen at the same time the stars are

boosted according to Subsection 2.6.7. The binary of boosted stars form therefore the initial data

for these experiments. The experiments differ among them only by the initial velocities assigned

to the stars. All the other parameters are kept the same.

The first experiment is shown on Fig. 4.24. Each star is assigned a velocity of vx = 0.09 along the

x axis and in opposite directions. The plots shows the evolution of the binary for approximately two

orbits and a quarter corresponding to the time between 0 ≤ t ≤ 4211. The orbits are slightly elliptic

as a visual inspection of Fig. 4.25 displaying the orbital trajectory of both stars can attest. The

eccentricity of the orbit has not been measured numerically though. An even closer examination

of the same figure shows that the orbits seem to slowly precess. This qualitative result is quite

promising towards the evaluation of the CFC as an accurate approximation of general relativity

2See Fig. 2.1 for properties of the individual stars.
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since this effect is a purely relativistic one. Further quantitative examination is still required

though.

The evolution showed on Fig. 4.24 is monitored by the l2-norm of the independent residual for

all geometric and scalar field quantities3. The l2-norm independent residual for the real component

of the scalar field, Iφ1(t), is shown on Fig. 4.26. The green dots appearing on that plot4 correspond

to Iφ1(t) calculated on the G1 grid, the blue dots to the one evaluated at the G2 grid, the red ones

to the G3 and finally the black dots to the G4. The rate of convergence was roughly measured

and found to be close to O(h), as expected. Fig. 4.27 shows the same results but for a short time

interval of 0 ≤ t ≤ 20. It becomes clearer from there that the functional shape of the independent

residual as a function of time does not change with resolution. The l2-norm of the independent

residual for the lapse function as a function of time, Iα(t), is displayed on Fig. 4.28. In this case

the convergence is expected to be quadratic. Again, a rough estimate from the data on the plot

agree with O(h2) expected.

The second set of experiment assigns the initial velocity vx = 0.07 to the stars. The evolution

is shown on Fig. 4.29 and its correspondent trajectory on Fig. 4.30. They orbit each other for

almost half an orbit when the grazing collision takes place. The stars then plunge towards each

other resulting into a spinning boson star. The final star has a central value field of approximately

φ0 ≃ 0.05. The Fig. 4.34 shows the l2-norm for the lapse function independent residual as a

function of time. The independent residual does goes to zero as a function of the grid resolution.

However, as the plot shows, the convergence deteriorates as a function of time specially after the

merger of the stars. The coarsest grids G1 and G2 can be safely discarded after t ≃ 600 since they

are too coarse to represent the solution at those times. Lots of scalar matter are sent out after the

merger of the two stars. Unfortunately they are reflected back onto the domain by the boundaries.

These spurious reflections also contribute to pollute the solution domain.

The last experiment shows a short orbital motion of two stars with initial velocities given by

vx = 0.05. The stars trajectories quickly plunge towards each other, as the Figures 4.32 and 4.33

show, and a black-hole is believed to form. At the moment no apparent horizon finder has been

implemented to make sure a black-hole has formed. The conclusion that a black-hole actually

formed comes from the inspection of the metric components functions such as the lapse function.

The lapse function for example reaches extremely small values in the region the scalar matter

spikes, freezing therefore the evolution of the slicing in that region. That is a very well known

feature of the maximum slicing and it was taken as an indication that a black-hole is forming in

that region. Another caveat about this last set of results comes from the independent residual as

shown on Fig. 4.34. It does converges approximately as expected, O(h2), until around t ≃ 380.

About that time the stars are merged and about to collapse. In the collapse process, the resolution

of all grids used for this simulation fails to resolve the solution. Unfortunately, it is impossible to

increase the resolution at the moment since the unigrid code is already using all the computational

resources available. So this result still needs to be handle with care. Only a substantial increase in

3Recall that the independent finite difference operators for the elliptic set of equations are second oder accurate
while for the hyperbolic equations they are only first order accurate.

4The map between the point colours of the independent residual functions and the grids at which they are
evaluated are the same for all plots of this kind discussed in this chapter.
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resolution will provide a definitive answer on the final object resulting from this collision.
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Figure 4.24: Orbital Evolution of two φ0 = 0.02 boson stars with initial speed vx = 0.09. This
plot shows a long term time evolution of two spherically symmetric stars used as
initial data. The stars are both parametrized by a central value field of φ0 = 0.02.
They are centred in the cubic numerical domain at (0, 20, 0) and (0,−20, 0). The

initial star velocities are such that vx = −v(1)
x = v

(2)
x = 0.09. Note that the stars

orbit around each other for almost two and a half orbits. Throughout the evolution
the complex scalar field modulo is bounded approximately by its initial central value,
0.0 ≤ |φ(t, x, y, z)| ≤ φ0.
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Figure 4.25: Two-star trajectory for initial speed vx = 0.09 and coordinate separation d = 40.
This plot shows the trajectories of stars 1 and 2 initially centred at (0, 20, 0) and
(0,−20, 0) for 0 ≤ t ≤ 4500. It corresponds to the same orbital motion shown on
Fig. 4.24. At t = 0, the solid lines represent the circumferences of the stars at
R99, the radius containg 99% of its ADM mass MADM , while the dotted lines draw
the star surface at R95, the radius containg 95% of its ADM mass MADM . Both
stars are members of the stable branch family of solutions and are parametrized by

φ0(0) = 0.02. The initial star velocities are such that vx = −v(1)
x = v

(2)
x . Note that

the evolution corresponds approximately to two and a half complete orbits around
each other. Furthermore, the orbit seems to be elliptic in shape and precess slightly
as the simulation evolves.
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Figure 4.26: Long term Iφ1(t) during the orbital dynamics with initial speed vx = 0.09. This
figure shows the independent residual l2-norm Iφ1(t) for the real scalar field compo-
nent φ1 during the orbital motion presented in the Fig. 4.24 for 0 ≤ t ≤ 4500. The
different coulored dots represent Iφ1(t) function calculated with different grid reso-
lutions; The number of grid points per edge of the cubic domain is n1 = 65 (green
dots), n2 = 81 (blue), n3 = 97 (red) and n4 = 113 (black) with corresponding mesh
spacings of h1 = 1.875, h2 = 1.5, h3 ≃ 1.237 and h4 ≃ 1.062. The convergence
rate expected for this evaluation is O(h). A rough estimate indicate that the av-
erage value goes to zero as (1.45 → 1.18 → 1 → 0.87) × 10−4. When multiplied
by the linear conversion factors, h12 = h1/h2 = 1.25, h13 = h1/h3 ≃ 1.516 and
h14 = h1/h4 ≃ 1.766 the same sequence of average Iφ1 becomes almost coincident:
(1.45 ≃ 1.475 ≃ 1.516 ≃ 1.536) × 10−4. That is a good evidence that the linear
convergence is attained throughout the evolution.
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Figure 4.27: Short term Iφ1(t) for the orbital dynamics with initial speed vx = 0.09. This figure
shows the independent residual evaluation for the orbital motion presented in the
Fig. 4.24 for 0 ≤ t ≤ 20. It shows the same results as Fig. 4.26 but for a shorter
time interval. Note that the shape of the Iφ1(t) is kept approximately the same for
all four grid resolutions showed in this figure.
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Figure 4.28: Long term Iα(t) during the orbital dynamics with initial speed vx = 0.09. This
figure shows the independent residual l2-norm Iα(t) for the lapse function α during
the orbital motion presented in the Fig. 4.24 for 0 ≤ t ≤ 4500. The different
coulored dots represent Iα(t) function calculated with different grid resolutions;
The number of grid points per edge of the cubic domain is n1 = 65 (green dots),
n2 = 81 (blue), n3 = 97 (red) and n4 = 113 (black) with corresponding mesh
spacings of h1 = 1.875, h2 = 1.5, h3 ≃ 1.237 and h4 ≃ 1.062. The convergence rate
expected for this evaluation is O(h2). A rough estimate indicate that the average
value goes to zero as (4.5 → 2.5 → 1.64 → 1.18) × 10−5. When multiplied by the
quadratic conversion factors, h2

12 = (h1/h2)
2 = (1.25)2, h2

13 = (h1/h3)
2 ≃ (1.516)2

and h2
14 = (h1/h4)

2 ≃ (1.766)2 the same sequence of average Iα becomes almost
coincident: (4.5 ≃ 3.9 ≃ 3.8 ≃ 3.7) × 10−5. This is a good indication that the
quadratic convergence is attained throughout this evolution.
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Figure 4.29: Orbital Evolution of two φ0 = 0.02 boson stars with initial speed vx = 0.07. This
plot shows a long term time evolution of two spherically symmetric stars used as
initial data. The stars are both parametrized by a central value field of φ0 = 0.02.
They are centred in the cubic numerical domain at (0, 20, 0) and (0,−20, 0). The

initial star velocities are such that vx = −v(1)
x = v

(2)
x = 0.07. The star orbits

approach each other around t = 418, initiating a grazing collision. The stars quickly
plunge and merge into a another rotating boson star. Throughout the evolution the
complex scalar field modulo is bounded approximately to 0.0 ≤ |φ(t, x, y, z)| . 0.05.
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Figure 4.30: Two-star trajectory for initial speed vx = 0.07 and coordinate separation d = 40.
This plot shows the trajectories of stars 1 and 2 centred at (0, 20, 0) and (0,−20, 0)
for 0 ≤ t ≤ 2250. It corresponds to the same orbital motion shown on Fig. 4.29.
At t = 0, the solid lines represent the circumference of the stars at R99, the radius
containg 99% of its ADM mass MADM , while the dotted lines draw the star surface
at R95, the radius containg 95% of its ADM mass MADM . Both stars are members
of the stable branch family of solutions and are parametrized by φ0(0) = 0.02. The

initial stars velocities are such that vx = −v(1)
x = v

(2)
x . Note that after a short period

of orbital dynamics the stars trajectories approach each other close enough for the
stellar matter interact and initiate a collision phase. The end state of the collision
is a spinning boson star.
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Figure 4.31: Long term Iα(t) during the orbital dynamics with initial speed vx = 0.07. This
figure shows the independent residual l2-norm Iα(t) for the lapse function α during
the orbital motion presented in the Fig. 4.29 for 0 ≤ t ≤ 2250. The different coulored
dots represent Iα(t) function calculated with different grid resolutions; GridsG1, G2,
G3 and G4 have corresponding mesh spacings of h1 = 1.875, h2 = 1.5, h3 ≃ 1.237
and h4 ≃ 1.062. The convergence rate expected for this evaluation is O(h2). Note
that the convergence deteriorate in the merging phase. The G1 and G2 grids are
too coarse to resolve the merger of the two stars. They leave the converging regime
for t & 600. The same happens with G3 grid at t & 1500 as the numerical domain
becomes polluted by scalar matter and spurious reflections from the boundaries.
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Figure 4.32: Orbital Evolution of two φ0 = 0.02 boson stars with initial speed vx = 0.05. This
plot shows a long term time evolution of two spherically symmetric star parametrized
by a central value field of φ0 = 0.02. They are centred in the cubic numerical
domain at (0, 20, 0) and (0,−20, 0). The initial star velocities are such that vx =

