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1.3 Poincaré Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Symbolic Dynamics 43

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



2.2.1 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 1D Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Prime Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Numerical Orbit Hunting . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Periodic Orbit Theory 66

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.2 Trajectory Displacements . . . . . . . . . . . . . . . . . . . . 67

3.2 Nonlinear Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Periodic Orbit Calculations . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 Hyperbolicity & Trace . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.3 Escape Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.4 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Zeta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.2 Cycle Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5.3 Pseudocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Stability Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6.1 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6.2 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.3 Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Computation and Calculation 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Finding The Periodic Points . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Pseudocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

v



5 Fractals 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Fractal Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Fractal Dimension & Stability Eigenvalues . . . . . . . . . . . 119

5.2.2 Fat Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.3 MultiFractals . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Iterated Function Systems . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Contraction Mapping Principle . . . . . . . . . . . . . . . . . 124

5.3.2 The Hutchinson Operator . . . . . . . . . . . . . . . . . . . . 124

5.3.3 Fundamental Theorem of Iterated Function Systems . . . . . . 125

5.4 Fractal Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Iterated Interpolation Function Systems 144

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Linear Two Dimensional Interpolation Functions . . . . . . . . . . . . 145

6.2.1 Simplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3 Quadratic Two Dimensional Interpolation Functions . . . . . . . . . . 149

6.4 Partial Quadratic Two Dimensional Interpolation Functions . . . . . 149

6.5 Higher Degree Interpolation Techniques . . . . . . . . . . . . . . . . . 153

6.6 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Conclusions 162

7.1 Symbolic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Numerical Periodic Orbit Methods . . . . . . . . . . . . . . . . . . . 162

7.3 Numerical Periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . 163

7.4 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.5 Image Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.6 Future Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A Periodic Orbit Hunting Code 168

B Iterated Function System Code 181

B.1 Draw.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.2 fractalResized.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.3 gdIFSCopyResized.c . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

vi



B.4 gdIFSCopyResized.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Bibliography 193

vii



List of Tables

2.1 Allowed Orbits for Q = 0.76 . . . . . . . . . . . . . . . . . . . . . . . 63

2.2 Allowed Orbits for Q = 1.2577 . . . . . . . . . . . . . . . . . . . . . . 64

2.3 Additional Allowed Orbits for Q = 1.2577 . . . . . . . . . . . . . . . 65

5.1 Fractal Dimensions of Various Fractals . . . . . . . . . . . . . . . . . 114

5.2 IFS code for Barnsley’s Fern [43] . . . . . . . . . . . . . . . . . . . . 128

viii



List of Figures

1.1 Point Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Limit Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Our System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Logistic Kneading Sequence . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Logistic Lyapunov Spectrum . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Full Attractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.8 Simple Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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Abstract

Chaos is fundamental to nature. Perhaps the most illustrative examples are atmo-

spheric processes, but even further than that, some systems that had been commonly

thought to be periodic, such as planetary motion, were recently proven to be chaotic.

Chaos refers to a deterministic behavior characterized by a high sensitivity to a change

of initial conditions. Due to these qualities any long term predictions are impossible,

and consequently any solution of a given initial condition problem is not a physical

observable. Calculating expectation values of observables for chaotic systems is usu-

ally done numerically and often marred by numerical artifacts. In this presentation

we investigate a more subtle approach for evaluating expectation values for a chaotic

system. We demonstrate our results in the example of a driven pendulum. Chaotic

behavior may be thought of as motion over an infinite number of periodic orbits.

A feasible mathematical solution to determine the expectation values is through cy-

cle expansion, where an expectation value is calculated as a statistical average over

periodic orbits in phase space. Statistical weight of each orbit is determined by its

stability. Ultimately our goal was two fold. First we were to find the periodic orbits

i



ii

that contributed the most to the averages. Second, through use of these relatively few

periodic orbits, we were to estimate expectation values for the rotation number and

Lyapunov exponent of the driven pendulum to a high level of accuracy, and compare

them to the brute force numerical calculations. The second instance of nonlinear

theory is the study is iterated function systems (IFS). These are methods of image

compression, and manipulation. We show the usefulness of this method as an image

manipulator specifically with respect to magnification properties, by comparing it to

a standard method of digital zoom. We also discuss the possible applications of the

fractal interpolation with respect to image compression.
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Introduction

Chaos occurs quite frequently in nature. In fact, by studying the chaos in systems we

are studying a more accurate representation of the reality behind nature. Traditional

physical analysis takes on the form of investigating real systems by comparing them

to perfect devices, such as the simple harmonic oscillator, with the use of first order

Taylor series expansions. It is not uncommon for these systems to be close to correct

for some very specific applications. However, for a true understanding of nature

we must be willing to leave the perfect system comparisons and look towards real

systems. This forces us to also leave behind the approximations that are only true

for special cases. A common example is the simple pendulum. As it oscillates with

small angles the behaviour of the system is well understood. However as we push the

system to act a little more extreme, the larger angles of rotation lead to some rather

interesting dynamics. If we were to go further we could add a damping term and a

driving force, making the system more and more general, such that the model may

be applied to real world situations more readily. However, as we increase generality

of a system integrability is usually lost.

1
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In the cases where the linear approximations do not produce experimentally viable

results, we allow the linear expansion but add a term that ”kicks” the system by

introducing an external energy so that it matches experimental results. This method

of analysis is referred to as perturbation theory. It brings us even closer to the truth,

without the difficulty of re-defining the dynamical equations governing the system, or

without the need for numerical analysis. Again, this method does not always work,

some systems cannot be treated as perfect and also may not be approximated through

a perturbation. At this point the researcher must analyze the system as it is. Often,

systems that we are interested in cannot be solved analytically, and thus must be

solved numerically. [35]

The evolution of science over the past few decades has lead to some rather inter-

esting nonlinear phenomenon, including deterministic chaos. A deterministic system

is one where, given the initial conditions, we know the final state for all time. [52]

With deterministic chaos, a dynamical system becomes highly dependent on the ini-

tial conditions. That is, the slightest change in the initial conditions produces an

exponentially divergent set of solutions. This leaves a reasonably precise prediction

of the future evolution of the system to a very short period of time. With linear de-

terministic systems one generally expects a single solution, or a single orbit solution.

However, with the nonlinear systems one must study a distribution of orbits, thus

leading us to a statistical analysis of nonlinear systems. All of this is the main focus



3

of the first few chapters of this paper.

Another facet of chaos is the formation of fractals, which are geometric shapes.

These have been investigated over several decades and have come into industrial use,

through image manipulation. This use was also investigated and new techniques have

been established.

The breakdown of the thesis goes as follows; Chapter 1 will discuss the major

features of nonlinear systems, such as Lyapunov exponents, and fractals. Such prop-

erties are inherent to chaotic systems and often lead the researcher to the existence

of chaos. It will also introduce the system we are investigating and the mechanics

involved. Chapter 2 will discuss symbolic dynamics and the methods used for orbit

hunting. Chapter 3 will discuss the methods used to analyze chaos such as periodic

orbit theory. Chapter 4 will discuss how the methods in chapter 3 were implemented

and the results obtained in our study. Chapter 5 will discuss Fractals in deeper detail,

as well as introducing iterated function systems. Chapter 6 will look at the iterated

function systems, both existing methods and future avenues of approach, as well as

go into detail on fractal interpolation, from linear to a generalized higher order inter-

polation, as well as extending the theory to higher dimensions. Chapter 7 will give

concluding remarks, and mention possible future projects that revolve around the

major ideas expressed in the thesis.

Appendix I contains C code used in the periodic orbit theory. Appendix II contains
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C code used for the interpolation IFS theory.



Chapter 1

Nonlinear Dynamics

1.1 Introduction

As mentioned earlier, nature is inherently nonlinear. The perfection regarded through

physical analysis are not entirely accurate, at least not for all cases. So when we do

analyze a dynamical system there is often information that is left out or ignored.

That is not to say that the approximations that are made do not work, they are just

not always applicable. (Such is the case in quantum scattering, where difficulties in

analysis are reduced to simpler recursive calculations.) When studying dynamical

systems one is left with a system of differential equations which may not reduce to

an analytical solution. Systems with this type of solution were often neglected due

to the need for intensive numerical solutions. Even when these solution techniques

were used, the results were often mistaken for noise. Now, with the invention of faster

computers these systems are more reasonable to solve, and may be done readily with

already existing software.

5
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Before investigating the nonlinear features of any system one must become accus-

tomed to the different maps and features of a chaotic system. Originally there were

three topological criteria that had to be satisfied by a chaotic system. These criteria

were developed by Robert Devaney, and are:

• (a) The dynamical system has sensitive dependence on initial conditions. The

slightest change in initial conditions will produce dramatically different results

after a finite amount of time.

• (b) Periodic points for the system are topologically dense. As the trajectory

evolves it comes arbitrarily close to a previous point in the trajectory.

• (c) The dynamical system is topologically transitive (space filling).

[18, 36] Although the above criterion are general it has been found that there are

cross relations within the list such that one item leads to another. However, tests for

each of these criteria may be done individually. The tests will be summarized in this

chapter and many of them will be used throughout the thesis.

1.1.1 Attractor

When we are dealing with a dynamical system, we are dealing with a flow, F, which

is a continuous set of equations governing the motion of the system through time.

There are two possible classifications for these systems, conservative and dissipative.

To determine the classification we simply take the divergence of the flow, ∇ · F. If
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this value is less than zero we have a dissipative system. If this value is greater than

zero we have a divergent system. A bounded divergent system is known as chaotic.

Through the analysis of a bounded divergent system, we find a set that the system

naturally tends to, after a finite transient period.

An attractor is a set of points that any finite set of given initial conditions will

converge to. These are points of stability, and are characteristic of a divergent trajec-

tory. Technically, these are bounded subsets to which regions of initial conditions of

nonzero phase space volume asymptote as time increases. But in plain language, this

says that after a finite amount of time any nonstable initial condition will converge

to these points. The most common example of an attractor comes from the driven

damped harmonic oscillator, where different parameters lead to different attractors.

The equation to be modelled is as follows;

θ̈ + γθ̇ + sin θ + F sin ωDt = 0 (1.1.1)

The attractors in this system can be in two forms. They can be a point attractor

or they can be a limit cycle where the orbit eventually converges to an orbit or

cycle around some point in phase space. The point attractor is generally a trait

of a dissipative system, since these systems are bound to lose energy until a ground

state, the point of attraction, is reached. The limit cycle is a trait of driven systems,

as the dissipation due to frictional forces may be matched with the driving force.

The natural attractor of chaotic systems are strange attractors, which are attractors
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Figure 1.1: The damped pendulum point attractor

Figure 1.2: Driven damped pendulum limit cycle attractor
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that have fractal dimension. These will be described later in this chapter. This

type of attractor is separated from others by a few characteristics. The attractor is

nowhere repeating, it is topologically dense, and transient. To claim the attractor

is topologically dense is to say that the points that comprise the attractor come

infinitesimally close to each other but are never exactly the same point. This is

because, if the points were permitted to be the same, the entire attractor would end

up bound in an exotic limit cycle, and the chaos would be lost. A common example

of a strange attractor is the Hénon map as seen in references [48, 52, 24, 57, 68]

Possibly the most common attractor is the Logistic Map. This was originally a

function produced to model population growth in a biological system. The intent was

to model the growth and decline of a species over time with the constraints of limited

food resources. They follow the model

xn+1 = µxn(1− xn) (1.1.2)

with µ being the rate of growth of the species. This is introduced here like the chaotic

pendulum was introduced. The investigations into these systems are rather extensive

in just about any book on chaos, so these will be used as examples throughout this

thesis.
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Figure 1.3: The Two Gears and a Rod Pendulum, R’ denotes the planetary gear

1.2 The System At Hand

The particular system we have been studying consists of two gears and a rod, as

pictured in figure 1.3. The system is held horizontal thus we may neglect the effects

of gravity. The first gear is held in a fixed location and is not allowed to rotate. The

center of this gear is the origin of our coordinate system. The second gear is free

to rotate around the first gear at a constant frequency. The final component is the

homogeneous rod, attached to the boundary of the second gear at a fixed point. The

rod has full rotational freedom. The dynamics of this system may be easily studied

using Lagrangian mechanics. With;

x = (R′ + R) cos φ′ −R cos (φ′ + φ) + l cos ϑ

y = (R′ + R) sin φ′ −R sin (φ′ + φ) + l sin ϑ
(1.2.1)

where we can take the relationship between the prime and unprimed coordinates is

R′φ′ = Rφ. We consider the kinetic energy of the system to integrate over the mass



11

of the system, so we get

T =

∫
ẋ2 + ẏ2dm (1.2.2)

The vertical system does not experience potential energy so the Lagrangian consists

solely of kinetic energy, thus one can write the Lagrangian equation as:

L =
1

2
Iϑ̇2+

1

2
(1+r)mlRφ̇ϑ̇{cos(ϑ−rφ)−cos(ϑ−(1+r)φ)}+2mR2(1+r)2φ̇2(1−cos(φ))

(1.2.3)

where I is the inertia of the rod, and the gear ratio r = R/R′. This leads to the 2

equations of motion:

Iϑ̈ +
1 + r

2
mlRω2

d{r sin(ϑ− rφ)− (1 + r) sin(ϑ− (1 + r)φ)} = 0 (1.2.4)

φ̈(1− cos φ) = 0 (1.2.5)

However, the assumption used for the solution of our system is that the angular

velocity of the moving gear is constant, that is to say φ̇ = ωd or φ = ωdt. This

simplifies our Lagrangian to

L =
1

2
Iϑ̇2 +

1

2
(1 + r)mlRωdϑ̇{cos(ϑ− rφ)− cos(ϑ− (1 + r)φ)} (1.2.6)

where we removed the last term of the Lagrangian because it was equal to a total

time derivative, after our substitution. Now our equation of motion becomes

Iϑ̈ +
1 + r

2
mlRω2

d{r sin(ϑ− rφ)− (1 + r) sin(ϑ− (1 + r)φ)} = 0 (1.2.7)
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the second equation of motion no longer exists since we lost a degree of freedom by

forcing the angular velocity to be constant.

