
The RNPL Reference ManualRobert MarsaMatthew ChoptuikCenter for RelativityThe University of Texas at AustinAustin, TX, 78712-1081marsa@ho�mann.ph.utexas.edumatt@infeld.ph.utexas.eduMarch 1995

IntroductionThe acronym RNPL stands for Rapid Numerical Prototyping Language. It is a language for ex-pressing time-dependent systems of partial di�erential equations and the information necessary forsolving them using �nite-di�erence techniques. It has advantages over traditional programming lan-guages such as C and FORTRAN because it only requires the user to enter the essential structureof the program while it �lls in the details.RNPL can produce complete working programs, or a \skeleton" that the user can complete. Theprograms include facilities for reading parameters from a �le, interactive control over output timesand functions, memory management, and state dumping for calculation interruption and restart.Throughout this manual, program examples will be given in Courier , while the rest of the text willbe in Times.

Chapter 1Program StructureAn RNPL program is completely declarative. There are no loop constructs, branch instructions,or sub-functions{just a series of declarations. These declarations can occur in any order.The input stream is (as usual) broken up into tokens. Tokens are collections of non-white-spacecharacters and are separated by white-space. A white-space character is a space, tab, or new-line.White-space is ignored except as a token separator, so programs are free-form in the sense of C.1.1 CommentsThere are two kinds of comments in RNPL programs. The �rst kind must start with a # at thebeginning of a line. It continues till the end of the line. The second kind starts with // and endsat the end of the line (just like a C++ comment). The following example illustrates both kinds ofcomments.# This is the first kind of commentfloat A on grid1 // This is the second kind of comment// So is this1.2 ParametersA parameter can be declared in several ways depending on whether it is a scalar or a vector, whetheror not it has a default value, and whether or not it is a \constant." Some example declarations are:parameter int fredconstant parameter float jim := 5parameter float george[10]parameter float ted[3] = [2.0 1.7 11]parameter string name := "file_name"constant parameter string comments[2] := ["comment 1" "comment 2"]As the examples show, the parameter declaration begins with the reserved word parameter(optionally preceded by the reserved word constant). This is followed by a type which can be int ,
oat , or string. Next comes a name with a size speci�cation if the parameter is a vector. Finally,there is an optional assignment statement consisting of either = or := and a value.Parameters provide a means of getting information to the program at run time. The use ofparameters is discussed in section 4.1. 2

1.2.1 System ParametersAlong with the parameters discussed above, is a special type of parameter known as the systemparameter. These parameters are program dependent, but must be known at compile time. There-fore, system parameters must have default values and are not read from parameter �les. Currentlysystem parameters must be scalars. There is one prede�ned system parameter which speci�esthe memory size for FORTRAN programs in doubles. Its default value is 2000000. An examplestatement follows:system parameter int memsiz := 100000System parameters are placed in a �le called sys param.inc.1.3 Coordinate SystemsThe RNPL compiler must know which names are coordinates. It further groups these names intosystems. Some example coordinate declarations are:rect coordinates t,x,y,zsph coordinates t,r,theta,phiFirst comes a coordinate system name, then the reserved word coordinates, and then a comma-separated list of names. Order is important, with the �rst coordinate in the list taken to be time.Any time coordinate can be repeated in other coordinate systems, but each spatial coordinate canbe used only once.1.4 GridsGrids de�ne the spatial regions over which the grid functions will be de�ned as well as their storage.A grid declaration can take one of several forms, the longest of which would be something like:uniform rect[x,z] grid g1 [1:Nx][1:Nz] {xmin:xmax}{zmin:zmax}The �rst word can be uniform or nonuniform, though only the former is currently de�ned.Next comes the name of the coordinate system followed by a list of coordinates on which the grid isde�ned. The above grid is two dimensional with coordinates x and z. After the coordinate systemcomes the reserved word grid followed by the grid name. Next comes the index region. In thisexample, the �rst index starts at 1 and goes to Nx, while the second starts at 1 and goes to Nz.Nx and Nz must be de�ned elsewhere. The index regions can contain arbitrary expressions such as[A*B+C-2:4*Nx-5/a], however, as discussed in section 2.2, it is best to keep to forms like [1:Nx]and [0:Nx-1], where Nx has been declared as a parameter. Finally, comes the coordinate regionwhich gives the actual spatial ranges of the coordinates. In the example, we have xmin � x � xmaxand zmin � z � zmax . Coordinate regions must be of the form fname1:name2g, where name1and name2 have been declared as parameters.Other forms of the grid declaration leave out one or more of the above parts. The minimumallowable declaration is:uniform rect grid g2This declaration (along with the example coordinate declaration in section 1.3) declares g2 to bea three dimensional grid with coordinates x; y and z. The index region will be [0:Nx-1][0:Ny-1][0:Nz-1]for C output and [1:Nx][1:Ny][1:Nz] for FORTRAN output. The coordinate region will befxmin:xmaxgfymin:ymaxgfzmin:zmaxg