−v(1)
x = v

(2)
x = 0.05. The stars barely orbit each other before they plunge and

merge into a compact object believed to be a black-hole. The complex scalar field
modulo reaches a maximum during the evolution of max |φ(t, x, y, z)| ≃ 0.14. For
comparison, φ0 ≃ 0.08 represents a stable boson star with the maximum possible
mass before being driven to collapse into a black-hole.
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Figure 4.33: Two-star trajectory for initial speed vx = 0.05 and coordinate separation d = 40.
This plot shows the trajectories of stars 1 and 2 centred at (0, 20, 0) and (0,−20, 0)
for 0 ≤ t ≤ 1500. This trajectories corresponds to the same orbital motion displayed
on Fig. 4.32. At t = 0, the solid lines represent the circumference of the stars at
R99, the radius containg 99% of its ADM mass MADM , while the dotted lines draw
the star surface at R95, the radius containg 95% of its ADM mass MADM . Both
stars are members of the stable branch family of solutions and are parametrized by

φ0(0) = 0.02. The initial stars velocities are such that vx = −v(1)
x = v

(2)
x . Note that

after a short period of orbital dynamics the stars trajectories approach each other
close enough for the stellar matter interact and initiate a collision phase. The final
merger happens and it is believed to result into a black-hole.
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Figure 4.34: Long term Iα(t) during the orbital dynamics with initial speed vx = 0.05. This
figure shows the independent residual l2-norm Iα(t) for the lapse function α during
the orbital motion presented in the Fig. 4.32 for 0 ≤ t ≤ 411. The different coulored
dots represent Iα(t) function calculated with different grid resolutions; The number
of grid points per edge of the cubic domain is n1 = 65 (green dots), n2 = 81
(blue), n3 = 97 (red) and n4 = 113 (black) with corresponding mesh spacings of
h1 = 1.875, h2 = 1.5, h3 ≃ 1.237 and h4 ≃ 1.062. The convergence rate expected for
this evaluation is O(h2). Note that this convergence rate is roughly satisfied until
t ≃ 380 when the final merged stars collapse into a black-hole.
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4.7 Discussions and Further Developments

It is worth noticing that the second and third experiments shown last section are qualitatively

consistent with the results obtained by Palenzuela et. al. [7]. They have simulated a fully rel-

ativistic implementation of the Einstein-Klein-Gordon system having as initial data two boosted

spherically symmetric boson stars. The stars used in their simulations though had an ADM mass of

MADM = 0.5 while the ones used here, parametrized by φ0 = 0.02, had masses of MADM ≃ 0.475.

Also they used a closer separation for the stars initial configuration, d = 32, while here the stars

were further away apart,d = 40, in order to avoid that their “surfaces” touch each other consid-

ering that each star has R99 = 17.25. Despite these differences some qualitative comparison was

possible. What they claim to be a spinning bar with dispersal of scalar matter agree with the result

of the second experiment shown in this section where the final object was a rotating boson star.

The range of initial velocities that they claim would result into black-hole formation is approxi-

mately the range of possible black-hole formation, for boost velocity of 0 ≤ vx < 0.07, in which

the third experiment was shown as an example. Those authors also reported an interesting case

of the dynamics in which the stars merge, keep themselves together as one lump of deformed or

perturbed scalar matter for a while and eventually decouple from each other and follow trajectories

in opposite directions. As far as the experiments performed for this thesis goes, this case was not

observed. The novelty of the work done here though comes from the first experiment. It is the first

time that more than two orbits of the boson star binary is reported. Furthermore, the trajectories

observed clearly seem to precess, a good indication that the system preserved the main features of

the strong gravitational field.

These experiments just started to investigate the parameter space of orbital dynamics. A full

parameter space survey would have to take into account all possible ratios between dimensional

parameters of the system in such a way to fully determine and characterize the system by a set

of adimensional parameters. For the orbital motion of two non-spinning stars, the dimensional5

parameters involved are the following: The masses of the two stars M1 and M2; the coordinate

separation between their centers, d; the velocity v of each star. Note however that actually only the

velocity of one of the stars is necessary since the other can be arbitrarily fixed by the coordinate

choice. Therefore the total number of dimensional parameters is 6 while the total number of adi-

mensional parameters that can be formed from this set is given by the Newton binomial coefficient

C6
2 = 15. Unfortunately, this is a huge parameter space to be explored. Howeverm, if the study of

the orbital motion is restricted to a plane then the number of dimensional parameters is reduced to

4 and the number of adimensional ones to C4
2 = 6. Despite this parameter space being still big, it

looks more promising to be explored. The fully relativistic 3D numerical simulation of the binaries

are computationally too expensive. The CFC approximation provides a set of simpler PDEs that

shows promising results in capturing the same phenomena reported in the fully relativistic case.

It is expected then that once this code is callibrated with the fully relativistic one it will provide

results faster turning this code into a perfect tool to survey the huge parameter space of the orbital

motion.

Concerning the comparison of the Wilson-Mathews compression effect reported on the neutron

5recall that the system of units used here is the planck units in which ~ = G = c = 1
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star binary case, the results shown here are inconclusive with respect to the existence or not of

this effect on boson stars. In one of the experiments (vx = 0.08), the strong gravitational field did

appear to compress one of the stars. However, due to the low resolution in which this particular

simulation was run, this result was not trustworthy and therefore not explored in details in this

thesis. Besides a resolution increase, it may be necessary to adopt a different self-interaction

potential U(|φ|2) in order to observe this phenomena in the same way that for only certain neutron

star equations of state this phenomena was evident. Further studies are still required.

To wrap up this section, a few comments on the future developments of this numerical code are

welcome. First and foremost, resolution is the key that is missing to study the most interesting

parts of the star dynamics. More sophisticated numerical techniques needs to be implemented in

order to use the available computational resources more effectively. Crutial to this purpose, the

parallelization of the code is mandatory. This consists in decomposing the numerical domain and

sharing the work load for obtaining the solution with several different processing units with their

own local memory and CPU. Besides parallelization, applying a technique called adaptive mesh

refinement (AMR) provides resolution where it is needed. The philosophy behind AMR consists of

increasing the number of grid points only where and when the detailed solution features needs to be

resolved. Both techniques together provide the means for a substantial increase in resolution. At

the moment the unigrid code used to obtain the results presented in this chapter has been adapted

to both techniques. It is still in its testing and debugging phase though.

A second proposal for code improvement involves the implementation of boundary conditions

that approximate better the physical boundary condition, viz the aysmptotically flat spacetime.

As pointed out on Sec. 2.4.5 an exact implementation of the physical boundary conditions could

be implemented via compactification of the spatial domain. This option, despite promising, would

involve a complete revamp of the equations of motion besides the development of a more sophisti-

cated multigrid solver to deal with the anisotropic aspect of the equations. A more suited possibility

though consists of implementing boundary conditions that approximate the fall-off to infinity of

the various quantities, the so called Sommerfeld boundary conditions. This implementation is the

next priority in the development of this code.
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CHAPTER 5

CONCLUSION

The main result presented in this thesis consists of an implementation of a 3d numerical code to

solve a set of coupled elliptic-hyperbolic partial differential equations describing the Einstein-Klei-

Gordon system under conformally flat condition. This code was thoroughly tested with satisfactory

results regarding the correctness of its implementation. Moreover, this code was applied to the

study of orbital dynamics of mini-boson stars. Solitonic behaviour of the solution for head-on

collisions has been confirmed according to predictions from previous studies of the system under

newtonian approximation [140] and in axisymmetric relativity [107]. Three main results should

also be mentioned. They consist of the three final possibilities discovered for the boson star orbital

dynamics: an eternal, precessing elliptic orbit; the merger of the two stars into one final, more

compact boson star; and the merger into a black-hole. These results are consistent with the ones

obtained by Palenzuela et. al. [7] with a fully relativistic set of equations. This suggests that

the approximation used in this thesis may be accurate enough to capture the main features of the

strong gravitational field.

One main drawback on the simulations presented in this thesis concerns their grid resolution.

Most of the runs had a reasonable resolution to allow conclusions about the physics of the system

to be stated. However, in some cases the gravitational field was really strong to the point to

cause the stars to collapse into black-holes. In those cases further conclusions were limited due

to the poor resolution of the solution. In order to resolve the features of the solution, more grid

points should be added where it is needed. This philosophy is the base of a technique called

adaptive mesh refinement (AMR) [141, 142, 143]. It creates a hierarchy of grids with finer and

finer resolutions covering regions of the domain where detailed features of the solution needs to

be resolved. Besides AMR, the numerical domain decomposition and distribution of the work

load to several different CPUs, also known as code parallelization, allows a substantial increase in

resolution of the simulations as well. At the moment the unigrid code used in this thesis has been

adapted to use these two techniques but it is still in its test and debugging phase.

Calibration under what conditions CFC approximation is a satisfactory approximation of GR

and when is not is the next priority. This opens an exciting direction of research that can shed some

light on how to identify the true degrees of freedom of GR, or in other words on the identification of

the gravitational radiation. Besides, it can clarify what is really left out in applying the conformally

flat condition when compared to the fully general relativistic solution.
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[21] Éanna É. Flanagan. Possible explanation for star-crushing effect in binary neutron star

simulations. Phys. Rev. Lett., 82(7):1354–1357, Feb 1999.

[22] G. J. Mathews and J. R. Wilson. Revised relativistic hydrodynamical model for neutron-star

binaries. Phys. Rev., D61:127304, 2000.

[23] James R. Wilson. Precompression of colliding neutron stars. Phys. Rev., D66:084015, 2002.

[24] Mark A. Miller. General relativistic decompression of binary neutron stars during inspiral.

Phys. Rev., D75:024001, 2007.

[25] Marc Favata. Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for

binary-induced collapse. Phys. Rev., D73:104005, 2006.

[26] Masaru Shibata, Koji Uryu, and John L. Friedman. Deriving formulations for numerical

computation of binary neutron stars in quasicircular orbits. Phys. Rev., D70:044044, 2004.

[27] Gerhard Schaefer and Achamveedu Gopakumar. A minimal no-radiation approximation to

Einstein’s field equations. Phys. Rev., D69:021501, 2004.

[28] Koji Uryu, Francois Limousin, John L. Friedman, Eric Gourgoulhon, and Masaru Shibata.

Binary neutron stars in a waveless approximation. Phys. Rev. Lett., 97:171101, 2006.

[29] R. Arnowitt, S. Deser, and C. W. Misner. The dynamics of general relativity. In L. Witten,

editor, Gravitation: An Introduction to Current Research. New York, Wiley, (1962).
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APPENDIX A

BSIDPA - BOSON STAR INITIAL DATA FUNC-
TION IN POLAR AREAL COORDINATES

The problem of numerically solving the Einstein equations formulated as an initial value problem

(as in the 3+1 formalism case) splits into two parts: the initial data specification and the evolution

of that initial data. While the evolution problem is still pervaded with open questions, the initial

data calculation is approaching more and more to a routine type of problem. Particularly for

spherically symmetric boson stars as matter model, it can virtually be considered as a solved

problem. It becomes interesting then to provide this solution for a larger community of users

mainly interesting on problems originated from the evolution of these boson stars. This way the

user have the benefit of an initial data as accurate as desired, without the necessity of a detailed

knowledge on how the initial data was calculated numerically or the need to implement herself the

initial data solver. With this intention in mind, a general purpose initial data solver for boson stars

was written.

BSIDPA1 is a FORTRAN subroutine written with the purpose of generating static spherically

symmetric boson stars as initial data. As the name suggests, BSIDPA stands for Boson Star Initial

Data in Polar-Areal coordinates. It produces a boson star by integrating numerically the set of

ODEs in polar-areal coordinates, equations (2.246)-(2.249), as described in detail in Section 2.6,

for a particular value of the ansatz eigenfrequency ω. Furthermore, it not only integrates the

polar areal ODE system but also it finds the bracket of values [ωhi, ωlow] to which the boson star

eigenfrequency ω belongs and decreases the bracket width by root bisection in order to provide ω

with the desired accuracy. It is worth noticing that BSIDPA provides the boson star solution for

a general polynomial self-interaction potential:

U(φ0) =

pn
∑

i=1

piφ
i
0, (A.1)

where pn and pi are supplied by the user and the pis are the adimensional coupling constants of

the model. Note that i = 2 corresponds to the massive Klein-Gordon scalar field or to the so called

mini-boson stars. The numerical integration of the ODE system is performed by a routine called

LSODA of the ODEPACK [145] package.