Now, we must consider frictional forces that are experienced by real systems. The

effect this has on the equations of motion is to add a term to the right hand side, Qϑ̇

where the subscript indicates a frictional force that depends on the velocity term. So

we add Qϑ̇ = −ηϑ̇ to the RHS. This leads us to:

ϑ̈ +
η

I
ϑ̇ + ω2

o

{
sin(ϑ− rφ)− (1 + r)

r
sin(ϑ− (1 + r)φ)

}
= 0 (1.2.8)

where we define the natural frequency of the system to be:

ω2
o = r(1 + r)

mlR

2I
ω2

d (1.2.9)

Now, after some more simplifying substitutions and a change of variable, we are left

with a dimensionless equation:

θ̈ +
1

Q
θ̇ + sin(θ) = −ar

Q
+

1 + r

r
sin(θ − φ) (1.2.10)

where

a =
ωd

ωo

=

√
2L

3r(1 + r)R
, Q =

ωd

η

√
r
1 + r

2
mlRI, φ = ωdt = aτ (1.2.11)

The equation is no longer explicitly time dependent. This becomes very important

for ease of analysis later, since we will want to break the differential equation into a

3-Flow system:

dx
dt

= y(t)
dy
dt

= −y(t)
Q
− sin(2πx(t))− ar

Q
+ 1+r

r
sin(2πx(t)− z(t))

dz
dt

= a

(1.2.12)
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These sets of equations are the focus of much of this thesis. We now turn to a global

feature of a dynamical system.

1.2.1 Manifolds

Manifolds are the solution space for any dynamical system. This is an especially

significant concept for chaotic systems. Analysis of the topology of manifolds is an

important concept for symbolic dynamics, since symbolic dynamics utilizes topolog-

ical structures and symmetries. Defining the topological structure that the chaotic

system exists in is often a fairly easy task. Based on the equation of motion we have

a manifold S1 × S1 which comes from two degrees of rotational freedom, the plane-

tary gear and the rod, as well as the equation forcing the system to be autonomous.

We therefore have a smooth manifold for the third degree of freedom, and with that

comes symmetry. This knowledge allows us to better analyze the system before ap-

plying any numerical techniques. An example of such a form of analysis is symbolic

sequencing, to be described in chapter 2. Concepts such as the winding number,

seen in section 1.2.4, also depend on the type of manifold of a system, since by its

very definition, it requires a closed set. Furthermore, the Poincare section actually

restricts the manifold investigated to S1. With this system defined we now need to

concentrate on the defining features of chaos.
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1.2.2 Kneading

Folding is a phenomenon experienced by bounded systems. Basically, it is a return

within phase space, and it allows a trajectory to be periodic. Folding prevents a

system from having a range which is greater than the domain. Many textbooks on

the matter describe a folding system in terms of a Smale map, or a horseshoe map.

This definition is suitable for the topologists that study in this field, however on a

more practical level, folding is best described in Kinsner [36] where an example of the

logistic map folding is demonstrated. Basically, what we may consider the map as

given in equation 1.1.2. The diagonal line y = x on the map is the substitution line,

since it is the points along this line that are swapped for the new position xn. This

undergoes folding since the map is bounded on the unit line, and any point within the

unit line when compared to the substitution line will result in another point within

the unit line. When folding is also accompanied with a method known as stretching,

where one takes an interval of the unit line, and determines how the resulting line

will appear after the first iteration on the map. Kneading is the formal name for the

process of folding along with stretching. Kneading may be seen in Figure 1.4 where

r = 4. What is seen in Figure 1.4 is that a sample interval [0.2,0.4] after one iteration

becomes the interval [0.64,0.96] which has a larger range. So this map has experienced

folding as well as stretching. If we were to continue this process we would find that

the interval [0.2,0.4] eventually covers the entire unit line. This is true regardless of
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Figure 1.4: A sample of the kneading of the logistic map (r=4) after one iteration

the size of the original range. The fact is, the smaller the range the larger the number

of iterations are needed for the same end result. Thus we see that in a chaotic regime

the trajectory is topologically dense, thus validating Devaney’s last two criterion for

chaos.

1.2.3 Lyapunov Exponent

One of the best understood qualities of a chaotic system is the divergence from tra-

jectories based on initial conditions. Since this is a common characteristic of chaotic

systems there must be a way of analyzing it, and thus identifying the chaos associ-

ated with it. The exponential separation between two trajectories by a perturbation

is called the Lyapunov exponent [33]. Generally speaking, there is one Lyapunov

exponent for each degree of freedom in the system. A Lyapunov exponent in a

flow equation is simply the Lyapunov exponent of the Poincare section 1.3 of the

attractor.[35] The Lyapunov exponent is easiest understood for maps, and we will be
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going into this in more detail in chapter 3.

The Lyapunov characteristic exponent is a method of quantifying the sensitive

dependence of a system on the initial conditions.[33] This is a good method of deter-

mining the level of chaos in a system, since it measures the exponential divergence

of a system with even the smallest difference of initial conditions. Calculation of the

Lyapunov exponent is a complicated task, however the algorithm for calculating it is

fairly straight forward. The Lyapunov exponent is the coefficient of the exponential

separation of two initial guesses λ. These values can be of three states, they can be

0, thus indicating to the observer that there is no divergence or convergence of the

system over time. This simply means the system does not change if different initial

conditions are used. The Lyapunov exponent may be less than 0, indicating that the

two initial conditions will eventually converge to the same trajectory. If the Lyapunov

exponent is greater than 0 we have a situation where the two trajectories will diverge

no matter how close the guesses are. The final state will be completely different over

a finite amount of time, thus the system is chaotic. In the limiting case λ → ∞

the system becomes random. What we start with is the idea that there is a relation

between the steps along a trajectory, δx(t) = eλtδx(0) where δx(t) = x1(t) − x2(t)

and δx(0) = x1(0)−x2(0). The Lyapunov exponent is then found to be λ = 1
t
ln δx(t)

δx(0)
.

The logarithm argument is of the form of a well defined operation, the derivative of
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the mapping function, f(x). So we have:

λ = lim
n→∞

1

n

n∑
i=1

ln

∣∣∣∣
df(x)

dx

∣∣∣∣
x=xi

(1.2.13)

If we were to drop the logarithm we would be left with another dynamical average,

the Lyapunov number, or more conventionally eλ, which has the form:

L = lim
n→∞

(
n∏

i=1

∣∣∣∣
df(x)

dx

∣∣∣∣
x=xi

) 1
n

(1.2.14)

To simplify matters more, a periodic orbit has a finite number of rotations, and thus

the number n is finite, N, so we get:

λ =
1

N

N∑
i=1

ln

∣∣∣∣
df(x)

dx

∣∣∣∣
x=xi

(1.2.15)

.

So, if we were to take two trajectories with initial points separated by ε0 that

result in a separation of εn after n iterations we have that x0, x0 + ε0 → xn, xn + εn

and so we may define λ as:

λ = lim
n→∞

1

n
ln

εn

ε0

(1.2.16)

which characterizes the sensitivity to initial conditions of a 1 dimensional map. Ba-

sically, no matter how small ε0 is, the separation of the resulting trajectories will be

large after sufficient iterations.

For an analytic approach, we can take

εn = fn(x + ε0)− fn(x) (1.2.17)
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where what we are really interested in is the limit as ε → 0. The Lyapunov relation

in equation 1.2.16 becomes

λ = lim
n→∞

lim
ε0→0

1

n
ln

fn(x + ε0)− fn(x)

ε0

= lim
n→∞

1

n
ln

∣∣∣∣
dfn

dx

∣∣∣∣ (1.2.18)

and so for one dimensional systems we have that the Lyapunov exponent strictly

depends on the first derivative evaluated along points on the trajectory.

One must keep in mind that the Lyapunov exponent is defined for a chaotic system.

Since chaotic systems are bounded, they must experience folding as described above.

Equation 1.2.16 only works for orbits that do not experience this folding, and the

value for εn must be less than the size of the attractor [55]. Basically, one must

choose the size of εn well, and to circumvent the folding effects.

If we consider the logistic map, it follows from Equation 1.2.18 that the Lyapunov

exponent takes on the value:

λ = lim
n→∞

1

n

n∑
i=1

ln |r(1− 2xi)| (1.2.19)

which results in a Lyapunov spectrum as seen in Figure 1.5

This system lies in a bounded set [0,1], and since it is bounded we have that

the orbits must experience folding, which occurs at the diagonal y = x, also known

as the substitution line [36]. We see in Figure 1.4, the orbit folds whenever the

current position xn is greater than the critical point x = 0.5. The separation still

occurs but in the opposite direction, thus the use of the absolute brackets in the
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Figure 1.5: The Logistic Bifurcation and the corresponding Lyapunov Spectrum

Equation 1.2.18, which allows use to circumvent the folding process. In figure 1.5 we

see a direct comparison between the bifurcation diagram and the Lyapunov spectrum.

The basic traits are that in periodic regions the Lyapunov exponent is negative, and

whenever a bifurcation occurs we have an instability, and thus a Lyapunov exponent

of zero. When we enter the region where r > r∞ the Lyapunov exponent begins to

take on positive values, and thus we have that the system becomes divergent. In

the region beyond r∞ there are points where the Lyapunov exponent goes negative,

corresponding to regions of periodicity in the chaotic regime.

The above works well for 1 dimensional systems; however since the systems of

interest are usually higher dimensional, we need to generalize the above equations to

higher dimension. To start, there is an obvious connection between the Jacobian of

a system, and the first derivative. So the first thing we do is write the Lyapunov

calculation as:

λ = lim
n→∞

1

n

n∑
i=1

ln |J|x=xi
(1.2.20)
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where |J| is simply calculated as |det(J)| or even simpler |∏i Λi| with Λi being the

eigenvalues of the Jacobian. The details for justification will be presented in chapter

3. Analogously, we find that the Lyapunov numbers of the flow are the products of the

eigenvalues, over an asymptotic limit. Although this defined formally the Lyapunov

exponent, it is difficult to determine this analytically for flows, so a more numerical

approach is required. What one does to perform a general calculation of the largest

Lyapunov exponent is fairly straightforward. First you pick a point on the attractor.

Next you pick a point that is close to it, and that is also on the attractor, finding the

distance between these two points, using a metric of your choice. Now evolve the two

points through the Poincare section, and find the distance between the two resulting

points. Take the log of the ratio of these distances. Now to repeat this process, the

second point is already far from the original trajectory, and therefore a new point is

necessary. If we follow the equation

xb0 = xa1 + d0

d1
(xb1 − xa1)

yb0 = ya1 + d0

d1
(yb1 − ya1)

(1.2.21)

where d0 is the previous point separation, and d1 is the new point separation, we get

a decent separation of the new trajectory point, and a guess that deviates from this

guess. Finally one simply calculates the average of all these separations. This method

works well for simple maps however a more useful approach comes from Wolf [2] where

the Jacobian matrix is used, along with re-orthonormalization. One difficulty with

the original calculation is that for high resolution of the Lyapunov exponent, one may
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quickly exhaust computing power, and so only short time values may be easily found.