1.5 Grid FunctionsA grid function is a function de�ned on a grid at one or more times. Some examples of grid functiondeclarations are:float A on g1 at -1,0,1int B on g2 at 0,1float C on g1float D on g2 at -1,0,1 aliasfloat E on g3 at 0,1 "Electric Field"First comes the grid function type, either float or int. Next comes the name followed by thereserved word on and the grid name on which the function is de�ned. If the declaration stoppedhere (such as that for C above), we get a single time level. Adding the reserved word at followedby a list of o�sets (positive or negative integers) gives a function de�ned on one time level for eacho�set. For instance the de�nition for A would give a three time level function de�ned at timesn� 1; n; and n+ 1. Next comes the optional reserved word alias which declares common storagefor the �rst and last time levels. Following any of these declarations can be a string which is usedas a \print name" for the grid function. Uses for the print name will be explained in chapter 2.1.6 AttributesAn attribute is a
ag array associated with the grid functions. For instance, an attribute may tellwhich grid functions are to be output and which are not. Attributes are de�ned in a similar mannerto vector parameters, except the size is replaced by an encoding. The encoding is either encodeoneor encodeall, with encodeone giving one value per grid function and encodeall giving one valueper time level per grid function. For instance, if �ve grid functions are de�ned, three of whichhave three time levels each while the remaining two have two levels each, then an attribute markedas encodeone would have a length of �ve, while an attribute marked as encodeall would have alength of thirteen. In this case an output
ag array could be de�ned as eitherattribute int out_gf encodeoneorattribute int out_gf encodeone := [0 0 1 1 0]1.7 Derivative OperatorsDerivative operators are operators which act on grid functions. They are used for turning di�erentialequations into �nite di�erence equations. Here is a declaration for a forward di�erence operator:operator D_FW(f,r) := (<0>f[1] - <0>f[0])/drWhenever an operator is used in an expression (see section 1.12), the operator is replaced byits de�nition. The name f is arbitrary. It simply shows where the expression goes in the de�nition.For instance, if D FW(3*A+B,r) appeared in an expression, the f's in the right hand side would bereplaced by 3*A+B. The notation <0>f[1] is interpreted as fni+1, that is, f at the nth time level andi+1st grid position. The <>[] is really an operator which acts on expressions as follows:

<a>f[b] ! f if f is a number or parameter or time coordinate<a>f[b] ! fi+b if f is a spatial coordinate<a>f[b] ! fn+ai+b if f is a grid functionThree dimensional forward di�erence operators would look like this:operator D_FW(f,x) := (<0>f[1][0][0] - <0>f[0][0][0])/dxoperator D_FW(f,y) := (<0>f[0][1][0] - <0>f[0][0][0])/dyoperator D_FW(f,z) := (<0>f[0][0][1] - <0>f[0][0][0])/dzOperator de�nitions can be nested as in:operator D_FW(f,r) := (<0>f[1] - <0>f[0])/droperator D_BW(f,r) := (<0>f[0] - <0>f[-1])/droperator D_CN1(f,r,r) := D_BW(D_FW(<0>f[0],r),r)operator D_CN2(f,r,r) := D_BW(D_FW(<1>f[0],r),r)As you can predict, the de�nition of D CN1 will result in the usual centered second derivative,namely (fni+1 � 2fni + fni�1)=dr2, while the de�nition of D CN2 will result in the same thing appliedat the advanced time level, that is (fn+1i+1 � 2fn+1i + fn+1i�1)=dr2. The list of coordinate names afterthe f signi�es with respect to which coordinate(s) the derivative is taken.Although operators are de�ned like derivatives and act as derivatives under certain circum-stances (see section 1.12), they can be de�ned to perform other functions, such as the followingde�nition which performs spatial averaging.operator AVG(f,r) := (<0>f[1] + <0>f[0])/2Because operators are internally treated as derivatives, even de�nitions such as this need thecoordinate list.1.8 ResidualsResiduals de�ne the system of equations, typically by using derivative operators. Consider thefollowing residual de�nition:residual phi { [0:0] := D_LF(phi,t) ;[1:Nx-2] := D_LF(phi,t,t) - D_LF(phi,x,x) ;[Nx-1:Nx-1] := D_LF(phi,t) }Assuming the proper de�nitions of the derivative operators, this residual will encodes the linearwave equation on a string with the end points �xed. An equivalent declaration would be:residual phi { [0:0] := D_LF(phi,t) = 0 ;[1:Nx-2] := D_LF(phi,t,t) = D_LF(phi,x,x) ;[Nx-1:Nx-1] := D_LF(phi,t) = 0 }First comes the reserved word residual followed by the name of the grid function whose residualis being de�ned. Next comes a bracket-enclosed set of index regions and expressions. The indexregion shows over what range the expression is a valid description of the behavior of the system.

The union of the index regions should equal the index region of the grid on which the function isde�ned, but this is not required. Note that each region-expression pair is separated by a semi-colon.The residual tells how to determine the advanced value of a grid function. Thus, the residualmust contain <a>f... where a is the o�set to the most advanced time level de�ned for grid functionf. Part of a residual for a three dimensional grid function would look like:residual A { [1:Nx][1:1][1:1] := D_LF(A,x) + D_FW(B,y) ;[Nx:Nx][1:Ny][1:Nz] := <1>A[0][0][0] = 5.0*C }The reserved word residual can be preceded by the reserved word evaluate which tells thecompiler to produce code which will evaluate the residual.In addition, the word residual can be followed by a global o�set for example:residual <1>[0] A { [1:Nx] := ... }This o�set is applied globally to each expression appearing in the residual.See section 1.12 for more information on expressions.1.9 InitializationsAn initialization de�nes the initial data for a grid function. Its form is identical to the residual dec-laration with residual replaced by initialize. However the expression is interpreted di�erently.Consider the following initialization declaration:initialize phi { [1:Nr] := amp*exp(-((r-c)/delta)^2) }Unlike the residual declaration, the expression in the initialization must not contain its gridfunction. The retarded time level of the grid function is set to the expression. In the case above,phi will be set to a Gaussian.1.10 Loop DriverThe loop driver declaration has the form looper name, where name is any identi�er. When the com-piler processes the driver statement, it looks in its library directory for a �le called name.drv lang,where lang is c, f77, or f90. It then simply includes this �le into the generated source.There are currently two prede�ned loopers: iterative and standard. The iterative looper makesan initial guess at the advanced grid function values, then calls the update routines and iteratesuntil the norm of the residual is below a threshold. The standard driver just calls the updateroutines.1.11 UpdatesUpdate declarations can take many forms. Here are some examples:auto update phi,pi,betastub evolver updates A,B,C