The BSIDPA subroutine is called by its driver routine as follows:

...

integer sht, n, pn, pt, dft, tail_type

real*8 phi0, rmax, lsoda_tol, w_tol, dr, whi, wlo, wshoot, wresca

1BSIDPA and auxiliary routines are kept at Choptuik’s ftp repository site [144]
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real*8 a(n), alpha(n), phi(n), pp(n), m(n), zr(n), r(n)

real*8 p(pn)

...

call bsidpa(a,alpha,phi,pp,m,zr,r,p,phi0,rmax,lsoda_tol,w_tol,dr,

& whi,wlo,wshoot,wresca,sht,n,pn,pt,dft,tail_type)

...

The user has to provide the following parameters:

phi0: the central value scalar field φ0(0) that parametrize the family of static spherically

symmetric boson star solutions.

rmax: the integration starts at the radial coordinate r = 0 and ends at r = rmax.

pt: chooses the potential type. At the moment only the massless potential, pt = 0, and the

polynomial potential, pt = 1, are implemented.

p(pn): real*8 vector of length pn to storage the user supplied values for the coupling con-

stants pi appearing in the self-interacting potential (A.1).

n: a number of grid points in the interval 0 ≤ r ≤ rmax to output the result of the ODE

integration.

sht: Switch to determine whether or not BSIDPA is to find the bracket of ω values and

shoot to determine ω to the accuracy prescribed by the user. For sht = 1, BSIDPA finds the

interval corresponding to the ground state of the eigenvalue system and shoots to find ω and

the solution of the ODE system. For sht = 0, it doesn’t shoot and the user is responsible to

provide wshoot, the correct value for the ground state eigenfrequency ω.

wshoot: eigenfrequency associated with a particular value of φ0(0) that results into a solution

for φ(r) with no nodes, i.e. the ground state solution. φ(r) is therefore a smooth strictly

positive function of the areal coordinate r that approaches to zero as r tends to infinity. It

is expected to be provided by the user when sht = 0. It is calculated by shooting (or root

bisection) otherwise.

dft: flag to switch on and off the set of default parameters to be used. dft = 0 assigns

lsoda tol, w tol, dr, whi and wlo their the default values. dft = 1 assigns only dr, whi and

wlo to their default values. Finally, dft = 2 assigns no default value, i.e. the user must specify

all the relevant parameter values.

On the other hand, the following parameters may or may not be specified by the user according

to the value assigned to dft:
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lsoda tol: LSODA tolerance parameter. The local solution error is kept below this tolerance

by the ODE solver. Its default value is hard-coded as lsoda tol = 10−10.

w tol: Tolerance for estimating the eigenvalue ω coming from the static ansatz φ(t, r) =

φ0(r) exp (−iωt). Therefore, for any φ0, there is a single ω ∈ [ω0 − w tol, ω0 + w tol] which

results into a star-like solution (i.e. no nodes) of the ODE system satisfing the fields and

metric components boundary and regularity conditions. Its default value is w tol = 10−9.

dr: solution output interval used by BSIDPA when the algorithm is looking for the bracket

that constains ω values. It is useful to have a different outpupt control parameter until the

bracket is located since it may happen that for certain values of ω, away from the correct

eigenvalue, the system do not integrate even on the first step. Decreasing the output step

interval helps to overcome this problem. Its default value is dr = 10−4.

[whi,wlo]: these two guesses for ω value are the eigenfrequencies in which the solution φ0(r)

blows up or down as r gets large. It is the user responsibility to assure that the values of whi

and wlo actually bracket the desired value of ω. BSIDPA does have an algorithm encoded

to automatically look for an appropriate bracket, however it should be handle with care.

Bracketing a particular value of ω may be tricky specially if the ground state eigenfrequencies

and the excited states ones have their values too close to each other. That does happen

for some extreme values for the parameter vector pi entering the self-interacting potential.

When exploring the parameter space for this problem is recommended that the new bracket

actually be formed based on the previous set of values. A continuum survey of the parameter

space starting from known values of ω helps then to avoid problems related to appropriate

bracketing. Its default values are based on the solution of mini-boson stars with associated

particle mass set to m = 1 and φ0(0) = 0.01. Therefore whi = 1 and wlo = 1.01 by default.

tail type: determines the type of tail to be matched as the boson star “atmosphere”. When

φ0(r) reaches a cut-off point or when the concavity of the boson star tail changes its sign

from positive to negative (remember: the shooting process to find the boson star solution

ends up blowing up or down. This code makes sure the last trial always blows down) a tail

is matched at the cut-off point until the end of the prescribed domain. Three different tails

T (r) are encoded:

T1(r) =
A

r
+
B

r2
+
C

r3
, (A.2)

T2(r) = A exp(−Br) +
C

r
, (A.3)

T3(r) = A exp(−Br). (A.4)

The default tail is T1(r). Since it has three parameters to fit, it matches then the function, its

first and second derivatives at the cut-off point. Besides being a smoother match, T1(r) also

assigns to the field a fall-off similar to the metric components (asymptotically flat condition).
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The only caveat though is that not always it is possible to fit T1(r) without assigning a

negative number to one of the constants A, B or C. As a result the tail may cross the φ0 = 0

axis as it approaches to zero. That is not the solution behaviour sought though. T2(r) and

T3(r) are then tried in sequence. T3(r) fits the function and its first derivative only but

can be considered already a reasonably good tail (remember that it usually assigns values for

φ0(r) ≤ 10−5φ0(0) after the cut-off point). A warning message is output if failure to fit occurs.

If one insists in fitting a particular tail, then it may be necessary to increase the frequency in

which the solution is output in order to make the numerical solution approximation smoother.

At last, the code returns the following quantities:

r(n): vector of length n storaging the areal coordinate r.

a(n): vector of length n storaging the solution for the metric function a(r).

alpha(n): vector of length n storaging the solution for the metric function α(r). Note that

α(r) has already been rescaled.

phi(n): vector of length n storaging the solution for the scalar field modulo φ0(r).

pp(n): vector of length n storaging the solution for the spatial derivative of the scalar field

modulo Φ0(r).

m(n): vector of length n storaging a derived quantity, the mass aspect function m(r).

zr(n): vector of length n storaging a derived quantity, the compactness function z(r) =

2m(r)/r. As brief purpose description, this function has been used in the past to deter-

mine upper bounds on how compact a star can be before it collapses into a black-hole. If

max(z(r)) = 1 then the star is a black-hole and its radius is the Schwarzschild radius r = rsch.

wresca: rescaled value of ω.

BSIDPA code flows as follows. After the user supplies all the required parameters, the code

will look for a pair of values for ω such that whi corresponds to a φ0(r) solution that blows up

at large values of the areal coordinate r (due to accumulated truncation and round-off errors)

and wlo corresponds to a solution that blows down. Note that it may happen that the algorithm

brackets an “excited” solution, i.e. a solution with nodes (usually crossing the φ0(0) axis). The

code identifies this type of solution and discards it from the bracket search (and adjust the bracket

accordingly). Once the bracket is found, a simple root bisection algorithm is applied to constrain

the value of ω to a very narrow interval of width 2w tol. The solution in which φ0(r) blows down is

picked as the eigenfunction associated with the eigenfrequency (or eigenvalue) ω. This solution has

a property that allows to easily identify the r coordinate in which the solution is not trustworthy

anymore. As r increases, the second derivative of the numerical solution for φ0(r) changes signs

from negative to positive and then reaches a point where it undesirably changes the sign again to

negative until the solution blows down at large r. BSIDPA identifies when that happens and fits

an exponential tail starting from a few grid points before. Note that this identification happens
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on top of another condition: if the value of the scalar field is φ0(r) ≤ 10−5φ0(0) then a tail is fit

even if the concavity sign has not changed yet. Unless the user specifies otherwise, it tries first to

fit the smoothest possible tail to φ0(r) and its spatial derivative Φ0(r). In case of failure the other

two cases are tried in sequence. The last tail option is simply an exponential and has never fail

to fit so far. a(r) and α(r) are approximated after the point the tail is fit by use of the formula

for mass aspect function, equation (2.260), and their limiting values to the Schwarzschild metric

components, equations (2.257) and (2.258). Once the tail is incorporated to the solution, the values

of ω and α(r) are rescaled according to formulas (2.263) and (2.265). The code returns then the

solution of the system: a(r), α(r), φ0(r) and Φ0(r), along with the derived quantities mass aspect

function m(r) and compactness function z(r) = 2m(r)/r. The rescaled value of ω, wresca, is also

returned.

Table A.1 show some values of the eigenfrequency calculated with BSIDPA for a family of

spherically symmetric solutions parametrized by the central field value φ0(0) in the case of mini-

boson stars. Table A.2 collects some properties refering to the mini-boson star solutions. More

specifically it shows where the cut-off radius is and how the mass aspect function changes in that

region. Also the ADM mass and the star radius are tabulated for several different values of the

central field value φ0(0). Note that the contribution of the tail for the total star mass is negligible.

Table A.3, on the other hand, tabulates the maxima and minima of some metric components and,

more interestingly, the compactness function z(r). One way of interpret those results is to take as

reference the same value for a black-hole. In this case max z(r) = 1 and rmax z = Rsch. Therefore

as the star becomes more and more compact max z(r) approaches its maximum possible value at

the coordinate radius tending to the Schwarzschild radius.

φ0 wshoot wresca
0.005 1.01173913657665 0.987921656870952
0.006 1.01414229214191 0.985551416322374
0.007 1.01656427949667 0.983196152260810
0.008 1.01900526873767 0.980855788252950
0.009 1.02146543309092 0.978530270851457
0.01 1.02394494622946 0.976219519074950
0.02 1.04984409445897 0.953910295230613
0.03 1.07788555219769 0.933010708580807
0.04 1.10828046126291 0.913467522154004
0.05 1.14126635619905 0.895235350281201
0.06 1.17711107464507 0.878276194485022
0.07 1.21611731750891 0.862559036385476
0.08 1.25862797105685 0.848059515066944
0.09 1.30503232180141 0.834759601661149

Table A.1: Mini-boson star central scalar field values and its eigenfrequencies ω. This table shows
the values of ω, either its shooting value wshoot or its rescaled value wresca, for several
values for the central scalar field values. The parameters used to obtain these values
were all the defaults except for: n = 216 + 1, rmax = 100 and dr = 10−4. Also the
self-interaction coupling constants for mini-boson stars are just p2 = 1.0 and pi = 0
for all i 6= 2.
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φ0 rcut−off dm/dr|rcut−off
MADM R99

0.005 91.12 1.34×10−9 0.2646 35.78
0.006 81.42 1.13×10−9 0.2878 32.58
0.007 73.58 1.56×10−9 0.3086 30.09
0.008 71.63 0.84×10−9 0.3275 28.08
0.009 65.72 0.92×10−9 0.3449 26.40
0.01 63.85 1.22×10−9 0.3609 24.99
0.02 45.50 2.06×10−9 0.4751 17.26
0.03 36.62 2.62×10−9 0.5424 13.77
0.04 31.99 3.25×10−9 0.5844 11.67
0.05 28.39 3.94×10−9 0.6103 10.22
0.06 25.44 4.83×10−9 0.6251 9.148
0.07 23.74 5.38×10−9 0.6319 8.311
0.08 22.16 5.99×10−9 0.6327 7.637
0.09 20.84 7.21×10−9 0.6290 7.081

Table A.2: Mini-boson star properties: tail, mass and radius. This table shows where the scalar
field tail was fit, rcut−off , the fraction of the total mass change around that re-
gion, dm/dr|rcut−off

, the ADM mass of the star, MADM and the radius containg
99%MADM . The parameters used to obtain these values were the same as table A.1
Note that the change in mass around rcut−off is very small. Therefore the increment
in the ADM mass due to the tail is negligible.