The study of the Lyapunov spectra is commonly performed using symbolic tech-

niques. In this the negative λ are denoted as ’-’ since the important part of the

Lyapunov exponent is in direction of convergence. Zero, and positive Lyapunov ex-

ponents are likewise referred to as ’0’, and ’+’ respectively. If the Lyapunov spectrum

is completely negative,(-,-,...) we have a convergent system in all directions, and the

resulting attractor is referred to as a fixed point. If the spectrum has one zero with

the rest negative (-,-,0,-,...) we have a system that converges from all but one di-

rection in phase space, which results in a 1 dimensional curve.[55] If the system is

bounded, the attractor is cyclic, and thus a periodic orbital motion ensues. With

two zeros we have a 2 dimensional system, which results in quasiperiodic motion.[55]

All we need is one Lyapunov exponent greater than zero to have an unstable system,

since trajectories in at least one direction will be exponentially separating. Again, if

the system is bounded, such as the case for a driven pendulum, and has at least one

positive Lyapunov exponent the system is defined to be chaotic.[36]

Haken’s Theorem simply states that in a 2D system, a trajectory will either con-

verge to a fixed point in space (corresponding to Lyapunov exponent less than 1), or

the trajectory will be a periodic orbit (corresponding to a Lyapunov exponent equal

to zero). No other possibilities can exist for a system with such low dimensionality.

Another important constraint on the Lyapunov exponents is that the sum of all
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exponents of a trajectory must equal the expectation value of the dissipation of the

flow. This effectively offers:

n∑
i=1

λi = limt→∞
1

t

∫
(∇ · f)(τ)dτ (1.2.22)

So, for a dissipative system, the sum of the Lyapunov exponents must be negative,

whereas for a conservative system the sum of the exponents must be zero. The

Lyapunov spectrum allows for analysis of the phase space diagrams, which is especially

useful for higher dimensional systems where 2 dimensional projections are not entirely

useful.[55]

Using the divergence relation, (Equation 1.2.22), we find that the sum of the

Lyapunov exponents for our system is − 1
Q

and from Haken’s theorem we see that

in general there is always a zero Lyapunov number, and so considering the largest

exponent we easily determine the remaining exponent. Through the use of the Lya-

punov exponents we can determine if the dynamical system has sensitive dependence

on initial conditions, and in so satisfying the first of the three listed criterion for a

chaotic system.

1.2.4 Winding Number

Another common feature of a chaotic system is the winding or rotation number.

This is defined as the average number of rotations executed by the orbit in the short

direction for each rotation it makes in the long direction[48]. In graphical terms, this
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Figure 1.6: Torus with a winding value 1, twice around the smaller circumference,
and twice around the larger circumference

is the number of times a sub-rotation completes a cycle, before the major rotation

has completed the cycle. Mathematically this is R = ΩS

ΩL
. If this ratio is irrational

the entire manifold is covered because the loop never closes or crosses its own path.

If the winding number is rational and in a reduced fractional form we claim that the

numerator and the denominator are directly related to the period of the orbit.

In our system the winding number is the ratio of the number of rotations of

the gear around the origin of our coordinate system as compared to the number of

rotations made by the rod around its axis.

1.2.5 The Circle Map

The winding number has a close relationship with a map introduced by Arnol’d [48],

the circle map. This type of map is relevant when the dynamical properties of the
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manifold S1 map onto itself. In particular if the flow is parameterized with an angular

variable, on the domain [0,2π] these maps may be written as θn+1 = f(θ)(mod 2π).[57]

The study of circle maps was originally motivated by coupled oscillators, since each

oscillator moves at its own frequency. If we proceed using a simple two pendulum

coupling we are assuming a system that has two frequencies, ω and ω′. We then

have a system that may be described by θ(t) = ωt(mod 1). If we further use a

Poincare section at frequency ω′, the system may be measured by θn = θ(t0 + n/ω′)

which results in the map θn+1 = (θn + w) with w = ω/ω′ This describes a rotation

by a fraction w of a full turn per sampling period. If the value w is rational (ie of

the form p/q for p,q∈ Z), then we have θn+q = θn + qw = θn (mod 2π). If the

value w is not rational the sequence {θn} densely fills the interval [0,2π]. [57] This is

regarded as the quasiperiodic regime, which means that it is a superposition of two

incommensurate frequencies. In coupled oscillators one observes something known as

frequency locking; the frequency ratio of the two oscillators remains fixed at a rational

value p/q in a finite range w∈ [p/q −∆ρ1, p/q + ∆ρ2]

By the work of Arnol’d the circle map was extended to a general form, θn+1 =

(θn + w + K sin(θn)) mod(2π) The k sin(θn) term models the nonlinear coupling in

the system. This map reveals information about the frequency locking mechanism in

a nonlinear system. If one wants to study the asymptotic regime of the Arnol’d map,
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they need to define the rotation number as;

R =
1

2π
lim

m→∞
1

m

m−1∑
n=0

∆θn (1.2.23)

where ∆θn = w + K sin(θn) [48]

If this maps the circle onto itself the following properties of the rotation number

can be established;[57]

• The rotation number does not depend on the orbit used to compute it, that is

it does not depend on the initial conditions.

• If R is irrational the circle map is equivalent to a pure rotation, the motion is

quasiperiodic, or chaotic. An irrational winding number alone does not identify

chaos in a system.

• If R = p/q is rational, the asymptotic regime is a periodic orbit of period q.

The periodic points of the orbit are ordered along the unit circle as with the

pure rotation.

What one is doing here is testing the rotation of the system from an initial point.

The most useful method of calculating the winding number in flows is the simple

procedure that first we set up some initial condition (IC), then we use the Poincaré

iterate to force the evolution of the IC’s and the difference between the initial con-

ditions and the resulting evolution, in the x direction. Then finally divide by the
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number of times the Poincaré iterate has been called. This should be done several

times over, say 106, to remove any transient behaviour. This information is only

meaningful for a system constrained to a finite manifold.

1.3 Poincaré Section

There has been a lot of work done on attractors and possibly the most significant was

done by Henri Poincaré, who took a cross section of the attractors and analyzed the

data based on the findings in the cross section. This cross section took on the name

of its discoverer, Poincaré. Technically, a Poincaré section is a stroboscopic view of

the phase space, where the period of the strobe is usually natural to the system. It

would be a simple task to project the attractor onto a 2D plane, however this may

not be the most useful option, as sometimes it makes a bigger mess, as seen in Figure

1.7. With the Poincaré section we take a slice through the attractor that is parallel

to the projection plane. What we are really observing is the evolution of the system

as it passes through the Poincaré section. Often this is beneficial for analysis since

two dimensional maps are much easier to follow than a three dimensional manifolds.

We do not lose any generality of the system during this process since we control

the location of the cross section. Poincaré noticed that if a curve was simple it was

likely to have analytical solutions, if the curves were irregular and complicated then

they represent a chaotic system. [33] In most cases the Poincaré section is taken at

the driving frequency. The chaotic attractor of the system is determined by solving
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Figure 1.7: Projection of full attractors on plane

the ODE numerically. Clearly figure 1.7 is rather messy, but if one considers the

Poincaré section see Figure 1.8 you get a dramatically less complicated form. Using

the Poincaré section in the calculation, this simplifies rather nicely. See Figure 1.9

for an example.

In our case, this was done by the insertion of a Poincaré function within the original

general solution of the ODE. One simply replaces the step intervals for the solver to

be 2π/a [48] where ’a’ is as described in equation 1.2.11. This forces the solver to

display only the points occurring on the Poincaré section. A simple modification to

the code, simplifies the analysis procedures dramatically.
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Figure 1.8: Q=0.76 section at 27π
64

within a tolerance of 0.01

Poincaré conjectured that all of the information of the full attractor is captured

in the Poincaré section. [48, 18] The placement of the Poincaré surface is of high

relevance for the usefulness of the result. An optimal surface first maximizes the

number of intersections if at the same time the attractor remains connected. Basically,

the number of points collected in the section must be maximal, as well as the attractor

comprising of a macroscopically connected curve. The second criterion is that the time

delay between the return of the orbit through the section. The reference [57] contains

graphical demonstrations of this effect.

1.4 Fixed Points

Another common feature of chaotic systems is the existence of fixed points. They

follow the form f(~x) = ~x These may be found using return maps and the diagonal
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Figure 1.9: Q=0.76 True Poincaré section of above attractor

Figure 1.10: The Logistic Diagram

line y = x. Any point on the return map that intersects the diagonal is a fixed point.

These points are important for finding periodic points in specific situations. [26] They

also lead the researcher to find fixed points of higher order periodic points, when they

use higher order return maps. See Figure 1.10 for a common example of a return map,

the logistic return map. In the Logistic return map, the next point is plotted against

the current, in the free coordinates. These maps are critical for finding periodic orbits
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Figure 1.11: The Logistic Diagram Multiple Return Maps

since they reveal the kneading sequence, and may also be used to approximate the

sequences of allowed orbits. With one stable coordinate point found one returns to

the Poincaré section to determine the corresponding second reference point. Now one

must decern the stability of these points.

1.5 Bifurcation

Bifurcation diagrams are maps that plot the output of the system against one or more

of its parameters. This type of diagram is useful for determining regions of stability

and instability. As seen in Figure 1.14, we see that there are a few regions of stability

and several regions of chaotic dynamics. These diagrams are often used for simple

analysis of dynamical systems, and are a good indication that chaos may exist in

a system. For systems with more than one parameter several bifurcation diagrams
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Figure 1.12: First return map for Q=0.76

Figure 1.13: Second return map for Q=0.76
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Figure 1.14: Logistic Bifurcation Diagram

are necessary and may be cross linked. Thus, to truly determine if a system with at

least three free parameters such as the forced damped oscillator, is chaotic one must

investigate the coupled dependence in several bifurcation maps. There are several

interesting features of any bifurcation diagram, such as the pitchfork bifurcation, and

the convergence from chaos. In 1964, A.N. Sharkovsky, while studying the Logistic

bifurcation diagram, created a method of ordering the periodic orbits found in a

bifurcation diagram, that became a universal ordering for all bifurcation diagrams.

One starts by observing a bifurcation diagram, and begins counting the periodic orbits

from the largest value of the tested parameter to the smallest value of the parameter.
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He started with the third period, and moves along the following trend;

20 · 3 ≺ 20 · 5 ≺ 20 · 7 ≺ · · · ≺ 21 · 3 ≺ 21 · 5 ≺ 21 · 7 ≺ · · · ≺
2n · 3 ≺ 2n · 5 ≺ 2n · 7 ≺ · · · ≺ 2n ≺ 2n−1 ≺ 2n−2 ≺ · · · ≺ 22 ≺ 2 ≺ 1

(1.5.1)

The pitchfork bifurcation is not the origin of chaos itself, it is seen on the interval

[3.0..3.5] and [3.5..3.55] in figure 1.14. In these regions we have oscillations between

two stable solutions for the given parameter value. As these regions evolve they

can begin to experience further pitchforking, or higher order splitting.[33] The pitch-

forking is an onset of an avalanche of allowed periodic orbits, the system is simply

becoming more and more complicated, but countably so. The onset of chaos occurs

when the periodic orbits begin to take on odd values. That is on a bifurcation diagram

one can pick regions where there are an odd number of stable points. This occurs on

a fine line just after the 2∞ point. [36, 68] As the parameters evolve further we may

find that the chaos is continuous, or contracting back to the smaller oscillations until

it returns to a single solution, as is seen in figures 1.15, and 1.16.

The work of Fiegenbaum found more constants of bifurcation diagrams, known

as the first and second Fiegenbaum constants. These are measurements of the bifur-

cations of the system. The first constant is a measure of the ratio of the distance

between bifurcations along the parameter coordinate from the previous bifurcation.