header A, B[Bnp1,Bn,Bnm1], C[C], x,y,z,dt,auto work#0(5*Nx*Ny*Nz),static work#1(3*Nx*Ny-.5*Nz)myroutine.inc myupdate update A,B header A,B,dtThe �rst form de�nes an automatic update. The declaration above would cause the compilerto produce a routine to update the grid functions phi, pi, and beta if residuals have been declaredfor them. Otherwise, the compiler has no idea how to update the grid functions and will producean error message.The second declaration will cause the compiler to produce the header for a routine called evolverwhich is expected to update grid functions A, B, and C. The body of the routine is left blank, tobe �lled in by the user. Following the reserved word header, comes a list of things to appear inthe calling sequence for the function. A grid function name such as A above will cause all the timelevels of A to be passed to the function. If A has three time levels (1,0,-1), then they will be namedA np1, A n, and A nm1 by default. The user can provide his own names to override the defaultsas in the case of B. If only one name is provided (as for C), the time levels will be passed in as theelements of a single vector, the �rst component of which will be the advanced time level.Other things that can appear in the header list are coordinates (such as x,y,z above) andcoordinate di�erentials (such as dt). Parameters can also be included in the list. Work arrays aredeclared like the �nal two parameters. First comes auto or static. Static work arrays are declaredat the start of the program and persist throughout. Auto work arrays are allocated before the callto the update routine and are destroyed afterwards. Next comes the word work followed by the #symbol and an integer. This integer is tacked onto the end of the word work to form the name ofthe array. Finally comes an expression for the size of the work array enclosed in parentheses.1.12 ExpressionsExpressions are made up mainly of identi�ers separated by operators. RNPL de�nes the usual set ofarithmetic operators (+,-,*,/) along with exponentiation (^ or **). The operators obey the usualprecedence rules.Identi�ers may be names of grid functions, coordinates, or parameters. In addition, grid func-tions may be supplied with temporal and spatial o�sets (see section 1.7), and coordinates may besupplied with a spatial o�set.Expressions can also contain the well-known functions exp, log, tan, sin, cos, sinh, cosh, tanh,and sqrt as well as derivative operators.Here is an example of a complicated RNPL expression:a*b+(c*2.67/<0>phi[1] + d^2)/tan(theta) - r[-1]*D_(phi*3/a,r) +cos(3*eta)*D_(eta+D_(phi,r),r) + expand D_(a*b + c,r)You'll notice the word expand before the last derivative operator. This tells RNPL to symbolicallyexpand the derivative before making the operator substitution. Thus, the �nal term is equivalentto:D_(a,r)*b + a*D_(b,r) + D_(c,r)

Chapter 2Implementation2.1 Case SensitivityIdenti�ers in RNPL are case sensitive if the target language is C and are case insensitive if the targetlanguage is FORTRAN. Regardless of the target language, reserved words may be given in all lowercase or all upper case. Case combinations will produce syntax errors.2.2 Coordinate Di�erentialsCoordinate di�erentials are assumed to be anything that is a coordinate name with a d in frontof it, such as dt or dx if t and x are coordinates. A coordinate di�erential is de�ned by the indexregion and coordinate region of the �rst grid which uses its coordinate. For instance, if the followingcoordinate system and grids are de�ned:rect coordinates t,x,yuniform rect grid g1 [1:Nx][1:Ny] {xmin:xmax} {ymin:ymax}uniform rect[x] grid g2 [1:N] {min:max}then dx will be de�ned from g1 by dx = (xmax� xmin)=(Nx� 1) even though g2 may have adi�erent coordinate spacing.2.3 Special Parameters and AttributesThere are several \special" parameters de�ned by RNPL _These are declared by the program (if notby the user) and given default values. They will be read from the parameter �le if it contains them.These parameters are shown in the following list along with their de�nitions and default values.constant parameter float start_t := 0 // start timeconstant parameter int iter := 100 // number of iterationsconstant parameter float epsiter := 1e-5 // iteration thresholdconstant parameter int fout := 0 // file output (0 no, 1 yes)constant parameter int ser := 0 // fs output (0 no, 1 yes) if appropriateconstant parameter float lambda := .5 // dt/dr, dr=sqrt((dx^2+dy^2+dz^2)/3)constant parameter int rmod := 1 // output every rmodth time step8