φ0 minα(r) maxψ(r) max z(r) rmax z Rsch
0.005 0.9764 1.0111 0.0207 19.03 0.529
0.006 0.9718 1.0134 0.0248 17.32 0.575
0.007 0.9672 1.0157 0.0288 15.98 0.617
0.008 0.9626 1.0180 0.0328 14.90 0.655
0.009 0.9580 1.0203 0.0367 14.00 0.690
0.01 0.9534 1.0226 0.0406 13.24 0.722
0.02 0.9086 1.0454 0.0780 9.05 0.950
0.03 0.8656 1.0678 0.1124 7.14 1.085
0.04 0.8242 1.0898 0.1441 5.98 1.169
0.05 0.7844 1.1114 0.1734 5.17 1.220
0.06 0.7461 1.1325 0.2004 4.56 1.250
0.07 0.7093 1.1532 0.2253 4.08 1.264
0.08 0.6738 1.1735 0.2483 3.69 1.265
0.09 0.6397 1.1933 0.2694 3.36 1.258

Table A.3: Mini-boson star properties: metric components maxima and minima. This table
shows the minimum value for the lapse function minα(r), the maximum value for the
conformal factor, maxψ(r) and the maximum of the compactness function max z(r)
and where it occurs, rmax z. For comparison, the Schwarzschild radius of the star,
Rsch, is also tabulated. The parameters used to obtain these values were the same
as table A.1. Note that as the central field value increases the radius in which z(r)
reaches its maximum decreases and approaches more and more the star Schwarzschild
radius. A black-hole is formed once they coincide.
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APPENDIX B

STENCIL DERIVATION

The derivation of the finite difference operators or stencils, their pictorial equivalent, is usually

achieved by Taylor series expansion of the PDE continuum solution u. In order to simplify the

discussion, this section restricts its attention to one dimensional operators only1. The continuum

solution evaluated at the grid points xi is denoted by u(xi) ≡ ui. On the other hand, the discrete

solution uh at the grid location i is labelled as uhi .

To begin with, consider the general form of a finite difference operator Lh approximating an ar-

bitrary constant-coefficient differential operator L. Let Lh act at a grid function uhi . The expression

for this FDA is simply defined to be a weighted sum of neighbour grid functions:

Lhuhi ≡ σ

j=jmax
∑

j=jmin

cju
h
i+j , (B.1)

where σ, jmin, jmax and cjmin
. . . cjmax

are attributes of the finite difference operator Lh and can

be defined as follows:

1. The integers jmin and jmax define the limits of the stencil, i.e. the extension in which

neighbour grid functions are used to define the discrete operator. The total width of the

stencil is then given by jmax − jmin + 1 and it is also called stencil diameter. Whenever

jmin = −jmax, the FDA is said to be centred. It is called off-centred otherwise.

2. The relative weights of the unknowns uhi+j , the cjmin
. . . cjmax

, are integer coefficients.

3. σ is an overall scale factor of the form 1/(κhm), where m is the order of the differential

operator being approximated and κ an integer chosen in order to guarantee that all cj are

integers.

As a means to determine which differential operator is approximated by Lh for a given set of

coefficients cj , each uhi in (B.1) should be replaced by its continuum counterpart evaluated at the

different grid positions, ui+j , and Taylor expanded around the grid point x = xi:

Lhuhi ≡ σ

j=jmax
∑

j=jmin

cjui+j = σ

j=jmax
∑

j=jmin

cj

[

∞
∑

k=0

u
(k)
i

k!
(xj − xi)

k

]

= σ

j=jmax
∑

j=jmin

cj

[

∞
∑

k=0

u
(k)
i

k!
(jh)k

]

, (B.2)

where u
(k)
i ≡ dku(x)/dxk|x=xi

and u
(0)
i ≡ u(xi). Regrouping the terms in (B.2), the approximation

becomes:

1Higher order operators can be obtained by applying the same techniques exposed here at each dimension at a
time.



APPENDIX B. STENCIL DERIVATION 161

Lhuhi ≡ σ

j=jmax
∑

j=jmin

cj

[

∞
∑

k=0

u
(k)
i

k!
(jh)k

]

= σ

∞
∑

k=0

u
(k)
i

k!
hk





j=jmax
∑

j=jmin

jkcj



 = σ

∞
∑

k=0

u
(k)
i

k!
hkSk. (B.3)

Suppose one wishes to find a O(hp) finite difference approximation to a m-th order differential

operator, i.e. to find cj and σ in (B.1) such that Lhuhi = dmu/dxm + O(hp). In order for that to

happen all the coefficients in the series (B.3) that are not multiplying u
(m)
i or the terms containing

hm+p or higher order in h must vanish. As a result all the m sums present in the sum over k in

(B.3) such that k < m must vanish, i.e. Sk = 0 for k < m, the mth term has to be adjusted to

Sm = m!/(σhm), and finally all the other p−1 sums must also vanish, i.e. Sk = 0 form < k < m+p.

Thus there arem+p equations for the sums of the cj coefficients, Sk. As a consequence, the number

of required non-zero coefficients cj to obtain a determined system of linear equations should be

also m + p or in other words, jmax − jmin + 1 = m + p. The linear system is solved then for the

coefficients cj and the FDA is built through the sum (B.1).

As an explicit example, suppose one is looking for a centred second order approximation to the

second order differential operator or Lhuhi = d2u/dx2+O(h2). According to the counting argument

exposed in the last paragraph, jmax − jmin + 1 = m + p = 4. However since for centred stencils

jmin = −jmax then jmax = 3/2 in order to satisfy the counting argument. The integer fraction has

actually to be truncated to jmax = 1. This example is good to illustrate what happens when one

estimates a centred stencil diameter using the reasoning of the previous paragraph. The otherwise

correct stencil diameter of (m+ p =) 4 is actually reduced to (m+ p− 1 =) 3 for centred stencils.

The reason for that comes from the symmetry between the terms in Sk. It is possible to show

in general that cj = ±c−j for centred approximations, with the sign depending on the derivative

order m being even or odd. This eliminates the need for one of the equations Sk for k odd, i.e. one

equation for k odd is equivalent to any of the other k-odd equations. Carrying on with the example,

the possible cj are then c−1, c0 and c1 and the system of linear equations becomes (according to

the expected counting):

S0 ≡ c−1 + c0 + c1 = 0, (B.4)

S1 ≡ (−1)c−1 + (0)c0 + (1)c1 = 0, (B.5)

S2 ≡ (−1)2c−1 + (0)2c0 + (1)2c1 =
2!

σh2
, (B.6)

S3 ≡ (−1)3c−1 + (0)3c0 + (1)3c1 = 0. (B.7)

It is evident that S3 ≡ S1 and the system reduces to 3 equations for 3 unknowns. The solution of

this linear system results in c−1 = c1 = 1/(σh2) and c0 = −2/(σh2) where σ = 1/h2 can be read

from this solution according to the definition of σ. Inserting these values on the sum S4 one can

find explicitly the leading order term of the approximation. As a result the FDA can be written

to leading order in h as:
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Lhuhi ≡ uhi−1 − 2uhi + uhi+1

h2
≈ d2u(x)

dx2

∣

∣

∣

∣

x=xi

+
h2

12

d4u(x)

dx4

∣

∣

∣

∣

x=xi

. (B.8)

Once the finite difference operators are derived to the order of accuracy desired, to discretize a

PDE is simply a matter of substituting all differential operators on functions by their correspondent

finite difference operators acting on the grid functions instead. Each function is also replaced by

its grid function approximation. The order of accuracy of the whole scheme depends then on the

lowest order of the finite difference operators employed on the discretization.

App. C introduces a set of Maple procedures written by the author with the intention of

automate the derivation of finite difference operators of any order and the subsequent discretization

of partial differential equations of any order as well. Several examples illustrate how to use the

procedures at the same time that output the most commonly used finite difference operators. A

couple of PDEs are also discretized in order to demonstrate the flexibility of these routines. Please

refer to App. C for more details.
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APPENDIX C

PDEFDAOFF - PDE DISCRETIZATION MAPLE
PROCEDURE

This appendix describes the use of the package PDEFDAOFF (that stands for Partial Differen-

tial Equation to Finite Difference Aproximation using OFF-centered and centered approximation

schemes). This package is a set of MAPLE procedures written by the author to assist on the

translation of the PDEs describing the equations of motion into a discrete form convenient for

numerical computation. This appendix consists of two main sections. Each of them describes

through examples the use of the two main procedures contained in the package, ‘dfdandoff ’ and

‘resndoff ’. The examples were extracted straight from the MAPLE demo worksheet included in

the distribution[146].

C.1 Finite difference approximation to n-dimensional

differential operators

C.1.1 Introduction

‘dfdandoff ’ is a maple procedure to finite difference a differential operator of a function of an

arbitrary number of coordinates. It returns a finite difference approximation to O(hp) for all

coordinates, where p records the order of accuracy of the difference scheme required and it is

user specified. This procedure returns both centered and off-centered finite difference schemes1.

The rationale behind the procedure name is the following: d stants for differential, fda for finite

difference approximation, nd for n dimensional functions and off to remind that this procedure

also calculates off-centered schemes.

To load the package just open a MAPLE session and type:

> restart;

> read PDEFDAOFF:

C.1.2 Differential operators on 1D functions

The first argument of dfdandoff must be a function. The reason for that is that maple returns zero

when it differentiates a symbol/name. It is usual to define an alias for the function and hide its

coordinate dependency in order to make the equations look tidier:

> alias(u=u(x));

u (C.1)

1Historical note: this procedure evolved from ‘dfdand ’ where only centered schemes were calculated.
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The second argument is a list of the independent variables (coordinates) entered in lexicograph-

ical (alphabetical) order. The third argument is a name for the finite difference function. Note that

must be a name (i.e. just a symbol). The forth argument is a list with the names of the indexes

corresponding to each coordinate. The fifth one is a list naming the coordinate spacing between

gridpoints for each coordinate. The sixth one is a list with the order of the differential operator

along each coordinate direction. The seventh one specifies the order of the approximation scheme

and the last one is a list, with each member associated with the respective coordinate, indicating

how off-centered the scheme should be when compared to the centered one. The examples below

should make them clearer.