Graphically this appears as seen in Figure 1.17

From a formula standpoint this is simply;

δ = lim
n→∞

rn−1 − rn

rn − rn+1

(1.5.2)
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Figure 1.15: Logistic Bifurcation Diagram zoomed within regions µ = 3.8 → 3.9

The second constant is a measure of the separation of the different bifurcations

from the complimentary branch. Graphically this appears as seen in figure 1.18 and

the ratio is;

α = lim
n→∞

wn+1

wn

(1.5.3)

[36]

This is good for the 1 dimensional maps exhibited by the logistic map. However,

this is slightly more complicated for higher order differential equations. With these

more common systems, one needs to determine the bifurcation through a Poincaré

section.

From an experimental point of view, in our system the gear ratio is fixed, as

is the rod length, so the only parameters that may be actively altered once the

experiment has been set up is the quality factor ”Q”, and the effective drive frequency.
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Figure 1.16: Logistic Bifurcation Diagram zoom within regions µ = 3.7 → 3.75

See equations 1.2.11. A simple relation was used between the two free variables,

a = 0.8 + 0.3Q and from this a bifurcation diagram for the system at hand was

created.[55] From here two specific regions were selected since they exist in a chaotic

region of the bifurcation diagram. [55] These regions were Q = 0.76, a = 1.028, and

Q = 1.25771, a = 1.17731. We focus the bifurcation plot in figures 1.20 and 1.21
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Figure 1.17: The First Feigenbaum Constant

Figure 1.18: The Second Feigenbaum Constant
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Figure 1.19: 2 Gears and Rod Full Bifurcation Diagram, a = 0.8 + 0.3Q
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Figure 1.20: 2 Gears and Rod Bifurcation Diagram, Q = 0.76 a = 1.028

This depth of study in chaos is a relatively new topic since only in the last 20

years calculations have been fairly easy to perform, and it has wide applications.

So then how may we be able to determine if a system is chaotic or at least has

the potential to be? Well, we have already discussed the bifurcation diagram which

provides an excellent graphical display of chaos. Other indications of chaos arise

from the Poincaré-Bendixon theorem that states that a system with fewer than 3

differential equations cannot exhibit chaos.

Let f be a smooth vector field of the plane, for which the equilibrium points of v̇ = f(v)

are isolated. If the forward orbit F(t,v0), t > 0, is bounded, then either

• ω(v0) is an equilibrium, or

• ω(v0) is a periodic point, or
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Figure 1.21: 2 Gears and Rod Bifurcation Diagram, Q = 1.2577 a = 1.17731

• For each u in ω(v0), the limit sets α(u) and ω(u) are equilibria

Otherwise, it takes a deeper analysis of a system to determine the levels of chaos

exhibited.[35]

1.6 Fractals

Fractals are a feature of many nonlinear systems. They are geometric shapes that

may come in both integer and non-integer dimension, depending on the system being

studied. Fractals have a least one common distinguishable feature, which is that they

are everywhere non-differentiable, they consist solely of singularities. The original

definition of a fractal is that its Hausdorff dimension strictly exceeds the topological

dimension. Simply put the measured dimension is greater than the apparent dimen-

sion. Fortunately this definition was not strictly adhered to, since further studies of
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what are now considered fractals would have been ignored, an example of which is the

Mandelbrot set. These shapes occur frequently in nature – one of the oldest physical

examples studied is the coast of Britain.

Since fractals are a geometric structure we must concern ourselves with the di-

mension of such a feature. There are three common standards, the box dimension,

the information or entropy dimension and, the correlation dimension. All of these

dimensions have a similar form, they are an asymptotic behaviour of the system over

the scale of each measurement. That is they are the log of a measurement divided by

the log of the scale at which they did the measuring. The easiest to perform and the

easiest to describe is the box dimensions so we shall do that here. The box dimension

is a counting dimension, where one only counts the boxes containing information.

For a quick demonstration we can take the bifurcation diagram. The first step

is to choose a scale for the dimension. Say we take the entire length of the box to

be 1, which is a box that covers the entire diagram. The next series of boxes may

be reduced to half their original dimension, thus leaving us with 4 boxes in the same

space as the first. Now we look at the boxes we have created and remove any that do

not contain any piece of the bifurcation diagram. Now we still have 4 boxes to now

scale to a quarter of the original size. Thus each of the three boxes contain 4 smaller

boxes. Again we remove any box that does not contain the bifurcation diagram, and

down-scale the boxes, making sure that at each step we count the number of boxes
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Figure 1.22: The lo-
gistic bifurcation dia-
gram with a covering
of 4 boxes

Figure 1.23: The lo-
gistic bifurcation dia-
gram with a covering
of 16 boxes

Figure 1.24: The lo-
gistic bifurcation dia-
gram with a covering
of 64 boxes

remaining. We see when considering 16 possible boxes only 11 contain the image, and

with 64 boxes only 28 contain the image. We do this until a physical limit is reached,

such as the width of a pixel on a computer screen.

The calculation for the box dimension is simple:

DHM = lim
k→∞

log(Nk)

log(rk)
(1.6.1)

where the subscript HM stands for Hausdorff Mesh, which is named after the

inventor. The Nk is the number of volume units (vels) that still contain the attractor,

and the rk is the scale of the vel. When using an algorithm to perform this calculation,

it is best to operate with the data used to plot the attractor, rather than the plotted

attractor itself, since information may be added or removed from a system artificially

by graphical output.

The other two dimensions are described in more detail in chapter 5. In truth

there are a possible infinity of dimensions allowed to measure a system. Fractals

also come in several different varieties such as compound, simple, and multifractal.
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(see chapter 5). The topological dimension will simply ignore some of the attractor

if it becomes disjoint, for a good example see [36] where Kinsner discusses the box

counting dimension as it acts on a disjoint set of a line and a point. In this case

Kinsner claims that if we were to only consider the box counting dimension we would

have only the dimension of the line. Therefore, other dimensions are required for

proper analysis.

The physical nonlinearity of nature is most obvious when one observes the physical

shapes that nature is comprised of. It is not common in nature that one will find

a stray cube, a pyramid, or even a perfect sphere. In fact many of these standard

geometric shapes are only approximations to natural objects. For example the moon’s

geometric shape appears to be a sphere, however as one gets closer to the moon

they find craters and ridges which are fractals. What we usually find are almost

disorganized shapes such as coastal regions and mountain ranges. These cannot be

properly approximated as geometric shapes, but we all agree they are physical and

do have some kind of shape. We have now defined that shape to be of the fractal

class. The study of fractals to understand the real world is important, not to mention

useful in industry for real image manipulation.



Chapter 2

Symbolic Dynamics

2.1 Introduction

Symbolic dynamics began with J. Hadamard and H.M. Morse in 1898, where they

applied this idea to geodesic flows on surfaces of negative curvature.[16] The term

”Symbolic dynamics” was coined by Morse and Hedlund in 1938 [28]. This new cre-

ation simplified the studying of the geodesic flows by producing symbolic sequences

that were forbidden, and that any sequence is possible as long as it doesn’t contain

any forbidden subsequences. 20 years later Morse and Hedlund continued work on

the topic and showed that finite descriptions of dynamics were possible. Symbolic

dynamics was then used to study dynamical systems which were made up of differ-

ential equations. These systems are commonly studied by discretizing time, however

Symbolic dynamics is an attempt to discretize both space and time.[16] The intent

was to divide the phase space into a finite number of pieces and keep track of which

piece the system was in after each passing unit of time. Each state is labelled by a

43
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symbol and thus as the states evolve one is able to observe the trends of the evolving

system. [16] Basically it is the study of dynamical systems generated by the shift

map, described below, in the spaces of some finite alphabetic sequence denoted wk.

A shift is the evolution that occurs with a symbolic sequence. We will briefly describe

the orbits in phase space in terms of a symbolic sequence.

With our 3 dimensional, invertible, dissipative system, we expect three Lyapunov

exponents, one of which is zero, one in an unchanging direction, and one is expected

to be negative, a contracting dimension. Therefore since the sum of the Lyapunov

exponents must be positive, we will have the remaining exponent being positive. So we

have only one stretching direction, and thus we will have 1 dimension like mappings.

[38]

Consider an orbit xi = f ix in phase space, denoted as P. We must assume that

the phase space may be partitioned into subsets
⋃

k Pk = P and Pi

⋂
Pj = 0 for

i 6= j If this assumption is invalid the method of partition will not work. To keep

things entirely general we take the approach offered by [68], where we relate the value

f ix to a symbol j if f ix ∈ Pj. Basically, if the ith iteration of a function takes the

value of x which is within the Pj partition the resulting value takes on the symbol j,

rather than some value that may have an infinite mantissa. This is very important to

chaotic systems since the infinite mantissa is essential for the absolute knowledge of

the resulting point on the attractor. Recall the property of transitivity. Ultimately we
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receive a sequence {j0j1j2 . . .} that entirely codes the orbit determined by {f ix} with

x being the points of the orbit that intersect the Poincare section. If the map is one-

to-one, as it is in our case, we are left with the bi-infinite sequence {. . . j−1j0 . . . jn . . .}

which is determined by the rule: if f ix ∈ Pj∗ then ji = j∗, i ∈ Z. This comes about

since we have a point on the manifold, and invertibility tells us that we may know

about the history of the trajectory. However one must keep in mind that chaos implies

a limited knowledge of the history, to perhaps only a few steps.[14]

The ease of the sequence analysis is that an arbitrary starting point on the periodic

orbit may be selected. The symbol sequencing will adjust by shifting the sequence

until the initial point is the first symbol in the sequence. The sequences may not all

be admissible but the dynamics of the system {fn, P} are reflected by the dynamics

in the shift map.[68] Admissibility conditions are described later.

The 2-Sided Bernoulli shift is the shift type that one is concerned with for a

diffeomorphism.[68] This type of shift deals with the bi-infinite sequences. The phase

space for this system is;

Ω = {0, 1}Z+ = {w = (. . . w−1w0 . . . wn . . .), wi ∈ {0, 1}} (2.1.1)

with the metric

dist{w′, w”} =
∞∑

i=−∞

|w′
i − wi”|
3|i|

(2.1.2)

The map generating the dynamical system is the shift map σ : Ω → Ω, σw = w′

where w′
i = wi+1 and σ is the shift operator.
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As a simple example take a bi-infinite sequence σ(w) = σ(. . . abcd • efgh . . .) →

w′ = . . . abcde • fgh . . . where it is obvious that the first symbol in the forward

sequence becomes the last symbol in the backward sequence. The • is the current

position in the orbit j0. This makes logical sense since the present location of any

orbit changes over time. If one is dealing with a periodic orbit the forward and

backward sequences are easy to determine since any backward sequence is just a

reverse cyclic permutation to the orbit, and the forward sequence is just a forward

cyclic permutation. The difficulty with dissipative system is that given the present

location, finding the past locations is not a trivial task. For a full treatment of this

topic see Lind and Marcus [16].

2.2 Partitions

With aid from the symbolic dynamics of a system we can map the trajectory of a

dynamical system through space. Symbolic dynamics requires a separation of the

phase space into logical breaks, that are generally based on some finite knowledge of

the attractor at hand. I say ”finite knowledge” since we only know a small level of

accuracy for the decimal value of the break. Problems occur as we approach these

breaks too closely. In the standard example for this system we look at the logistic

map. See figure 2.1 With the logistic map, the break is actually very well defined to

be the peak of the quadratic, or more generally the critical point of the attractor.

Since we are using a two symbol system, we will use the symbols L and R. As we
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Figure 2.1: Logistic Diagram, here we se the sequence is RLRRRRLR. . .

track a trajectory we label it as it moves through the phase space. As an example we

start with the initial position x0 = 0.4 on the logistic map again see figure 2.1 with

µ = 4 we then follow the trajectory starting in the L region to the R region back to

the R region, and etcetera. This is same procedure as outlined in chapter 1 in the

section on Kneading. What we find are general patterns that emerge depending on

which region, L or R, we use for a starting condition. These trends are described

below.

For higher dimensional systems a different form of partition may be necessary.

The previously mentioned method of using critical points on the return map may

not work if the critical points are saddle points, since these are neither maxima or

minima points on the map. The question then is, what do we do in systems with
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saddle points for critical points? The method used for this type of system is the

method of homoclinic tangencies, where one plots the forward iterations on the same

plot as the backward iterations which is simply the attractor of the system. The

point(s) where these two iterates are tangent is called a homoclinic point(s). These

homoclinic points are used as the partition points. If the attractor is multisheeted,

the tangency points are connected. That is, the partitions are not necessarily straight

lines in the phase space. These tangency points are easily mapped to the return map

where they are of more use for future analysis, since this is where the periodic orbits

may be found manually.