constant parameter string in_file // name of file from which initial data// will be readconstant parameter string out_file // name of file to which data will// be writtenconstant parameter int level := 0 // refinement levelconstant parameter int s_step := 0 // starting iteration numberconstant parameter string tag := "" // prepend symbol for grid function namesconstant parameter int N<c>0 := 2 // base number of grid points for the// coordinate c (there is one for each spatial// coordinate)The names N<c>, where <c> is a coordinate, are declared internally to RNPL. They are NOTparameters, nor should they be declared by the user. N<c> is de�ned at run time by N<c> =N<c>0 2level+1. Thus, if a grid is de�ned with an index region of length N<c>, it will be automaticallyscaled simply by changing the value of level in the parameter �le. Grids de�ned in this way willalways have an odd number of points in each dimension.There is one pre-de�ned attribute: out gf. This is an integer array with one element for eachgrid function, that is:attribute int out_gf encodeoneEach element is assigned the default value of 0. This element tells whether output is enabled forthat grid function or not. The values of this attribute can be changed during program execution.

Chapter 3Compiler Usage3.1 Code GenerationThe RNPL compiler is called from the command line with the following command:rnpl -lang [program_file]The switch -lang tells RNPL what the target output language is, c, f77, or f90.The compiler generates code for two programs, the solver and the initial data generator. Ifprogram �le is speci�ed, rnpl will output the solver code to a �le. The extensions .rnpl or rnpl willbe removed from the end of program �le if they exist. The appropriate extension for the outputlanguage is then appended (.c or .f). The initial data generator is written to program �le init plusthe appropriate extension (.c or .f) If no program �le is speci�ed, rnpl reads from stdin and writesto stdout. In this case, the initial data generator goes to r out init (.c or .f). Errors are directedto stderr.RNPL sends the code for the update routines to a �le named updates(.h or .f). Also, a defaultattribute �le is produced, named .rnpl.attributes.In the case of FORTRAN output, two include �les named globals.inc and other glbs.inc are alsoproduced.The compiler needs certain support �les which it looks for in the current directory or in thedirectory de�ned by the environment variable RNPL PATH.3.2 Target Language CompilationOnce the RNPL compiler has been executed, the C or FORTRAN sources must be built. In thecase of C output, simply compile the two .c �les since updates.h is automatically included. ForFORTRAN code, compile the solver and updates.f and link them together.
10

Chapter 4Generated Programs4.1 Parameter FilesA parameter �le is an ASCII �le containing arbitrary text along with lines of the form name :=value, where name is the name of a parameter, and value is its new value. At run time, RNPLgenerated programs will read this �le and use any values found to initialize parameters.Here is an example parameter �le:This is a parameter filetag := "a_"level := 1Nx0 := 100xmin := -10in_file := "init_data.hdf"out_file := "dump.hdf"4.2 SolverIf RNPL is run on wave.rnpl and the resulting source �les are then compiled into executables namedwave and wave init, then the solver (wave) can be executed by typing \wave param �le" or \wave"on the command line. Param �le is an ASCII �le of parameter values as discussed above. If noparameter �le is given on the command line, the program will prompt for one. If there is no initialdata �le (in �le), wave will execute wave init to generate one. If wave init doesn't exist, wave willprint a warning and continue without reading the initial data. If there is an initial data �le, wavewill read it and continue. Every rmod time steps (rmod is a parameter), wave will generate outputas speci�ed by out gf, ser, and fout. It will print the current step and value of time to stdout.During execution, the user can type Ĉ or Ẑ to stop wave. A menu will then be presented whichallows the user to change the output frequency (rmod) and which grid functions will be output(out gf). The user can also choose to quit. Upon termination (either forced or after \iter" timesteps), wave will dump state to out �le. Execution can later be resumed by copying out �le toin �le and rerunning wave. 11

4.3 Initial Data GeneratorThe initial data generator can be run from the command line as well as being called by the solver.It reads the same parameter �le as the solver and writes the initial data to in �le.4.4 OutputOne of the design goals of RNPL is to provide uniform and automatic access to I/O facilities to aidthe user in examining the results of computations. As discussed in section 2.3, there is currentlyone pre-de�ned attribute: out gf. If the special parameter fout is set, then every rmod time steps,output is generated for every grid function for which output has been enabled via out gf. Output isto .hdf �les: one �le for each selected grid function is created, and each �le consists of a sequence ofdumps labelled with the actual output time. These �les can then be post-processed with a varietyof software, including the ExplorerTM module, ReadHDF GFT0 available via anonymous ftp fromhelmholtz.ph.utexas.edu in /pub/explorer/modules.The interface to the lower level .hdf routines is also directly accessible from C or Fortran codeswhich have not been generated using RNPL and is described in The RNPL User's Guide.