The first examples are for first order differential operator. As it is evident below the sixth

argument is a list of one element corresponding to only one coordinate and its value is 1 to indicate

a first order differential operator. In the first three examples the seventh argument assumes the

value 1 to represent first order schemes, i.e. O(hx). Note that if one naively try to find a first order

centered scheme, entering the value 0 in the last argument, the procedure returns:

> dfdandoff(u,[x],ud,[i],[hx],[1],1,[0]);

Error, (in dfdandoff) invalid input: rhs received 1, which is not valid for its 1st argument, expr

This is actually not a bug since there is no O(h) centered scheme for first order differential

operators. Therefore the simplest FDA to first order differential operators is given by a backward

or forward scheme (−1 or 1 as the eighth argument):

> dfdandoff(u,[x],ud,[i],[hx],[1],1,[-1]);

∂

∂x
ui = −ud i−1

hx
+

ud i
hx

(C.2)

To verify the correctness of the finite difference operator, meaning the order of convergence of

the FDA, an independent procedure called ‘fdaeval ’ written by Matt Choptuik (and included in

the file ‘PDEFDAOFF’) needs be applied. To do so, the procedure Taylor expand around udi the

right-hand side of the expression above in terms of the mesh spacing (hx in this case) and collect the

terms of the same spacing power. The procedure requires as first argument a rank-1 Maple array

with the coefficients of entering the approximation represented as integers. The second argument

is the overall scale factor that allows all the coefficients to be integers. The last example can be

tested then as:

> abwh:=array(-1..0,[-1,1]);

abwh : = ARRAY (−1..0, [0 = 1,−1 = −1]) (C.3)

> fdaeval(abwh,1/h);

D (u) (x) − 1

2
D(2) (u) (x) h+

1

6
D(3) (u) (x) h2 (C.4)

As expected the backward approximation to the first order differential operator is a first order
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finite difference approximation.

> dfdandoff(u,[x],ud,[i],[hx],[1],1,[1]);

∂

∂x
ui = −ud i

hx
+

ud i+1

hx
(C.5)

> afwh:=array(0..1,[-1,1]):

> fdaeval(afwh,1/h);

D (u) (x) +
1

2
D(2) (u) (x) h+

1

6
D(3) (u) (x) h2 (C.6)

On the other hand, the centered, backward and forward second order approximation and re-

spective checks are given by:

> dfdandoff(u,[x],ud,[i],[hx],[1],2,[0]);

∂

∂x
ui = −1

2

ud i−1

hx
+

1

2

ud i+1

hx
(C.7)

> ach2:=array(-1..1,[-1,0,1]):

> fdaeval(ach2,1/(2*h));

D (u) (x) +
1

6
D(3) (u) (x)h2 (C.8)

> dfdandoff(u,[x],ud,[i],[hx],[1],2,[-1]);

∂

∂x
ui =

1

2

ud i−2

hx
− 2

ud i−1

hx
+

3

2

ud i
hx

(C.9)

> abwh2:=array(-2..0,[1,-4,3]):

> fdaeval(abwh2,1/(2*h));

D (u) (x) − 1

3
D(3) (u) (x)h2 +

1

4
D(4) (u) (x)h3 (C.10)

> dfdandoff(u,[x],ud,[i],[hx],[1],2,[1]);

∂

∂x
ui = −3

2

ud i
hx

+ 2
ud i+1

hx
− 1

2

ud i+2

hx
(C.11)

> afwh2:=array(0..2,[-3,4,-1]):

> fdaeval(afwh2,1/(2*h));

D (u) (x) − 1

3
D(3) (u) (x)h2 − 1

4
D(4) (u) (x)h3 (C.12)

The seven examples below are supposed to elucidate what the last function argument means.

Let i represent a generic point of the grid where the Taylor expansion is done and let j represent
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an index to determine how off-centered the scheme is. For j = 0 the scheme is centered. For j = 1

the sheme is centered at i+ 1 and thus off-centered by 1 grid point. For the examples below the

maximum allowed is j = 2 since the scheme is supposed to reference the grid point i.

> dfdandoff(u,[x],ud,[i],[hx],[1],4,[0]);

∂

∂x
ui =

1

12

ud i−2

hx
− 2

3

ud i−1

hx
+

2

3

ud i+1

hx
− 1

12

ud i+2

hx
(C.13)

> ach4:=array(-2..2,[1,-8,0,8,-1]):

> fdaeval(ach4,1/(12*h));

D (u) (x) − 1

30
D(5) (u) (x)h4 (C.14)

> dfdandoff(u,[x],ud,[i],[hx],[1],4,[-1]);

∂

∂x
ui = − 1

12

ud i−3

hx
+

1

2

ud i−2

hx
− 3

2

ud i−1

hx
+

5

6

ud i
hx

+
1

4

ud i+1

hx
(C.15)

> abw1h4:=array(-3..1,[-1,6,-18,10,3]):

> fdaeval(abw1h4,1/(12*h));

D (u) (x) +
1

20
D(5) (u) (x)h4 − 1

24
D(6) (u) (x) h5 (C.16)

> dfdandoff(u,[x],ud,[i],[hx],[1],4,[1]);

∂

∂x
ui = −1

4

ud i−1

hx
− 5

6

ud i
hx

+
3

2

ud i+1

hx
− 1

2

ud i+2

hx
+

1

12

ud i+3

hx
(C.17)

> afw1h4:=array(-1..3,[-3,-10,18,-6,1]):

> fdaeval(afw1h4,1/(12*h));

D (u) (x) +
1

20
D(5) (u) (x)h4 +

1

24
D(6) (u) (x) h5 (C.18)

> dfdandoff(u,[x],ud,[i],[hx],[1],4,[-2]);

∂

∂x
ui =

1

4

ud i−4

hx
− 4

3

ud i−3

hx
+ 3

ud i−2

hx
− 4

ud i−1

hx
+

25

12

ud i
hx

(C.19)

> abw2h4:=array(-4..0,[3,-16,36,-48,25]):

> fdaeval(abw2h4,1/(12*h));

D (u) (x) − 1

5
D(5) (u) (x)h4 +

1

3
D(6) (u) (x)h5 (C.20)

> dfdandoff(u,[x],ud,[i],[hx],[1],4,[2]);
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∂

∂x
ui = −25

12

ud i
hx

+ 4
ud i+1

hx
− 3

ud i+2

hx
+

4

3

ud i+3

hx
− 1

4

ud i+4

hx
(C.21)

> afw2h4:=array(0..4,[-25,48,-36,16,-3]):

> fdaeval(afw2h4,1/(12*h));

D (u) (x) − 1

5
D(5) (u) (x)h4 − 1

3
D(6) (u) (x)h5 (C.22)

The last two examples for this differential operator illustrate the fact that if the user try to use

a value of j large enough to center the scheme outside the allowed range, i.e. such that it includes

the grid i. In these two cases below it just returns the scheme centered at the maximum possible

value, i− 2 and i+ 2:

> dfdandoff(u,[x],ud,[i],[hx],[1],4,[-3]);

∂

∂x
ui =

1

4

ud i−4

hx
− 4

3

ud i−3

hx
+ 3

ud i−2

hx
− 4

ud i−1

hx
+

25

12

ud i
hx

(C.23)

> dfdandoff(u,[x],ud,[i],[hx],[1],4,[3]);

∂

∂x
ui = −25

12

ud i
hx

+ 4
ud i+1

hx
− 3

ud i+2

hx
+

4

3

ud i+3

hx
− 1

4

ud i+4

hx
(C.24)

The next three examples refers to second order approximation to a second order differential

operator. The examples are for centered, forward and backward schemes respectively:

> dfdandoff(u,[x],ud,[i],[hx],[2],2,[0]);

∂2

∂x2
ui =

ud i−1

hx 2 − 2
ud i

hx 2 +
ud i+1

hx 2 (C.25)

> a2ch2:=array(-1..1,[1,-2,1]):

> fdaeval(a2ch2,1/(h**2));

D(2) (u) (x) +
1

12
D(4) (u) (x) h2 (C.26)

> dfdandoff(u,[x],ud,[i],[hx],[2],2,[1]);

∂2

∂x2
ui = 2

ud i

hx 2 − 5
ud i+1

hx 2 + 4
ud i+2

hx 2 − ud i+3

hx 2 (C.27)

> a2fw1h2:=array(0..3,[2,-5,4,-1]):

> fdaeval(a2fw1h2,1/(h**2));

D(2) (u) (x) − 11

12
D(4) (u) (x)h2 − D(5) (u) (x)h3 (C.28)

> dfdandoff(u,[x],ud,[i],[hx],[2],2,[-1]);
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∂2

∂x2
ui = −ud i−3

hx 2 + 4
ud i−2

hx 2 − 5
ud i−1

hx 2 + 2
ud i

hx 2 (C.29)

> a2bw1h2:=array(-3..0,[-1,4,-5,2]):

> fdaeval(a2bw1h2,1/(h**2));

D(2) (u) (x) − 11

12
D(4) (u) (x)h2 + D(5) (u) (x)h3 (C.30)

Turning the attention to the forth order approximation to a second order differential operator:

> dfdandoff(u,[x],ud,[i],[hx],[2],4,[0]);

∂2

∂x2
ui = − 1

12

ud i−2

hx 2 +
4

3

ud i−1

hx 2 − 5

2

ud i

hx 2 +
4

3

ud i+1

hx 2 − 1

12

ud i+2

hx 2 (C.31)

> a2ch4:=array(-2..2,[-1,16,-30,16,-1]):

> fdaeval(a2ch4,1/(12*h**2));

D(2) (u) (x) − 1

90
D(6) (u) (x) h4 (C.32)

Note that on the following example the approximation is not totally backward. These kind of

operators may be useful to set for regions of the domain very close to the boundaries.

> dfdandoff(u,[x],ud,[i],[hx],[2],4,[-1]);

∂2

∂x2
ui =

1

12

ud i−4

hx 2 − 1

2

ud i−3

hx 2 +
7

6

ud i−2

hx 2 − 1

3

ud i−1

hx 2 − 5

4

ud i

hx 2 +
5

6

ud i+1

hx 2 (C.33)

> a2bw1h4:=array(-4..1,[1,-6,14,-4,-15,10]):

> fdaeval(a2bw1h4,1/(12*h**2));

D(2) (u) (x) +
13

180
D(6) (u) (x) h4 − 1

12
D(7) (u) (x)h5 (C.34)

> dfdandoff(u,[x],ud,[i],[hx],[2],4,[1]);

∂2

∂x2
ui =

5

6

ud i−1

hx 2 − 5

4

ud i

hx 2 − 1

3

ud i+1

hx 2 +
7

6

ud i+2

hx 2 − 1

2

ud i+3

hx 2 +
1

12

ud i+4

hx2 (C.35)

> a2fw1h4:=array(-1..4,[10,-15,-4,14,-6,1]):

> fdaeval(a2fw1h4,1/(12*h**2));

D(2) (u) (x) +
13

180
D(6) (u) (x) h4 +

1

12
D(7) (u) (x)h5 (C.36)

On the other hand a fully forward operator version would be like:

> dfdandoff(u,[x],ud,[i],[hx],[2],4,[2]);
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∂2

∂x2
ui =

15

4

ud i

hx 2 − 77

6

ud i+1

hx 2 +
107

6

ud i+2

hx 2 − 13
ud i+3

hx 2 +
61

12

ud i+4

hx 2 − 5

6

ud i+5

hx 2 (C.37)

> a2fw2h4:=array(0..5,[45,-154,214,-156,61,-10]):

> fdaeval(a2fw2h4,1/(12*h**2));

D(2) (u) (x) − 137

180
D(6) (u) (x) h4 − 19

12
D(7) (u) (x)h5 (C.38)

C.1.3 Higher order differential operators on 1D functions O(h2)

In order to illustrate the versatility of the present procedure, some higher order differential operators

are shown below with their respective independent check for correctness. Despite the appearance

of such operators are rare, they are still present on some important equations in mathematics and

enginnering.