2.2.1 Pruning

Pruning rules are necessary for the symbolic dynamics. Pruning rules act as the name

suggests: they control the direction of growth of symbolic patterns by setting up

boundary conditions. These were evident even with Hadamard’s negative curvature

analysis, when he found forbidden sequences. To find these pruning rules we observe

some form of boundary condition and apply that as a rule for future orbits. The

pruning rules are in general difficult to determine, only in a few cases are they trivial,

but clever methods of separation may lead to more obvious pruning rules.

For the rod and gear system we opt to use kneading sequences which are an

inherent property of the system. A kneading sequence is a symbol string that is

created by choosing the initial condition to be the same as the critical value of the
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map, or the homoclinic point. In n-modal maps, which are maps with n critical

points/homoclinic points, this sequence would be created by starting at a point along

the attractor (return map) that it known to be at (or near) the partition line. In

multisheeted maps there may be more than one kneading sequence for a given critical

or homoclinic point. This means that if we start from the same section in phase space

we may choose to extend the iterate to any of the available sheets, thus producing

several kneading sequences from one homoclinic point. The pre-image is also useful

and is created by using the tangency point as the initial point of iteration on the return

map. However we go in the opposite direction as the kneading sequence iterations.

Simply iterate the map in the opposite direction as that described in logistic map, to

get the pre-image for the logistic map. The symbolic sequences may be infinite non-

repeating, in such a case we only need to follow the forward iterations to the required

precision. That is, based on trinary arithmetic we only need to pursue a finite number

of symbols along a sequence. For the kneading sequence to be of any computational

use we must have a metric for the symbol space, and since the attractor is normalized

between 0 and 1 the kneading sequence must also be normalized. Using methods like

those found in [50, 4] we define the metric for the system. The kneading sequences

can readily be converted, by using the definition of the trinary arithmetic.[60] The

metric plane may be defined by the following metrics;
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first we define an integer εi for each symbol si

εi =

{
−1, if si = N

1, otherwise
(2.2.1)

Then the forward sequences are replaced by their metric:

α =
∞∑
i=0

µi

3i
(2.2.2)

where we use 3i because we are using a 3 symbol system. For the system to be well

ordered the µ is defined as

µi =

{
0, if si = R

1, if si = otherwise
(2.2.3)

We make a backwards sequence by defining a similar metric using

ei =

{
−1, if si = L

1, otherwise
(2.2.4)

Then the backward sequences are replaced by their metric:

β =
∞∑
i=0

νi

3i
(2.2.5)

Again considering well ordering ν is defined as

νi =

{
0, if si = N

1, if si = rest
(2.2.6)

This leaves us with some test sequences, when considering limits in the metric

α(•NL∞) = β(L∞•) = 1 α(•L∞) = β(R∞•) = 0

α(•NNL∞) = α(•RNL∞) = 2/3 β(R∞L•) = β(R∞N•) = 2/3

α(•RL∞) = α(•LNL∞) = 1/3 α(L∞N•) = β(L∞R•) = 1/3
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Figure 2.2: Symbol Plane, Q = 0.76

Figure 2.3: Symbol Plane, Q = 1.2577
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Now, with the trinary arithmetic defined, we can continue with the orbit hunting.

The first thing to realize are the boundary conditions that have been freshly imposed.

These act in two directions for our bimodal map, forward iterations and backward it-

erations. When these are plotted on iterative space we see they form boxes and these

are referred to as fundamental forbidden zones (FFZ). They are shown in figures 2.2

and 2.3, the white space are the FFZ’s. Basically, no orbit, or part of an orbit, is

permitted to cross into these regions thus ruling them out from the list of possibil-

ities. This corresponds to Hadamard’s original ruling that any sequence containing

a forbidden subsequence must also be forbidden.[25] We have added conditions that

as long as any shift of a given orbit does fall within the FFZ’s it is also inadmissible.

Graphically these FFZ’s may be seen on the symbolic plane. One needs only to plot

the allowed orbits against the symbol plane and they may find cutoff points that the

system will naturally avoid, these are FFZ’s. With a 2 dimensional map, there are

an infinite number of tangencies, which may be seen if one blows up a filled portion

of the symbol plane. However since we are interested in only short orbits, a finite

number of tangencies may be used. Basically the longer the orbit the more tangencies

are needed for pruning.

When trying to calculate the backward sequences for a general chaotic system, one

must use the current position and guess the previous position, based on a backwards

iterate. However in a case, like the logistic diagram, we have that the current position,
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when iterated backwards, has at least 2 possible paths, for the first iterate, and 2n

possible paths for the nth backwards iterate. This is to be expected since in chaotic

systems one can at best hope to predict the short time changes in the system.

2.3 1D Approximation

In some cases, the 2 dimensional maps may take on strong resemblance to 1 dimen-

sional maps. For this case there may be approximations made to use only the basic

information about a system for pruning. The 2 dimensional map that we are observ-

ing does have some relation to the 1 dimensional map. In fact, with the rod and gear

system we have maps that are fairly well approximated by the 1D maps. So using

a method developed by Zheng [4] we use the forward foliations of the tangencies as

initial boundaries, greatly reducing the number of allowed orbits. Effectively, if one

observes the symbol plane this procedure would consist of looking at only the α co-

ordinates, leaving the boundaries uncapped so that the forbidden zones are blocks of

symbol space not allowed on a single axis. This approximation works very well for

short orbits, however when put to practical use for larger orbits, it may still permit

several orbits that should not exist. This would be due to the 2 dimensional approx-

imation breaking down for longer orbits. What is needed now is the expansion that

leads the system back into the 2D case, where we have to consider the FFZ’s. Since

for any analysis we expect that the α terms are the same, we have to expand our

analysis to include the backward sequences. When we do this we have the regions that
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were once inadmissible are now admissible within a small boundary. From this we

know that adding conditions to the restrictions we can slowly test the admissibility of

the larger orbits. Ultimately, this process will end with a 2 dimensional analysis for a

2 dimensional map, but as mentioned before, shorter orbits are all that is needed for

the scope of this project. A fair analogy for this would be the Taylor series expansion,

since for small values of the argument we can simply consider the linear term, but

for larger values of the argument we need to expand to the quadratic term and so on.

For higher dimensional analysis it is possible that the maps will go to higher dimen-

sion as well. However since symbolic dynamics still has not been properly defined

for 3D systems, one cannot use symbolic dynamics for higher dimensional systems

directly, and approximations would have to be made. One must also be careful in

the accuracy of the kneading sequence, usually the researcher determines some cutoff

where any further contribution to the kneading sequence is negligible so the sequence

is truncated. If the orbit being searched is longer than the truncation, the results of

any admissibility test are questionable. Fortunately, in many cases the truncation is

trivial due to a repetition found in the kneading sequence. However, this may not

always be the case.
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2.4 Admissibility

Now, with the boundary conditions understood, one can produce an exhaustive list

of the allowed orbits with a minimal probability of producing orbits that are inad-

missible. I say ”minimal probability” since there are several fundamental forbidden

zones of varying sizes in the symbol space. By removing the tangencies as described

above we are removing the largest FFZ’s from the symbol plane and thus removing

the largest amounts of space available for an orbit to possibly occupy. Since there are

an infinite number of FFZ’s catching them all is fruitless since for finding the lower

period orbits we are required to use only the larger FFZ’s. In fact, we found that for

up to period 8, for table II parameters, see the end of this chapter, the only restric-

tions required were for the 1D map. Other restrictions did not make any difference in

the results. So, we find that the orbits up to at least period 17 are valid with only a

few FFZ’s. Since the symbolic sequencing was not followed beyond period 17, higher

periods were not verified for correctness. Now, with the reduced number of allowed

orbits we find that the orbit hunting is made much easier, reducing the number of

possibilities from N! to around 2N , which for large orbits still is not great, but is still

manageable.

Some of the benefit of finding the symbolic orbits is the information about a

system that may be established before any root finding calculations, such as the

winding number, which was defined in chapter 1. This can be determined by taking
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the ratio of the number of R’s and N’s in an orbit to the number of symbols in the

orbit.

Basically, what has been described here is a destructive procedure for determining

allowed orbits. First you assume all permutations and combinations (except the

repetitive cyclic permutations) are allowed and then from that list perform all shifts

possible and remove any combination that violates the kneading ordering, or enters

FFZ’s. The remaining list, by deduction, must be all the allowed orbits. There is

also a constructive method of creating the list, in short it uses already existing orbits

and the idea of a rotation interval. This method may be found in the Thesis [55].

If one considers time requirements for symbolic orbit hunting, both methods may

potentially be useful. The constructive method works well, especially if not all shorter

period orbits have been found. However this method begins to break down for large

periods of orbit since the original created list will have N! allowed combinations for

testing. It is when the destructive method becomes too time consuming that the

constructive method may be used, where one only takes a short list of allowed orbits,

and generates the longer list of higher period orbits. Since we are only dealing with

orbits with a period less than 18 the destructive method works fairly efficiently.

2.5 Prime Cycles

Another important fact to consider with orbit hunting is the single traversal of a cycle,

also referred to as a prime cycles. These are orbits that do not repeat themselves or,
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more formally, may not be broken into identical subsets. For example RN is a prime

cycle, but RNRN is not a prime cycle, but is rather made up of a repeat of the RN

subset. It is defined as a non-repeating symbol string of np symbols [52] Where np

is the period of the orbit. A cyclic permutation of a prime cycle is the same prime

cycle. An orbit hunter should be aware of this since it may reduce the amount of

work done in the future.

With the methods for finding the symbolic orbits defined, from here we need to

calculate the position of these allowed orbits in the Poincare section.

2.6 Numerical Orbit Hunting

Once the allowed orbits have been established, we are now left with the task of

calculating the actual positions of the orbital trajectories. The symbolic approach to

this method will be discussed here. The method that was predominantly used in the

orbit searches for this project was a method developed by Divakar Viswanath. [70]

There are a few methods that may be used to find the numerical values for the

short orbits, these will be discussed a in the next chapter. These methods can become

tedious for larger orbits so there have been several methods created to make this work

a lot easier. To find the period 1 orbits, assuming they exist, one only needs to look

at the return map for the system. Where the diagonal crosses the attractor, as seen

in figure 1.12 and 1.13 we find a fixed point as described in chapter 1, these are the

period 1 values x component. Comparing them to the Poincare section we easily find
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the y component. If the Poincare section is of higher dimension more testing may

be required. With the period 1 orbits defined, one takes linear combinations of them

as initial guesses for the larger orbits. This method may also work for higher order

orbits and again will produce seeds that may be used for further symbolic hunting.

[57, 26]

The first method operates on the assumption that all the smaller orbits have been

found. Take for example the values found in table II at the end of this chapter, we

would find the period 1 orbits N and R, the base orbits. From here we could come

up with a fairly good initial guess for period 2 RN since it depends solely on the base

orbits. For period 2 orbits a similar method may be used, In these cases we use the

second return map x = f (2)(x) and the diagonal on this map crosses the period 1

orbits and the period 2 orbits. [26] This method may continue for the higher order

orbits. Once these are found the calculations for further orbits are readily available.

Given the metric values for any symbol in each trajectory, finding even the most

obscure trajectory is greatly simplified since each letter in any of the above orbits

may be broken away from the rest of the orbit and also used as an initial guess. We

see there are fairly dramatic differences between the allowed orbits with table I and

table II. Table I is very restricted and does not allow period 1 orbits, as seen on the

first return map in figure 1.11. Since the diagonal does not contact the attractor on

the first return map we know there are no period 1 orbits. So the combinations of
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smaller orbits to determine the larger orbits is not ideal. Another method is needed

to simplify the task, so we turn to Divakar’s method. This method consisted of

comparing the hunted orbit to existing orbits, but in a slightly different manner. If

we were looking for an orbit RNNLN, Divakar’s method would suggest we use an orbit

that contains RNNL as it would compare the hunted orbit with 4 or more matching

points.

RNNLNRNNLN ...

RNNLRNNLRN ...

Since that orbit, or any cyclic permutation thereof, does not exist we then back

down to a period 3 orbit that might also match with 4 or more symbols. This orbit

is RNN.

RNNLNRNNLN ...

RNNRNNRNNR ...

Now with this match we take the Poincaré section coordinate for the symbol R as

the initial guess for the R in RNNLN. Now we take a cyclic permutation of RNNLN

to NNLNR, and repeat the test, first looking for an orbit that matches at 5 points

and so on. For our purposes this method was found to work well, however it was

slow, especially for longer orbits, thus a modified method was used, where one could

combine the 2 methods described above.