Chapter 5RNPL Grammar in BNR Formatdec list !j dec list declarationdeclaration ! param decj coord decj grid decj gfunc decj attrib decj d operatorj residualj initializationj looperj updateparam dec ! param p type namej param p type name assignop scalarj param p type name v sizej param p type name v size assignop vectorj const param p type namej const param p type name assignop scalarj const param p type name v sizej const param p type name v size assignop vectorcoord dec ! name coordinates coord listgrid dec ! g type name grid name i region c regionj g type name grid namej g type name obrack coord list cbrack grid name i regionc regionj g type name obrack coord list cbrack grid namegfunc dec ! type name on namej type name on name strj type name on name at o list13

j type name on name at o list aliasj type name on name at o list strj type name on name at o list alias strattrib dec ! attrib p type name encodingj attrib p type name encoding assignop vectord operator ! operator d op assignop exprresidual ! resid name obrace res list cbracej resid time index name obrace res list cbracej evaluate resid name obrace res list cbracej evaluate resid time index name obrace res list cbraceinitialization ! initialize name obrace res list cbracelooper ! looper nameupdate ! name name update coord list header ref listj stub name update coord list header ref listj auto update coord listp type ! intj
oatj stringname ! idenscalar ! inumj minus inumj numj minus numj strv size ! obrack inum cbrackvector ! obrack scalar list cbrackcoord list ! namej coord list comma nameg type ! uniformj nonuniformi region ! obrack expr colon expr cbrackj obrack expr colon expr cbrack i regionc region ! obrace name colon name cbrace

j obrace name colon name cbrace c regiontype ! intj
oato list ! inumj minus inumj o list comma inumj o list comma minus inumencoding ! encodeonej encodealld op ! name oparen expr comma coord list cparenj expand name oparen expr comma coord list cparenexpr ! expr plus exprj expr minus exprj expr equals exprj expr times exprj expr divide exprj expr caret exprj plus exprj minus exprj oparen expr cparenj d opj funcj gfuncj coordj namej numj inumres list ! i region assignop exprj res list scolon i region assignop exprtime ! oabr inum cabrj oabr minus inum cabrindex ! obrack inum cbrackj obrack minus inum cbrackj obrack inum cbrack indexj obrack minus inum cbrack indexref list ! referencej ref list comma referencescalar list ! scalar

j scalar list scalarfunc ! name oparen expr cparengfunc ! time name indexcoord ! name obrack inum cbrackreference ! namej name obrack coord list cbrackj auto work pound inum oparen expr cparenj static work pound inum oparen expr cparenTerminalsparam parameter or PARAMETERassignop := or =coordinates coordinates or COORDINATESgrid grid or GRIDobrack [cbrack]on on or ONat at or ATattrib attribute or ATTRIBUTEoperator operator or OPERATORresid residual or RESIDUALobrace fcbrace gevaluate evaluate or EVALUATEinitialize initialize or INITIALIZElooper looper or LOOPERupdate update or updates or UPDATE or UPDATESint int or INT
oat
oat or FLOATstring string or STRINGiden see belowinum positive integerminus �num positive real numberstr \any characters"comma ,uniform uniform or UNIFORMnonuniform nonuniform or NONUNIFORMcolon :encodeone encodeone or ENCODEONEencodeall encodeall or ENCODEALL

oparen (cparen)expand expand or EXPANDplus +times *divide /caret ^ or **scolon ;oabr <cabr >An iden is string which starts with a letter or and contains letters, digits, and . It can also betwo or more iden's separated by . or ->. For example, the following are valid iden's:frankAlBerT0george123fredbrad.charlesemployer->name.�rst

Chapter 6AcknowledgementsThis work was supported by NSF PHY-9310083 to R.A. Matzner, and ASC9318152 (ARPA sup-plemented) to the Binary Black Holes Grand Challenge Alliance

18

Bibliography

19