> dfdandoff(u,[x],ud,[i],[hx],[4],2,[0]);

∂4

∂x4
ui =

ud i−2

hx 4 − 4
ud i−1

hx 4 + 6
ud i

hx 4 − 4
ud i+1

hx 4 +
ud i+2

hx 4 (C.39)

> a4ch2:=array(-2..2,[1,-4,6,-4,1]):

> fdaeval(a4ch2,1/h**4);

D(4) (u) (x) +
1

6
D(6) (u) (x) h2 (C.40)

> dfdandoff(u,[x],ud,[i],[hx],[4],2,[-1]);

∂4

∂x4
ui = −ud i−4

hx 4 + 6
ud i−3

hx 4 − 14
ud i−2

hx 4 + 16
ud i−1

hx 4 − 9
ud i

hx 4 + 2
ud i+1

hx 4 (C.41)

> a4bw1h2:=array(-4..1,[-1,6,-14,16,-9,2]):

> fdaeval(a4bw1h2,1/h**4);

D(4) (u) (x) − 5

6
D(6) (u) (x) h2 + D(7) (u) (x)h3 (C.42)

> dfdandoff(u,[x],ud,[i],[hx],[4],2,[-2]);

∂4

∂x4
ui = −2

ud i−5

hx 4 + 11
ud i−4

hx 4 − 24
ud i−3

hx4 + 26
ud i−2

hx 4 − 14
ud i−1

hx 4 + 3
ud i

hx 4 (C.43)

> a4bw2h2:=array(-5..0,[-2,11,-24,26,-14,3]):

> fdaeval(a4bw2h2,1/h**4);

D(4) (u) (x) − 17

6
D(6) (u) (x) h2 + 5 D(7) (u) (x) h3 (C.44)
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> dfdandoff(u,[x],ud,[i],[hx],[3],2,[0]);

∂3

∂x3
ui = −1

2

ud i−2

hx 3 +
ud i−1

hx 3 − ud i+1

hx 3 +
1

2

ud i+2

hx 3 (C.45)

> a3ch2:=array(-2..2,[-1,2,0,-2,1]):

> fdaeval(a3ch2,1/(2*h**3));

D(3) (u) (x) +
1

4
D(5) (u) (x) h2 (C.46)

> dfdandoff(u,[x],ud,[i],[hx],[3],2,[1]);

∂3

∂x3
ui = −3

2

ud i−1

hx 3 + 5
ud i

hx 3 − 6
ud i+1

hx 3 + 3
ud i+2

hx 3 − 1

2

ud i+3

hx 3 (C.47)

> a3fw1h2:=array(-1..3,[-3,10,-12,6,-1]):

> fdaeval(a3fw1h2,1/(2*h**3));

D(3) (u) (x) − 1

4
D(5) (u) (x) h2 − 1

4
D(6) (u) (x) h3 (C.48)

> dfdandoff(u,[x],ud,[i],[hx],[3],2,[2]);

∂3

∂x3
ui = −5

2

ud i

hx3 + 9
ud i+1

hx 3 − 12
ud i+2

hx3 + 7
ud i+3

hx3 − 3

2

ud i+4

hx 3 (C.49)

> a3fw2h2:=array(0..4,[-5,18,-24,14,-3]):

> fdaeval(a3fw2h2,1/(2*h**3));

D(3) (u) (x) − 7

4
D(5) (u) (x) h2 − 5

2
D(6) (u) (x) h3 (C.50)

C.1.4 Differential operators on 2D functions

This section illustrate the application of the discretization procedure on 2 dimensional functions.

> alias(v=v(x,y));

u, v (C.51)

First remember that the coordinates should be entered in lexicographic order. If one tries

otherwise it returns the following error:

> dfdandoff(v,[y,x],vd,[j,i],[hy,hx],[1,1],2,[0,0]);

Error, (in dfdandoff) Coordinate list, 2nd argument, must be entered in lexicographical order.

The command sort can help you to decide if you entered in lexicographic order or not:

> sort([y,x],‘lexorder’);

[x, y] (C.52)
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> dfdandoff(v,[x,y],vd,[i,j],[hx,hy],[1,1],2,[0,0]);

∂2

∂x∂y
vi,j =

1

4

vd i−1,j−1

hx hy
− 1

4

vd i−1,j+1

hx hy
− 1

4

vd i+1,j−1

hx hy
+

1

4

vd i+1,j+1

hx hy
(C.53)

Note that for each dimension a centered scheme is evaluated in the corresponding coordinate

direction. This totally centered scheme may not be the way to go for higher dimensions in general

but at least can be used to verify if a numerical solution satisfies the differential operator to the

order prescribed, i.e. it may be a building block for an independent residual evaluator.

Most of the time the boundary conditions and regions of the domain close to the boundaries

require a modification of the approximation scheme. The following examples demonstrate some of

the possibilities for these changes:

> dfdandoff(v,[x,y],vd,[i,j],[hx,hy],[1,0],2,[1,0]);

∂

∂x
vi,j = −3

2

vd i,j
hx

+ 2
vd i+1,j

hx
− 1

2

vd i+2,j

hx
(C.54)

> dfdandoff(v,[x,y],vd,[i,j],[hx,hy],[1,1],2,[1,0]);

∂2

∂x∂y
vi,j =

3

4

vd i,j−1

hx hy
− 3

4

vd i,j+1

hx hy
− vd i+1,j−1

hx hy
+

vd i+1,j+1

hx hy
+

1

4

vd i+2,j−1

hx hy
− 1

4

vd i+2,j+1

hx hy
(C.55)

> dfdandoff(v,[x,y],vd,[i,j],[hx,hy],[1,1],2,[1,-1]);

∂2

∂x∂y
vi,j = −3

4

vd i,j−2

hx hy
+ 3

vd i,j−1

hx hy
− 9

4

vd i,j
hx hy

+
vd i+1,j−2

hx hy

− 4
vd i+1,j−1

hx hy
+ 3

vd i+1,j

hx hy
− 1

4

vd i+2,j−2

hx hy
+

vd i+2,j−1

hx hy
− 3

4

vd i+2,j

hx hy
(C.56)

> dfdandoff(v,[x,y],vd,[i,j],[hx,hy],[0,2],2,[0,1]);

∂2

∂y2
vi,j = 2

vd i,j

hy2 − 5
vd i,j+1

hy2 + 4
vd i,j+2

hy2 − vd i,j+3

hy2 (C.57)

The error below comes from [0, 0] input. The focus of the procedure is on differential operators.

Therefore at least one first order derivative is needed to avoid erroneous output.

> dfdandoff(v,[x,y],vd,[i,j],[hx,hy],[0,0],2,[1,-1]);

Error, (in dfdandoff) invalid input: diff expects 2 or more arguments, but received 1

As one last remark, the names of the various symbols are quite arbitrary:

> dfdandoff(v,[x,y],vd,[n,m],[h,h],[1,1],2,[0,0]);

∂2

∂x∂y
vn,m =

1

4

vdn−1,m−1

h2
− 1

4

vdn−1,m+1

h2
− 1

4

vdn+1,m−1

h2
+

1

4

vdn+1,m+1

h2
(C.58)
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C.1.5 Differential operators on 3D and higher dimensional functions

A couple of examples to illustrate the use of the procedure on 3d functions:

> alias(w=w(x,y,z));

u, v, w (C.59)

> dfdandoff(w,[x,y,z],wd,[i,j,k],[hx,hy,hz],[0,0,1],2,[1,0,1]);

∂

∂z
wi,j,k = −3

2

wd i,j,k
hz

+ 2
wd i,j,k+1

hz
− 1

2

wd i,j,k+2

hz
(C.60)

> dfdandoff(w,[x,y,z],wd,[i,j,k],[hx,hy,hz],[0,0,1],2,[0,0,1]);

∂

∂z
wi,j,k = −3

2

wd i,j,k
hz

+ 2
wd i,j,k+1

hz
− 1

2

wd i,j,k+2

hz
(C.61)

> dfdandoff(w,[x,y,z],wd,[i,j,k],[hx,hy,hz],[1,1,1],2,[1,0,1]);

∂3

∂y∂x∂z
wi,j,k = −3

8

wd i+2,j−1,k

hx hy hz
− 1

8

wd i+2,j−1,k+2

hx hy hz
+

1

2

wd i+2,j−1,k+1

hx hy hz

+
3

2

wd i+1,j−1,k

hx hy hz
− 2

wd i+1,j−1,k+1

hx hy hz
+

1

2

wd i+1,j−1,k+2

hx hy hz
− 3

2

wd i+1,j+1,k

hx hy hz

+ 2
wd i+1,j+1,k+1

hx hy hz
− 1

2

wd i+1,j+1,k+2

hx hy hz
+

3

8

wd i+2,j+1,k

hx hy hz
− 1

2

wd i+2,j+1,k+1

hx hy hz

+
1

8

wd i+2,j+1,k+2

hx hy hz
+

9

8

wd i,j+1,k

hx hy hz
− 3

2

wd i,j+1,k+1

hx hy hz
+

3

8

wd i,j+1,k+2

hx hy hz

− 9

8

wd i,j−1,k

hx hy hz
+

3

2

wd i,j−1,k+1

hx hy hz
− 3

8

wd i,j−1,k+2

hx hy hz
(C.62)

and to higher dimensional functions; as high as the memory resources allow:

> alias(f=f(t,x,y,z));

u, v, w, f (C.63)

> dfdandoff(f,[t,x,y,z],fd,[l,i,j,k],[h,h,h,h],[1,1,1,1],2,[0,0,0,0]);

∂4

∂y∂x∂t∂z
fl,i,j,k = − 1

16

fd l−1,i+1,j+1,k+1

h4
+

1

16

fd l−1,i+1,j+1,k−1

h4
− 1

16

fd l+1,i+1,j+1,k−1

h4

+
1

16

fd l+1,i+1,j+1,k+1

h4
+

1

16

fd l+1,i−1,j+1,k−1

h4
− 1

16

fd l+1,i−1,j+1,k+1

h4
+

1

16

fd l−1,i−1,j+1,k+1

h4

− 1

16

fd l−1,i−1,j+1,k−1

h4
− 1

16

fd l−1,i+1,j−1,k−1

h4
+

1

16

fd l−1,i+1,j−1,k+1

h4
− 1

16

fd l+1,i+1,j−1,k+1

h4

− 1

16

fd l−1,i−1,j−1,k+1

h4
+

1

16

fd l−1,i−1,j−1,k−1

h4
+

1

16

fd l+1,i+1,j−1,k−1

h4
+

1

16

fd l+1,i−1,j−1,k+1

h4

− 1

16

fd l+1,i−1,j−1,k−1

h4
(C.64)
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C.2 Residual evaluator for n-dimensional PDEs

C.2.1 Introduction

‘resndoff’ is a Maple procedure deviced to evaluate residual equations from a multidimensional,

multi-order partial differential differential equation. This routine was initially devised with elliptic

PDEs in mind, i.e. devised to return its discrete equation version, the residual equation. Nonethe-

less it can in principle handle time dependent PDE as well. The finite difference equations returned

may not be appropriated to solve the equations though. For example, when using a centered scheme

in time it returns an equation referencing only point at t− dt and t+ dt, while for time dependent

PDEs one of the most convenient method, the Crank-Nicholson method, is centered at the mid

point in time, i.e. at t+dt/2. Still this procedure can return a finite difference equation appropriate

to evaluate independently the residual of the discrete version of the differential equation.

The use of ‘resndoff’ is illustraded below for non-linear Poisson equations in different dimensions.

The advection equation in 1D is taken as a simple case study of time-dependent PDE.