The modified method uses the linear combinations of shorter orbits method with

Divakar’s method. As an example we can take the orbit RRLLN, which exists in table
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I and II and would take the first three coordinates to be the period 3 orbit RRL. Then,

we would use the period 2 orbit LN for the remaining coordinates. This method does

not always work well. Often trends were found between these 2 methods that would

allow for rapid orbit finding with the larger orbits, such as the use of orbit RRRLL

in table 2.1 for any initial guess containing ’LL’. These methods do not guarantee

a successful return, they are simply methods of improving the guess, and have a

much higher probability of success over random guesses. The advantage of Divakar’s

method is that it requires the use of some of the already known orbits. So that if

some of the smaller period orbits are still missing, it does not prevent the hunt from

continuing for larger period orbits. This is useful if an orbit is particularly difficult

to find, which may indicate that the orbit is very unstable and thus we do not need

to find it, this will be described in detail in chapter 3.

When dealing with smaller period orbits, say ten or less, the above mentioned

methods work well enough but are still time consuming. Methods using automated

search techniques had to be developed. This automated search method had to be

broad in its search spectrum but specific enough to be efficient. This was done by

selecting points that were known to be along the attractor up to the 14th decimal

place.

To find initial guesses on the attractor, one needs to run a Poincaré iterate of

the period of orbit being investigated, with a large repeat of the orbit count, say 30
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to 50. To ensure the broad spectrum is being covered, one needs to make a wide

range of starting points for the Poincaré iterate. This is fairly easy to do, since we

know the shape and range of the attractor we could cover the attractor with a grid

of points with two decimal accuracy and the system would evolve appropriately for

each initial guess. With the consideration that transient behaviour is expected for the

system while it is evolving from a two decimal initial guess to a point on the attractor,

we can easily obtain a data set that is full of points as they evolve along the given

differential equations and rest on the chaotic attractor. These points are all suitable

guesses for the multishoot program and since this process may produce millions of

initial guesses, probability theory indicates that many of these points will end up

being convergent to some orbit of the same period as that of the Poincaré iterate. All

we really need is around n2 as many initial guesses as we have expected orbits, with n

being the number of expected orbits. Say for a period 12 orbit from table II we expect

around 600 orbits, so we need to have at least 6002 = 360000 initial guesses. This

process would have to be repeated several times for the different periods of orbit for

a given set of parameters. This is another method that would be next to impossible

without computers. This method was much more efficient than the program that uses

2 decimal initial guesses for the multishoot method. This would take around 3 years

to complete a period 5 search. Higher decimal accuracy on the initial guesses would

result in an exponentially longer search time. After about eight hours most of the
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needed orbits were found. Furthermore, the larger the period of orbit, the more orbits

could be found in a shorter period of time. Difficulties with this method are twofold.

The first difficulty is that the hunter cannot be entirely sure that they have found all

the orbits belonging to a given period. The second difficulty is finding the exact same

orbit several times, but this simply requires filtering to remove the repeated orbits.

As for the issue of not finding all of the allowed orbits in an automated search, it has

been found that the automated searches find the least unstable of the unstable orbits

faster than the very unstable orbits. In the end the following tables 2.1, 2.2, and 2.3

were constructed for the particular parameter values used.

2.7 Conclusion

Now that we have established a method of determining a maximal list of allowed

orbits, and a prescription for calculating the phase space location of these orbits

based solely on the symbolic dynamics, we are left with the need for algorithms to

find the numerical values of the allowed symbolic orbits on the Poincaré section. This

will be discussed in detail in chapter 3. The methods discussed above are generic to

the level of 2 dimensional maps. Extending these ideas to 3 dimensional maps is an

open area for research, but for now we can easily use Poincaré sections to reduce the

mappings to 2 dimensions, allowing the use of the above methods.
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Table 2.1: Allowed Orbits for Q = 0.76

n Allowed Orbits
2 RL NL
3 RRL RLN
4 RLLN
5 RRRLL RRLRL RRLNL RRLLN RLRLN RLNLN
6 RRRLRL RRLRLN RRLNRL RLRLLN RLLNLN
7 RRRLRLL RRRLLNL RRLRLRL RRLRLLN RRLLNRL RRLLNLN RLRLRLN

RLRLNLN RLNRLLN RLNLNLN
8 RRRLRLRL RRRLRLNL RRRLLNRL RRLRRLRL RRLRLRLN RRLRLNRL

RRLRLNLN RRLNRLRL RRLNLNRL RRLLNRLN RLRLRLLN RLRLNRLN
RLRLLNLN RLNRLNLN RLLNLNLN

9 RRRLRLRRL RRRLRLRLL RRRLRLNRL RRRLRLLNL RRRLLNRLL
RRRLLNLNL RRLRRLNRL RRLRLRRLN RRLRLRLRL RRLRLRLLN
RRLRLNRLN RRLRLLNRL RRLRLLNLN RRLNRLNRL RRLNLNRLL
RRLNLNLNL RRLLNRLRL RRLLNRLLN RRLLNLNRL RRLLNLNLN
RLRLRLRLN RLRLRLNLN RLRLNRLLN RLRLNLNLN RLRLLNRLN
RLNRLLNLN RLNLNRLLN RLNLNLNLN

10 RRRLRLRRLL RRRLRLRLRL RRRLRLRLNL RRRLRLNRLL RRRLRLNLNL
RRRLRLLNRL RRRLLRRLNL RRRLLNRRLL RRRLLNRLRL RRRLLNRLNL
RRRLLNLNRL RRLRRLRLRL RRLRRLLNRL RRLRLRRLLN RRLRLRLRLN
RRLRLRLNRL RRLRLRLNLN RRLRLNRLRL RRLRLNRLLN RRLRLNLNRL
RRLRLNLNLN RRLRLLNRLN RRLNRLRLRL RRLNRLLNRL RRLNLNRRLL
RRLNLNRLRL RRLNLNRLNL RRLNLNLNRL RRLLNRLRLN RRLLNRLNRL
RRLLNRLNLN RRLLNLNRLN RLRLRLRLLN RLRLRLNRLN RLRLRLLNLN
RLRLNRLNLN RLRLNLNRLN RLRLLNRLLN RLRLLNLNLN RLNRLNRLLN
RLNRLNLNLN RLLNRLLNLN RLLNLNLNLN

11 RRRLRLRRRLL RRRLRLRRLRL RRRLRLRRLNL RRRLRLRLRRL
RRRLRLRLRLL RRRLRLRLNRL RRRLRLRLLNL RRRLRLNRRLL
RRRLRLNRLRL RRRLRLNRLNL RRRLRLNLNRL RRRLRLLNRLL
RRRLRLLNLNL RRRLLNRRLRL RRRLLNRLRRL RRRLLNRLRLL
RRRLLNRLNRL RRRLLNRLLNL RRRLLNLNRLL RRRLLNLNLNL
RRLRRLRRLRL RRLRRLRLNRL RRLRRLNRLRL RRLRRLNLNRL
RRLRLRRLRLN RRLRLRRLNRL RRLRLRRLNLN RRLRLRLRRLN
RRLRLRLRLRL RRLRLRLRLLN RRLRLRLNRLN RRLRLRLLNRL
RRLRLRLLNLN RRLRLNRRLLN RRLRLNRLRLN RRLRLNRLNRL
RRLRLNRLNLN RRLRLNLNRLN RRLRLLNRLRL RRLRLLNRLLN
RRLRLLNLNRL RRLRLLNLNLN RRLNRRLLNRL RRLNRLRLNRL
RRLNRLNRLRL RRLNRLNLNRL RRLNLNRLRLL RRLNLNRLNRL
RRLNLNRLLNL RRLLNRLRLRL RRLLNRLRLLN RRLLNRLNRLN
RRLLNRLLNRL RRLLNRLLNLN RRLLNLNRLRL RRLLNLNRLLN
RRLLNLNLNRL RRLLNLNLNLN RLRLRLRLRLN RLRLRLRLNLN
RLRLRLNRLLN RLRLRLNLNLN RLRLNRLRLLN RLRLNRLNRLN
RLRLNRLLNLN RLRLNLNRLLN RLRLNLNLNLN RLRLLNRLNLN
RLRLLNLNRLN RLNRLNRLNLN RLNRLLNRLLN RLNRLLNLNLN
RLNLNRLLNLN RLNLNLNRLLN RLNLNLNLNLN
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Table 2.2: Allowed Orbits for Q = 1.2577

n Allowed Orbits
1 R N
2 RN RL NL
3 RRN RRL RNN RLN
4 RRRN RRRL RRNN RRLN RNNN RLLN
5 RRRRN RRRRL RRRNN RRRLN RRNRN RRNRL RRNNN RRLRL RRLLN

RNRNN RNRLN RNNRL RNNNN RLRLN RLNNN RLNLN
6 RRRRNN RRRRLN RRRNRN RRRNRL RRRNNN RRRLRL RRRLLN

RRNRRL RRNRNN RRNRLN RRNNRN RRNNRL RRNNNN RRLRNN
RRLRLN RRLNRN RRLNRL RRLNNN RRLNLN RNRNNN RNRLLN
RNNRLN RNNNNN RLRLLN RLLNNN RLLNLN

7 RRRRNRN RRRRNRL RRRRNNN RRRRLRL RRRRLLN RRRNRRN
RRRNRRL RRRNRNN RRRNRLN RRRNNRN RRRNNRL RRRNNNN
RRRLRRN RRRLRRL RRRLRNN RRRLRLN RRRLNRN RRRLNRL
RRRLNNN RRRLNLN RRNRRNN RRNRRLN RRNRNRN RRNRNRL
RRNRNNN RRNRLRL RRNRLLN RRNNRRL RRNNRNN RRNNRLN
RRNNNRN RRNNNRL RRNNNNN RRLRRLN RRLRLRL RRLRLLN
RRLNRNN RRLNRLN RRLLRNN RRLLNRN RRLLNRL RRLLNNN
RRLLNLN RNRNRNN RNRNRLN RNRNNNN RNRLRNN RNRLRLN
RNRLNNN RNRLNLN RNNRNNN RNNRLRL RNNRLNL RNNRLLN
RNNNRLN RNNNNNN RLRLRLN RLRLNNN RLRLNLN RLNRLLN
RLNLNNN RLNLNLN

8 RRRRNRRN RRRRNRRL RRRRNRNN RRRRNRLN RRRRNNRN RRRRNNRL
RRRRNNNN RRRRLRRN RRRRLRRL RRRRLRNN RRRRLRLN RRRRLNRN
RRRRLNRL RRRRLNNN RRRRLNLN RRRNRRRL RRRNRRNN RRRNRRLN
RRRNRNRN RRRNRNRL RRRNRNNN RRRNRLRL RRRNRLLN RRRNNRRN
RRRNNRRL RRRNNRNN RRRNNRLN RRRNNNRN RRRNNNRL RRRNNNNN
RRRLRRNN RRRLRRLN RRRLRLRL RRRLRLLN RRRLNRRN RRRLNRRL
RRRLNRNN RRRLNRLN RRRLLRNN RRRLLNRN RRRLLNRL RRRLLNNN
RRRLLNLN RRNRRNRN RRNRRNRL RRNRRNNN RRNRRLRL RRNRRLLN
RRNRNRRL RRNRNRNN RRNRNRLN RRNRNNRN RRNRNNRL RRNRNNNN
RRNRLRRL RRNRLRNN RRNRLRLN RRNRLNRN RRNRLNRL RRNRLNNN
RRNRLNLN RRNNRRLN RRNNRNRN RRNNRNRL RRNNRNNN RRNNRLRL
RRNNRLLN RRNNNRRL RRNNNRNN RRNNNRLN RRNNNNRN RRNNNNRL
RRNNNNNN RRLRRLRL RRLRRLLN RRLRNNRN RRLRNNRL RRLRLRNN
RRLRLRLN RRLRLNRN RRLRLNRL RRLRLNNN RRLRLNLN RRLNRNRN
RRLNRNRL RRLNRNNN RRLNRLRL RRLNRLLN RRLNNNRN RRLNNNRL
RRLNLRNN RRLNLNRN RRLNLNRL RRLNLNNN RRLNLNLN RRLLNRNN
RRLLNRLN RNRNRNNN RNRNRLLN RNRNNRNN RNRNNRLN RNRNNNNN
RNRLRLLN RNRLNRNN RNRLNRLN RNRLLNNN RNRLLNLN RNNRNNRL
RNNRNNNN RNNRLRLN RNNRLRLL RNNRLNRL RNNRLNNN RNNRLNLN
RNNRLLNL RNNNRLLN RNNNNRLN RNNNNNNN RLRLRLLN RLRLNRLN
RLRLLNNN RLRLLNLN RLNRLNNN RLNRLNLN RLLNNNNN RLLNLNNN
RLLNLNLN
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Table 2.3: Additional Allowed Orbits for Q = 1.2577

n Allowed Orbits
9 RRRRRRRRN RRRRRRRRL RRRRRRRNN RRRRRRRLN RRRRRRNRN RRRRRRNRL

RRRRRRNNN RRRRRRLRL RRRRRRLLN RRRRRNRRN RRRRRNRRL RRRRRNRNN
RRRRRNRLN RRRRRNNRN RRRRRNNRL RRRRRNNNN RRRRRLRRN RRRRRLRRL
RRRRRLRNN RRRRRLRLN RRRRRLNRN RRRRRLNRL RRRRRLNNN RRRRRLNLN
RRRRNRRRN RRRRNRRRL RRRRNRRNN RRRRNRRLN RRRRNRNRN RRRRNRNRL
RRRRNRNNN RRRRNRLRL RRRRNRLLN RRRRNNRRN RRRRNNRRL RRRRNNRNN
RRRRNNRLN RRRRNNNRN RRRRNNNRL RRRRNNNNN RRRRLRRRN RRRRLRRRL
RRRRLRRNN RRRRLRRLN RRRRLRLRL RRRRLRLLN RRRRLNRRN RRRRLNRRL
RRRRLNRNN RRRRLNRLN RRRRLLRNN RRRRLLNRN RRRRLLNRL RRRRLLNNN
RRRRLLNLN RRRNRRRNN RRRNRRRLN RRRNRRNRN RRRNRRNRL RRRNRRNNN
RRRNRRLRL RRRNRRLLN RRRNRNRRN RRRNRNRRL RRRNRNRNN RRRNRNRLN
RRRNRNNRN RRRNRNNRL RRRNRNNNN RRRNRLRRN RRRNRLRRL RRRNRLRNN
RRRNRLRLN RRRNRLNRN RRRNRLNRL RRRNRLNNN RRRNRLNLN RRRNNRRRL
RRRNNRRNN RRRNNRRLN RRRNNRNRN RRRNNRNRL RRRNNRNNN RRRNNRLRL
RRRNNRLLN RRRNNNRRN RRRNNNRRL RRRNNNRNN RRRNNNRLN RRRNNNNRN
RRRNNNNRL RRRNNNNNN RRRLRRRLN RRRLRRNRN RRRLRRNRL RRRLRRNNN
RRRLRRLRL RRRLRRLLN RRRLRNNRN RRRLRNNRL RRRLRLRRN RRRLRLRRL
RRRLRLRNN RRRLRLRLN RRRLRLNRN RRRLRLNRL RRRLRLNNN RRRLRLNLN
RRRLNRRNN RRRLNRRLN RRRLNRNRN RRRLNRNRL RRRLNRNNN RRRLNRLRL
RRRLNRLLN RRRLNNNRN RRRLNNNRL RRRLNLRNN RRRLNLNRN RRRLNLNRL
RRRLNLNNN RRRLNLNLN RRRLLNRRN RRRLLNRRL RRRLLNRNN RRRLLNRLN
RRNRRNRRL RRNRRNRNN RRNRRNRLN RRNRRNNRN RRNRRNNRL RRNRRNNNN
RRNRRLRRL RRNRRLRNN RRNRRLRLN RRNRRLNRN RRNRRLNRL RRNRRLNNN
RRNRRLNLN RRNRNRRNN RRNRNRRLN RRNRNRNRN RRNRNRNRL RRNRNRNNN
RRNRNRLRL RRNRNRLLN RRNRNNRRL RRNRNNRNN RRNRNNRLN RRNRNNNRN
RRNRNNNRL RRNRNNNNN RRNRLRRNN RRNRLRRLN RRNRLRLRL RRNRLRLLN
RRNRLNRRL RRNRLNRNN RRNRLNRLN RRNRLLNRN RRNRLLNRL RRNRLLNNN
RRNRLLNLN RRNNRRNNN RRNNRRLRL RRNNRRLLN RRNNRNRRL RRNNRNRNN
RRNNRNRLN RRNNRNNRN RRNNRNNRL RRNNRNNNN RRNNRLRRL RRNNRLRNN
RRNNRLRLN RRNNRLNRN RRNNRLNRL RRNNRLNNN RRNNRLNLN RRNNNRRLN
RRNNNRNRN RRNNNRNRL RRNNNRNNN RRNNNRLRL RRNNNRLLN RRNNNNRRL
RRNNNNRNN RRNNNNRLN RRNNNNNRN RRNNNNNRL RRNNNNNNN RRLRRLRNN
RRLRRLRLN RRLRRLNRN RRLRRLNRL RRLRRLNNN RRLRRLNLN RRLRNNRNN
RRLRNNRLN RRLRLRRLN RRLRLRLRL RRLRLRLLN RRLRLNRNN RRLRLNRLN
RRLRLLRNN RRLRLLNRN RRLRLLNRL RRLRLLNNN RRLRLLNLN RRLNRRLLN
RRLNRNRNN RRLNRNRLN RRLNRNNRN RRLNRNNRL RRLNRNNNN RRLNRLRNN
RRLNRLRLN RRLNRLNRN RRLNRLNRL RRLNRLNNN RRLNRLNLN RRLNNNRNN
RRLNNNRLN RRLNLNRNN RRLNLNRLN RRLLRNNRN RRLLRNNRL RRLLNRNRN
RRLLNRNRL RRLLNRNNN RRLLNRLRL RRLLNRLLN RRLLNNNRN RRLLNNNRL
RRLLNLRNN RRLLNLNRN RRLLNLNRL RRLLNLNNN RRLLNLNLN RNRNRNRNN
RNRNRNRLN RNRNRNNNN RNRNRLRNN RNRNRLRLN RNRNRLNNN RNRNRLNLN
RNRNNRNNN RNRNNRLLN RNRNNNRNN RNRNNNRLN RNRNNNNNN RNRLRLRNN
RNRLRLRLN RNRLRLNNN RNRLRLNLN RNRLNRNNN RNRLNRLLN RNRLNLRNN
RNRLNLNNN RNRLNLNLN RNRLLNRNN RNRLLNRLN RNNRNNRLN RNNRNNNRL
RNNRNNNNN RNNRLRLRL RNNRLRLNL RNNRLRLLN RNNRLNRLN RNNRLNRLL
RNNRLNLNL RNNRLLNRL RNNRLLNNN RNNRLLNLN RNNNRNNNN RNNNRLRLN
RNNNRLNNN RNNNRLNLN RNNNNRLRL RNNNNRLLN RNNNNNRLN RNNNNNNNN
RLRLRLRLN RLRLRLNNN RLRLRLNLN RLRLNRLLN RLRLNNNNN RLRLNLNNN
RLRLNLNLN RLRLLNRLN RLNRLLNNN RLNRLLNLN RLNNNRLLN RLNLNRLLN
RLNLNLNNN RLNLNLNLN



Chapter 3

Periodic Orbit Theory

3.1 Introduction

3.1.1 Evolution

Periodic Orbit Theory, as the name suggests studies the set of periodic orbits that

exist in a system. As previously mentioned, a set of linear differential equations may

involve a singular solution or a collective solution, as in a periodic orbit, such as the

case of the simple harmonic oscillator. In nonlinear differential equations, the solution

set usually involves an infinite number of periodic orbits.

Periodic solutions occur when the system exhibit properties like x = fn(x) for

n < ∞, where n is the period of the orbit, as mentioned in chapter 2. If the function

f was to take on the operator form what we are actually looking for are eigenvectors

of a system.

66
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3.1.2 Trajectory Displacements

When looking at a chaotic system one generally tries to find Lyapunov exponents

and fractal dimensions since, as mentioned in chapter 1, these are indicative of a

chaotic system. These properties also happen to be properties that are coordinate

independent, and thus a topological invariant.

As a trajectory evolves it takes on the form x(t) = f t(x0), where x0 is the initial

position in phase space, and f t is a time evolution operator. If we linearize this

equation by moving the system through a very small section of time, we have xi(t) +

δxi(t), and the evolution of the system would be determined by the small change

δxi(t). This small change is defined by;

δxi(t) =
δxi(t)

δx0j

δx0j

where the fraction is simply, J t, the time evolved Jacobian matrix of the system.

As points on the manifold flow through a trajectory they distort the region of

space around them. The deformation is commonly understood to be some initial

position on the manifold that undergoes a small displacement δx(0), and the flow

transport is δx(t) along a trajectory x(x0; t) = f t(x0). Now, considering the equation

of variations, this becomes xi(x0, t)+δxi(x0, t) which then leads to, via a Taylor series

expansion;

ẋ + δẋ ≈ vi(x) +
∑

j

∂vi

∂xj

δxj (3.1.1)
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Taking into consideration the equation of flow, v(x) = ẋ, we are left with δẋ =

∑
j

∂vi

∂xj
δxj =

∑
j Aijδxj with Aij(x) = ∂vi(x)

∂xj
where Aij is the matrix of variations.

3.2 Nonlinear Flows

The equation of motion for the rod and gear system, due to large oscillation capability

of the rod, is a nonlinear flow. Thus, we have a lot of work to do to the system before

we can calculate anything meaningful from it. We still start with equations

ẋi = vi(x) ˙δxi = Aij(x)δxj (3.2.1)

where Aij describes the instantaneous rate of shearing of the infinitesimal neigh-

bourhood of x by the flow [52]. It is actually this matrix which is critical for the

proper analysis of the system since the eigenvalues of this matrix determine the lo-

cal behaviour of neighbouring trajectories. For maps this is referred to as the local

stability, since this measures the reaction of the system to a perturbation. If the

eigenvalue is larger than 1, then there exists a perturbation that will grow over a

given time interval [37]. It is here that we actually divide the system into two classes

of trajectory, hyperbolic for the eigenvalues greater than 1, and convergent for the

eigenvalues less than or equal to 1.

This leads us through the topological analysis, which is not immediately applicable

for real problems. However if we were to linearize the flow using a Taylor series
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expansion:

f t
i (x0 + δx) = f t

i (x0) +
∂f t

i (x0)

∂x0j

δxj + . . . (3.2.2)

, then the Jacobian matrix comes into play. We see that the Jacobian is instrumental

in analyzing the deformation of a neighbourhood for finite time, since the Jacobian

is just the functional rate of change over each of the parameters. This is directly

analogous to the matrix of variations. Where the deformations are determined by the

classification of the eigenvalues [52].

Since the variation equations are linear, we are left with a formal definition of the

Jacobian matrix

J t
ij(x0) = T

[
exp

R 1
0 dτA(x(τ))

]
ij

(3.2.3)

for time ordered integration. After a Taylor series expansion around a fixed point of

x we find that equation 3.2.3 reduces to

Jt(xq) = eAt (3.2.4)

The Euler limit definition of the exponential may be used now, so we may expect a

more convenient computational form of the Jacobian

J t(xq) = lim
m→∞

(
1 +

t

m
A

)m

(3.2.5)

Since A is not constant, we may further reduce the equation to discrete time steps

over a reversed product

J t(xq) = lim
m→∞

1∏
n=m

(
1 +

t

m
A(xn)

)
(3.2.6)
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however, if we were to take a usual trick of letting t/m become ∆t and the limit

becomes lim∆t→0, we have successfully linearized the flow. Now to further simplify

things we consider the nature of the time ordered product along the flow

J t+t′(x0) = J t′(x(t))J t(x0) (3.2.7)

which becomes, to first order,

d

dt
J t(x) = A(x)J t(x) (3.2.8)

Since 3.2.8 is linear in A(x), this is also known as first variation, meaning it is a

function that may be readily programmed.

Now, what we are really interested in is finding the periodic orbits, as they are

the topological invariants. So, we need to calculate the stability matrices, which are

now just successive multiplications of the Jacobian matrices, evaluated at the points

along the trajectory. Considering that periodic points have a fixed period of repeat,

all we need to do for a proper length of multiplication is to evaluate the Jacobians at

each point in the periodic trajectory that falls on the Poincaré section and multiply

them together. Following from equation 3.2.7 we see that the stability of any full

repeat of a prime cycle will simply be the Jacobian of the prime cycle taken to the

power of the number of repeats. This does not lead to any new information since the

value of this structure will simply return the same prime Jacobian, by the periodicity

assumption. The usefulness of this is reinforced by the fact that the point at which
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you evaluate the position of the Jacobian matrix may be any point along the orbit.