C.2.2 Poisson equation in 1D

> alias(u=u(x),f=f(x));

u, v, w, f (C.65)

> POI1D:=diff(u,x$2)+sigma*u**2=f;

POI1D :=
d2

dx2
u+ σ u2 = f (C.66)

> RES POI1D:=resndoff(POI1D,[u,f],[x],[ud,fd],[i],[h],2,[0]);

RES POI1D :=
ud i−1

h2
− 2

ud i
h2

+
ud i+1

h2
+ σ ud i

2 − fd i = 0 (C.67)

The first argument is the equation to be discretized. The second is a list of the functions

appearing in that equation. The third is a list of the coordinates in alphabetical (lexicographical)

order. The fourth is a list with the names of the the functions defined only on the mesh points (see

‘dfdandoff’ above). The fifth one is a list with the names of the finite difference indexes. The sixth

one is a list of names for coordinate spacings for each of the coordinates. The seventh argument is

the order of the finite difference scheme. At last, the list indicating whether or not the scheme is

centered or off-centered along a particular coordinate. For example, the same equation but with a

backward scheme:

> resndoff(POI1D,[u,f],[x],[ud,fd],[i],[hx],2,[-1]);

−ud i−3

hx 2 + 4
ud i−2

hx 2 − 5
ud i−1

hx2 + 2
ud i

hx 2 + σ ud i
2 − fd i = 0 (C.68)

If you don’t like the fact the continuum function and its discrete version have different names,
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you can always, after the residual equation is written, unalias and rewrite the residual equation

with the continuum function names:

> alias(u=u,f=f);

v, w (C.69)

> RES POI1D:=subs(ud=u,fd=f,RES POI1D);

RES POI1D :=
ui−1

h2
− 2

ui
h2

+
ui+1

h2
+ σ ui

2 − fi = 0 (C.70)

C.2.3 Poisson equation in 2D

Poisson equation in 2D for centered schemes: > alias(u=u(x,y),f=f(x,y));

v, w, u, f (C.71)

> POI2D:=diff(u,x$2)+diff(u,y$2)+sigma*u**2=f;

POI2D :=
∂2

∂x2
u+

∂2

∂y2
u+ σ u2 = f (C.72)

> resndoff(POI2D,[u,f],[x,y],[ud,fd],[i,j],[hx,hy],2,[0,0]);

ud i−1,j

hx 2 − 2
ud i,j

hx 2 +
ud i+1,j

hx 2 +
ud i,j−1

hy2 − 2
ud i,j

hy2 +
ud i,j+1

hy2 + σ ud i,j
2 − fd i,j = 0 (C.73)

The same equation but in a form convenient to be applied at the right edge of the 2D domain:

> resndoff(POI2D,[u,f],[x,y],[ud,fd],[i,j],[hx,hy],2,[-1,0]);

−ud i−3,j

hx 2 +4
ud i−2,j

hx 2 −5
ud i−1,j

hx 2 +2
ud i,j

hx 2 +
ud i,j−1

hy2 −2
ud i,j

hy2 +
ud i,j+1

hy2 +σ ud i,j
2−fd i,j = 0 (C.74)

To illustrate the versatility of the procedure consider the following example where mixed deriva-

tives, non-constant and non-linear terms are present:

> alias(u=u(x,y),v=v(x,y));

v, w, u (C.75)

> EQN:=diff(u,x,y)=(1-x)*(1-y)*u**4*diff(u,y)*diff(v,x$2)-v*diff(u,x)*x;

EQN :=
∂2

∂x∂y
u = (1 − x) (1 − y)u4

(

∂

∂y
u

)

∂2

∂x2
v (t, r) − v (t, r)

(

d

dx
u

)

x (C.76)
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> resndoff(EQN,[u,v],[x,y],[ud,vd],[i,j],[h,h],2,[0,0]);

1

4

ud i−1,j−1

h2
− 1

4

ud i−1,j+1

h2
− 1

4

ud i+1,j−1

h2
+

1

4

ud i+1,j+1

h2

− (1 − xi) (1 − yj) ud i,j
4

(

−1

2

ud i,j−1

h
+

1

2

ud i,j+1

h

)(

vd i−1,j

h2
− 2

vd i,j
h2

+
vd i+1,j

h2

)

+ vd i,j

(

−1

2

ud i−1,j

h
+

1

2

ud i+1,j

h

)

xi = 0 (C.77)

C.2.4 Poisson equation in 3D

> alias(u=u(x,y,z),f=f(x,y,z));

w, u, f (C.78)

> POI3D:=diff(u,x$2)+diff(u,y$2)+diff(u,z$2)+sigma*u**2=f;

POI3D :=
∂2

∂x2
u+

∂2

∂y2
u+

∂2

∂z2
u+ σ u2 = f (C.79)

> resndoff(POI3D,[u,f],[x,y,z],[ud,fd],[i,j,k],[h,h,h],2,[0,0,0]);

ud i−1,j,k

h2
−6

ud i,j,k
h2

+
ud i+1,j,k

h2
+

ud i,j−1,k

h2
+

ud i,j+1,k

h2
+

ud i,j,k−1

h2
+

ud i,j,k+1

h2
+σ ud i,j,k

2−fd i,j,k = 0

(C.80)

C.2.5 Poisson equation in 3D compactified cartesian coordinates

> alias(u=u(chi,eta,zeta),f=f(chi,eta,zeta));

w, u, f (C.81)

> POI3DCP:=(1-chi**2)*diff((1-chi**2)*diff(u,chi),chi)+(1-eta**2)*diff((1-eta**2)*diff(u,eta),eta)

+(1-zeta**2)*diff((1-zeta**2)*diff(u,zeta),zeta)+sigma*u**2=f;

(

1 − χ2
)

(

−2χ
d

dχ
u+

(

1 − χ2
) d2

dχ2
u

)

+
(

1 − η2
)

(

−2 η
d

dη
u+

(

1 − η2
) d2

dη2
u

)

+
(

1 − ζ2
)

(

−2 ζ
d

dζ
u+

(

1 − ζ2
) d2

dζ2
u

)

+ σ u2 = f (C.82)
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> resndoff(POI3DCP,[u,f],[chi,eta,zeta],[ud,fd],[i,j,k],[hx,hy,hz],2,[0,0,0]);

(

1 − χi
2
)

[

−2χi

(

−1

2

ud i−1,j,k

hx
+

1

2

ud i+1,j,k

hx

)

+
(

1 − χi
2
)

(

ud i−1,j,k

hx 2 − 2
ud i,j,k

hx 2 +
ud i+1,j,k

hx 2

)]

+
(

1 − ηj
2
)

[

−2 ηj

(

−1

2

ud i,j−1,k

hy
+

1

2

ud i,j+1,k

hy

)

+
(

1 − ηj
2
)

(

ud i,j−1,k

hy2 − 2
ud i,j,k

hy2 +
ud i,j+1,k

hy2

)]

+
(

1 − ζk
2
)

[

−2 ζk

(

−1

2

ud i,j,k−1

hz
+

1

2

ud i,j,k+1

hz

)

+
(

1 − ζk
2
)

(

ud i,j,k−1

hz 2 − 2
ud i,j,k

hz 2 +
ud i,j,k+1

hz 2

)]

+ σ ud i,j,k
2 − fd i,j,k = 0 (C.83)

C.2.6 Advection equation in 1D

This section turns the attention to time dependent PDEs. The analysis is focused on the advection

equation but the principles are easily generalized.

> alias(v=v(t,r));

w, v (C.84)

> ADVEQ:=diff(v,t)-diff(v,r)=0;

ADV EQ :=
∂

∂t
v (t, r) − ∂

∂r
v (t, r) = 0 (C.85)

> RES ADVEQ:=resndoff(ADVEQ,[v],[r,t],[vd],[i,k],[hr,ht],2,[0,0]);

RES ADV EQ := −1

2

vd i,k−1

ht
+

1

2

vd i,k+1

ht
+

1

2

vd i−1,k

hr
− 1

2

vd i+1,k

hr
= 0 (C.86)

In principle there is no problem with this residual equation. However in practice this form

won’t probably be very useful to either solve the equation or evaluate the independent residual.

First, it is not common to store the data along the time direction. Usually only the present time

step, the future and at most one at the past are stored. The common practice then is to rename

the variable at different time steps. For example, v(t, r) would go to vnm1(r), v(r) and vp1(r) for

the past, present and future time step and as the solution are obtained previous time steps are

discarded. The way to proceed then is first discretize the spatial operators of the equation and

then substitute by hand the discrete version of the time operator:

> RES ADVEQ:=resndoff(ADVEQ,[v],[r],[vd],[i],[hr],2,[0]);

RES ADV EQ :=
∂

∂t
vd i +

1

2

vd i−1

hr
− 1

2

vd i+1

hr
= 0 (C.87)

> RES ADVEQ:=subs(diff(vd[i],t)=(vdnp1[i]-vd[i])/ht,RES ADVEQ);

RES ADV EQ :=
1

2

vd i−1

hr
− 1

2

vd i+1

hr
=

vdnp1 i − vd i
ht

(C.88)
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If you look very carefully at the result of the discrete equation above, you can notice that there

was an overall sign flip when compared to the continuum equation ADVEQ. The reason for that

comes from the fact that vdi is a symbol instead of a function and a derivative of a symbol in

MAPLE vanishes. That subtle fact can be very hard to detect since the only effect on equations

of the kind above is an overall sign flip. To avoid this problem, MAPLE provides a mechanism

to delay evaluation of the expression: enclose the whole expression in quotes. The same example

above then becomes:

> RES ADVEQ:=‘resndoff(ADVEQ,[v],[r],[vd],[i],[hr],2,[0])’;

RES ADV EQ := resndoff (ADVEQ , [v], [r], [vd ], [i], [hr ], 2, [0]) (C.89)

> RES ADVEQ:=subs(‘diff(vd[i],t)’=(vdnp1[i]-vd[i])/ht,RES ADVEQ);

RES ADV EQ :=
vdnp1 i − vd i

ht
+

1

2

vd i−1

hr
− 1

2

vd i+1

hr
= 0 (C.90)

In this case the evaluation of the derivative of the symbol vdi is delayed and the substitution

by its discrete version occurs first and gives the correct discrete form for the equation.

The second point to pay attention is that the equation was discretized with second order ap-

proximation to the spatial operators but only first order in time. This doesn’t actually represent

a problem if the goal is to use the discrete equation only to evaluate the independent residual of

the advection equation. In this case the convergence would be first order but enough to evaluate

the consistency and convergence of the numerical solution. On the other hand if one intends to

use this discrete equation to actually find the solution via Crank-Nicholson iteration for example,

then one last step would still be missing. This discrete form is centered between the present and

future time level and in order to make it second order the part of the equation that doesn’t have

time derivative operators must be averaged between the present and future time, according to the

Crank-Nicholson scheme. As at the current time the package PDEFDAOFF doesn’t have a built-in

time average operator this operation is done on a case by case basis.
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APPENDIX D

ITERATIVE SOLUTIONS OF LINEAR AND NON-
LINEAR SYSTEMS

Given the discretization of a system of PDE approximated by a particular FDA scheme, the result

is a set of linear or non-linear system of algebraic equations. The next questions to be asked are:

how to solve this system? are there efficient ways to obtain the solution? This appendix addresses

these issues in two sections: one for the linear case and the other for the non-linear one. The main

techniques are explained and basic properties stated.

D.1 Jacobi and Gauss-Seidel Iteration Methods

A system of linear algebraic equations, for example one derived from the discretization of a PDE,

can be written in a matrix form as:

Lu = f, (D.1)

where L is a N × N matrix, while u and f are N -component vectors. Note that in this section

and in the following the superscript h has been dropped from the FDA notation. It should not be

confused then with the notation for PDE.

Usually such a system can be solved directly by LU decomposition (Gaussian elimination) for

example. That it is the case for small (N < 100) linear systems. However in most practical cases

originated from FDA of PDEs the size of the matrix can easily become fairly large (N ≥ 10000).

Furthermore these matrices are usually banded matrices (only a few of their diagonals are filled

with numbers other than zero) with an associated computational cost of O(w2N), where w is the

band width. The discretization of 2D or 3D PDEs results in sparse matrices with very large band

widths, increasing then the computational cost to approximately O(N2). Along with the usual

large values of N , that practically eliminates the feasibility of direct solvers implementation on the

solution of FDAs. The applicability of direct solvers is restricted then to the solution of FDA from

1D PDEs where the usually small bandwidth of the resulting matrix yields the method efficient.

Fortunately there is an alternative to directly solving a linear system. The idea is to rewrite

the linear system of algebraic equations in such a way that the solution is obtained through an

iterated series of solution guesses. In the infinite limit, the sequence of approximations converges

to the solution of the linear system. Such methods are known as iterative or fixed point methods.

So for example the system of equations (D.1) can be rewritten in an equivalent system as follows:

u = Tu+ c, (D.2)

where T is an update matrix and c a constant vector characteristic of the iterative method used.



APPENDIX D. ITERATIVE SOLUTIONS OF LINEAR AND NON-LINEAR SYSTEMS 179

The goal is then to find a solution u such that when multiplied by T and added to c gets the result

mapped back to itself. That can be achieved iteratively by generating a sequence of approximations

{u(k)}∞k=0 starting from an initial guess u(0):

u(0) → u(1) → u(2) → · · · → u(n) → · · · → u (D.3)

such that each approximation labelled by the superscript (k) is obtained by:

u(k) = Tu(k−1) + c, (D.4)

where k runs from 1 to n. The convergence or not of the sequence is controlled by the eigenvalues

of the update matrix T . More precisely, the necessary and sufficient condition for the sequence to

converge is to have the so called spectral radius of T smaller than 1: ρ(T ) < 1. The spectral radius

is defined as the maximum of the matrix eigenvalue norms:

ρ(T ) = max
1≤i≤N

|λi|, (D.5)

where λi are the eigenvalues of T . For strictly diagonally dominant matrices T , i.e.

|Tii| >
N
∑

j=1
j 6=i

|Tij |, (D.6)

two iterative schemes become particularly interesting since they are known to converge for any

initial guess u(0). The idea behind them consists of solving the i-th equation in (D.1) in terms of

the i-th unknown component ui of the solution vector. In terms of components, equation (D.1)

can be written as:

N
∑

j=1

Lijuj = fi, for i = 1, 2, . . . , N, (D.7)

where the sum can be split in order to isolate the component ui:

ui =
1

Lii







N
∑

j=1
j 6=i

−Lijuj + fi






(D.8)

and the sequence of approximations starting from the initial guess u
(0)
i can be generated component

by component such as:

u
(k)
i =

1

Lii







N
∑

j=1
j 6=i

−Liju(k−1)
j + fi






, for i = 1, 2, . . . , N. (D.9)

Such an iterative method is known as Jacobi iterative method. Note that both the current calculated

approximation u
(k)
i and the previous one u

(k−1)
i need to be stored in the Jacobi iteration. The other

iterative method is simply an improvement of the Jacobi algorithm such that as the components
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of solution vector are calculated they are used in the evaluation of the subsequent components. As

it is supposed to be a better approximation, it should therefore provide a better estimation of the

components left. Furthermore it saves storage since only one solution vector per iteration needs to

be saved. For example suppose the i-th component is being evaluated. Then all j < i components

had already been updated and their new values are used to calculate the i-th component:

u
(k)
i =

1

Lii





i−1
∑

j=1

−Liju(k)
j

N
∑

j=i+1

−Liju(k−1)
j + fi



 , for i = 1, 2, . . . , N. (D.10)

Such a method is known as Gauss-Seidel iterative method.

It is useful to analyse and rewrite the iteration sequence in terms of the residual vector associated

with the approximate solution. Considering that the components of the residual vector are not

updated simultaneously, the notion of residual needs to be extended to what is called running

residual. Let the approximate solution vector u
(k)
i be defined as:

u
(k)
i = (u

(k)
1 , u

(k)
2 , . . . , u

(k)
i−1, u

(k−1)
i , . . . , u

(k−1)
N )t, (D.11)

where the subscript i in the boldface u denoting the approximate vector just adds the information

that the i-th component is being updated at that moment. That explains as well why u
(k−1)
j is used

for j > i: since each component is visited and updated in a lexicographic order, those components

haven’t been updated yet. Therefore, the corresponding running residual to the approximate

solution vector can be written as:

r
(k)
i = (r

(k)
1i , r

(k)
2i , . . . , r

(k)
Ni )

t, (D.12)

where its m-th component is defined to be:

r
(k)
mi =

i−1
∑

j=1

Lmju
(k)
j +

N
∑

j=i+1

Lmju
(k−1)
j + Lmiu

(k−1)
i − fm. (D.13)

In particular the residual component corresponding to the approximate solution vector component

being updated is simply:

r
(k)
ii =

i−1
∑

j=1

Liju
(k)
j +

N
∑

j=i+1

Liju
(k−1)
j + Liiu

(k−1)
i − fi. (D.14)

Inserting the expression above for the running residual into equation (D.10) results into a more

compact expression for the Gauss-Seidel iteration procedure:

u
(k)
i = u

(k−1)
i − r

(k)
ii

Lii
. (D.15)

This expression is useful for comparison with a similar expression for non-linear system of algebraic

equations to be derived in the next section.
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D.2 Newton-Gauss-Seidel Iteration Method

In general the FDAs resulting from the discretization of the Einstein equations for a particular

matter model are actually a non-linear system of algebraic equations. Based on the assumption

that the solution for this non-linear system is smooth, there is a technique extremely efficient used

to obtain its solution called Newton’s method. This method consists in linearizing the non-linear

equations around the known solution ui. It works as follows:

Let the system of non-linear equations be expressed in the following canonical form:

Ni[uj ] = 0 for i, j = 1, 2, . . . , N, (D.16)

where Ni are the N non-linear discrete operators acting on the grid functions uj for j = 1, 2, . . . , N .

This system needs then to be rewritten as a fixed point iteration system in order to define an

iterative solution process for k = 1, 2, . . . , n:

u
(k)
i = Gi[u

(k−1)
j ], (D.17)

where Gi are a set of non-linear iteration update operators. Let the i-th component of the solution

approximation at iteration k be denoted by u
(k)
i . The solution of the discrete equation (D.16) can

be written in terms of its k-th approximation u
(k)
i as:

ui = u
(k)
i − δu

(k)
i , (D.18)

where δu
(k)
i is the i-th component of the approximate solution error relative to the exact discrete

solution ui. Taylor expanding or linearizing around u
(k)
i , equation (D.16) becomes:

Ni[uj ] ≡ Ni[u
(k)
j ] −

N
∑

j=1

∂Ni
∂uj

∣

∣

∣

∣

uj=u
(k)
j

δu
(k)
j +O

(

(δu
(k)
j )2

)

= 0, (D.19)

from where the running residual vector can be defined in analogy with the linear case, equa-

tion (D.13), as:

r
(k)
im ≡ Nm[u

(k)
1 , u

(k)
2 , . . . , u

(k−1)
i , . . . , u

(k−1)
N ], (D.20)

where i indicates that the ui approximate solution component is being updated, while m tells

the component of the running residual vector in consideration. Also the form of equation (D.19)

motivates the definition of the Jacobian matrix:

Jij [u
(k)
p , u(k−1)

q ] =
∂Ni
∂uj

∣

∣

∣

∣

uj=u
(k)
j

, (D.21)

with p < i and q ≥ i. Therefore the equation (D.19) can be written to second order in δu
(k)
j as:

N
∑

j=1

Jij [u
(k)
p , u(k−1)

q ]δu
(k)
j = r

(k)
ii . (D.22)
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One Newton’s method step consists then in solving the linear system (D.22) for δu
(k)
i and updating

the solution approximation through the expression:

u
(k)
i = u

(k−1)
i − δu

(k)
i . (D.23)

As long as the initial guess denoted by u
(0)
i is good enough or close enough to the solution ui,

Newton’s method is known to generate a sequence of approximations that converge quadratically

to the solution of the non-linear system of equations, i.e.

lim
k→∞

‖u(k) − u‖∞
‖u(k−1) − u‖2

∞

= c, (D.24)

where c is a constant.

Besides the choice of a convenient initial guess – that may not be so obvious for a whole class of

problems – there is another drawback affecting Newton’s method robustness and efficiency. Note

that on each Newton’s step a full linear system, equation (D.22), needs to be solved. That may

represent a problem for large non-linear systems. In those cases the linear system is also solved

iteratively by use for example of Gauss-Seidel iterations. A direct combination of both methods

would result on a solution scheme that looks like the following:

A sequence of approximations for the error component at Newton’s iteration k is generated by

Gauss-Seidel iterations such as:

δu
(k)(0)
i → δu

(k)(1)
i → · · · → δu

(k)(l)
i → · · · → δu

(k)
i , (D.25)

where the superscript l labels the Gauss-Seidel iteration step. Usually δu
(k)(0)
i = 0 is considered

as a sensible choice for initialising the sequence. The sequence is then generated by use of the

equation (D.15) that, when applied on the linear system (D.22), becomes:

δu
(k)(l)
i = δu

(k)(l−1)
i − R

(k)(l)
ii

Jii
, (D.26)

where R
(k)(l)
ii is the running residual as defined by equation (D.13) for equation (D.22), or more

explicitly:

R
(k)(l)
ii =

i−1
∑

j=1

Jijδu
(k)(l)
j +

N
∑

j=i+1

Jijδu
(k)(l−1)
j + Jiiδu

(k)(l−1)
i − r

(k)
ii . (D.27)

After convergence of the Gauss-Seidel iteration to the solution δu
(k)
i , then the Newton’s step would

take place through equation (D.23).

This method is also known as global Newton-Gauss-Seidel iteration method since it solves for

the corrections of all unknowns per Newton’s step. Despite being more efficient than using direct

linear solvers, the method is rarely implemented in practice. A simplified or approximated version

called local or point-wise Newton-Gauss-Seidel iteration method is the method of choice to solve

most of the large non-linear systems of algebraic equations. The method consists in executing only

one Gauss-Seidel step per Newton step. Furthermore, each equation in (D.22) is only solved for
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one variable at the time. Therefore, for the i-th equation in (D.22) all the correction variables are

considered constant but the δu
(k)
i . Given the initial guess δu

(k)(0)
i = 0, this is equivalent to set the

corrections δu
(k)(l)
j and δu

(k)(l−1)
j all equal to zero for all j 6= i in equation (D.27) after the only

one Gauss-Seidel step be executed. This results in:

R
(k)(l)
ii = Jiiδu

(k)(l−1)
i − r

(k)
ii (D.28)

and, for l = 1, the correction becomes:

δu
(k)
i ≡ δu

(k)(l)
i =

r
(k)
ii

Jii
, (D.29)

from where the Newton step proceeds as usual:

u
(k)
i = u

(k−1)
i − δu

(k)
i = u

(k−1)
i − r

(k)
ii

Jii
. (D.30)

The point-wise Newton-Gauss-Seidel iterative method explained in this section was the method

applied to obtain the solutions of the FDAs approximating the evolution equations in this disserta-

tion. It is worth remembering that those FDAs were obtained by the Crank-Nicholson discretization

scheme of the evolution PDEs.