Now, with the stability matrix determined we find the stability eigenvalues, and then

we rank them, as seen in earlier in this section.

|Λ| =





> 1, Expanding, Hyperbolic;

= 1, Marginal, Stable;

< 1, Contracting.

(3.2.9)

with Λ being the eigenvalue. Another important fact that we need to consider is that

the periodic orbits may be considered stable if all of the stability eigenvalues are less

than 1, in which case the overall orbit has no contribution to the final calculations

due to the hyperbolicity assumption; The system is nowhere convergent.

3.3 Periodic Orbit Calculations

The first step in solving the dynamical averages for the system is to find numerical

solutions to the periodic orbits.

First of all, we are aware of the definition of the periodic orbits f t+Tp(x) = f t(x),

where Tp is the period of orbit of the prime cycle. When looking at maps, the cycle

crosses the Poincaré section np times where each crossing is at a fixed point in the

Poincaré section return map. Therefore it is common to refer to the crossings as fixed

points.

As is common in calculus, when we are looking for fixed points we really need

the roots of the equations. With numerical problems one must solve numerically for

these roots. The first known method is Newton’s iterative procedure for finding the
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roots of a one dimensional function f(x)

x1 = x0 − f(x0)/f
′(x0). (3.3.1)

This method works well on simple one dimensional functions with only a few widely

spaced roots. Almost any initial guess is a good guess for such functions. However, as

the functions become more complicated, better and better initial points are needed

so that the proper roots are found.

Newton’s procedure is great for one dimensional functions but with the periodic

orbits we are trying to find the roots of some very complicated functions with several

roots. This situation requires an extremely good initial guess, otherwise the roots

that will be found will be random.

To rectify this situation one needs to use a more sophisticated root finding sys-

tem. There is at least one such method available, the multipoint shooting method,

henceforth referred to as multishoot. This method also requires a decent initial guess,

however, as long as the phase partitions are good, a lower accuracy guess will do. We

began with a definition of the periodic function [52]

F




x1

x2

...

xn




=




x1 − f(xn)

x2 − f(x1)
...

xn − f(xn−1)




(3.3.2)

and we are left with a function and a procedure to solve for the roots. The derivative

of the given function is an [n × n] matrix. We are more interested in the inverse of
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this matrix to solve the Newton-Raphson iterative equation. Again, in this situation

we are expecting a minimal solution due to the difference in equation 3.3.2. What

becomes more interesting is the case when we are dealing with higher dimensional

flows. Many nonlinear dynamic problems are flows and may be studied as maps

using a Poincaré section, this is the case for the rod and gear system. We have an

autonomous flow ẋ = v(x) with a corresponding Jacobian Matrix J which may be

defined by linearizing equation 3.2.8:

J̇ = AJ, (3.3.3)

where A is again the matrix of variations. Both the flow ẋ = v(x) and equation 3.3.3

are solved simultaneously using the same routines by compounding them into one

matrix. Integrating the initial conditions on the Poincaré map until a later crossing

of the Poincaré map and linearizing around the flow we get

f(x′) ≈ f(x) + J(x′ − x) (3.3.4)

Here we know that x, f(x) and x′ are on the Poincaré section, however it is most likely

that f(x’) is not on the Poincaré section. This is due to the fact that J corresponds to

a specific integration time, and has no relation to the choice of Poincaré section.[52]

To find a fixed point of the flow near a starting guess x, we have to solve the linearized

equation

(I− J)(x′ − x) = −(x− f(x)) = −F(x) (3.3.5)
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This problem may be solved by using a linear equation that demands that x′ be on

the Poincaré section, and by adding a small vector along the flow. Take for example

the equation

(x− x0) · a = 0 (3.3.6)

which claims that the Poincaré section is a plane, that a is a vector that is perpen-

dicular to the Poincaré section, and that x0 is a point within the section. This leads

to the Poincaré bound equation

(
1− J v(x)

a 0

)(
x′ − x

δT

)
=

(
−F(x)

0

)
(3.3.7)

where v(x)δT is the small vector addition to the flow. This equation may easily be

generalized to n dimensions if one takes 1−J to be I−J and a, v to be diagonal [n×n]

matrices. The vector we are interested in solving is the left side vector of differences.

Therefore, an inversion of teh matrix would be necessary to find the computational

solution. [52] The inverted matrix will be seen in chapter 4.

3.4 Statistics

We are all familiar with the concept of integral averages from statistical mechanics.

In that case all we are doing is calculating the value of the observable over all of the

system space. Here, we are only concerned with the manifold space, and thus we

have;

〈a〉(t) =
1

|M|
∫

M
a(x(t))dx (3.4.1)
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where |M| is the absolute volume of the manifold (surface area in our case) and ’a’

is the observable being examined. Since the volume of the manifold is broken into

small strips in the periodic orbit theory on a Poincaré section, we may approximate

the infinitesimal values Mi = Λi so that M =
∑

iMi =
∑

i Λi, where Λi is the

eigenvalue of the ith periodic orbit. What is of more immediate use is the time

average of the system, where one defines the integrated observable;

At(x0) =

∫ t

0

a(f τ (x0))dτ (3.4.2)

However, since our system is over an infinite series of periodic orbits on a Poincaré

section, we immediately obtain a sum rather than an integral.

An(x0) =
n−1∑

k=0

a(fk(x0)) (3.4.3)

where the time average drops out of the equation by taking the average of equation

3.4.3 over time, and taking the limit asthe time go to infinity. We may perform the

averaging using discrete steps over prime cycles. We can define:

Ap = apnp =

np−1∑
i=0

a(f i(x0)) (3.4.4)

where p is the prime cycle and np is the discrete time period, or the period of orbit.

This is only true over periodic orbits since Tp ∝ np. What is really important to pay

attention to is the fact that the system is defined for closed loops. If a loop it retraced

q times, the final average for that loop is qAp The average we are interested in is only

over a single traversal of the orbit.[52]
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Now, since equation 3.4.4 is only true for well behaved orbits we may also need

to consider the possibility that each of the values Ap are different depending on the

period p. The original function, equation 3.4.1, must now be taken into consideration.

We may replace the integral with a discrete sum, and since we are observing periodic

orbits over all phase space, we are left with:

〈ap〉(np) =

np−1∑
i

Ap

np |Λi| (3.4.5)

Once again we are left with a simplified form of averaging, leaving the system com-

pletely dependent on the number of orbits within a given period. The overall average

is then a sum of all orbits in the sum of all periods. This leaves us with the sum:

〈a〉(np) =
∞∑

np=1

〈ap〉(np) =
∞∑

np=1

np−1∑
i

Ap

np |Λi| (3.4.6)

which is just the asymptotic limit. This equation is the spatial average of the time

averages, with all allowed periodic points considered. Now that we have the system

where we want it, with all known values relatively easy to determine, once all the

periodic orbits are located. However, as stated in Predrag [52], the average value for

a is not tractable in practice. So, instead of calculating the average of the system,

one calculates the average of the exponential of the observable to be averaged. This

forces the average to be well behaved. Since the limit for the time average exists for

all x0, and since the system is assumed to meet the hyperbolic assumption, the time

average of the system tends to one value ā. The summed system then goes as ān and
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ultimately

〈eβAn〉 ∝ ens(β) (3.4.7)

where in the asymptotic limit n →∞ we get

s(β) = lim
n→∞

1

n
ln eβAn

. (3.4.8)

Finally, we have exactly what we are looking for:

∂s

∂β

∣∣∣∣
β=0

= lim
n→∞

1

n
〈An〉 = 〈a〉 (3.4.9)

which is analogous to the thermodynamic formalism for entropy in the grand canonical

system Pathria [54]. For the methods used in a continuous system please see Predrag’s

[52] the chapter on Dynamical Averaging.

3.4.1 Hyperbolicity & Trace

One may review the concepts of the trace operator in the webbook [52]. Here we

simply state the more relevant material. In reality, the trace operator actually refers

to the full 3 dimensional flow, however for our purposes a Poincaré section was used,

and thus reduces the system to 2 dimensions. The trace operations may then be

replaced with a sum. A simple operator that captures the effects of periodic orbits

is the trace operator [52]. However for our purposes it can be simply stated that the

trace operator depends on the periodicity condition described in the previous section.

Since our system is a flow reduced to a map, the equations simplify to discrete sums
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or products. The contribution of an isolated prime cycle can be evaluated by taking

the integral for a region around the cycle,

trpLnp = np

d∏
i=1

eAp

1− Λp,i

(3.4.10)

where the p indexes the pth prime cycle, and Ap is the observable we are interested

in.

Clearly, the sum will blow up to infinity if Λ → 1. This is where the hyperbol-

icity assumption comes in, it states that the stability eigenvalues are bounded away

from unity. If this condition failed then the entire method would be invalid, and a

new approach is necessary. Since the system we are interested in has three possible

eigenvalue states, |Λ| is either equal to, greater than, or less than 1. We only keep

those calculations that ensure the satisfaction of the hyperbolicity assumption, that

is |Λ| > 1.

Equation 3.4.10 can be put into a more recognizable form since we do not know

the stability eigenvalues, but rather the matrix that produces them. A more useful

approach would be to consider;

trLn =
∑

xi∈fn(x)=x

eβAi

|det(1− Jn(xi))| (3.4.11)

where the index i runs over all periodic orbits in period n. Since we are dealing with

periodic orbits, the time period in which we are dealing with the system is arbitrary

as long as we are taking integer units of the period of the orbit. That is to say that
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time t = qTp, and from there we can see that to take the limit t → ∞ we need to

take the limit as q → Large for the value
∣∣det(1− Jq

p)
∣∣ → |Λp|q. This is the point

at which the calculations are easiest to perform since all components of the trace

are well known, and all the transient behaviour of the system has been completely

worked out. It is the time asymptote that we are concerned with when we speak of

the asymptotic trace condition.

With the sum in equation 3.4.11 we run the risk of encountering repeated smaller

orbits that are not prime cycles. According to periodic orbit theory an observable is

additive along the cycle. That is, if a prime cycle repeats itself q times, as mentioned

in the previous section, the resulting observable Ap is repeated q times. Ai = An(xi)−

qAp, xi ∈ p Thus we have to be cautious of double counting an earlier found value.

To do this we introduce a Kronecker delta δn,nr into the sum 3.4.11 and add over all

prime cycle, thus leaving us with

trLn =
∑

p

np

∞∑
q=1

eqβAp

|det(1− Jq
p)|δn,npq (3.4.12)

This equation as stated in Predrag [52] is awkward due to the dirac delta, so to remove

it the common procedure is to take a Laplace transform of the sum leaving us with,

∞∑
n=1

zntrLn =
∑

p

np

∞∑
q=1

znpqeqβAp

|det(1− Jq
p)| (3.4.13)

which after the substitutions are made and a geometric series is observed we have:

∞∑
α=0

zesα

1− zesα
=

∑
p

np

∞∑
q=1

znpqeqβAp

|det(1− Jq
p)| (3.4.14)
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Now we are finally in a position to use the periodic orbit information.

3.4.2 Lyapunov exponents

Now that we know how to formally use the information from the periodic orbits, we

can use it to determine the Lyapunov exponent for the system. We have defined the

Lyapunov exponent to be |δx(t)| ≈ eλt |δx(0)| from chapter 1, where λ is the mean

rate of separation between trajectories. To formally calculate λ we can go through

the procedure of taking limits of a logarithm

λ = lim
t→∞

1

t
ln
|δx(t)|
|δx0| (3.4.15)

however, there are two things that simplify this procedure. The first is that we are

dealing with periodic orbits, and therefore taking the asymptotic limit is the same

as calculating the time at the period of the orbit, where we know for the individual

orbits that;[37]

λi = log Λi. (3.4.16)

The second fact is that for an infinitesimal δx we know the ratio in equation 3.4.15

is exactly the Jacobian matrix. So equation 3.4.15 becomes:

λ = lim
q→∞

1

qTp

ln(
∣∣JqTp(x0)

∣∣) (3.4.17)

however, since we are dealing with maps and periodic orbits, the time period Tp is

reduced to a simpler form, Tp = npa

2π
. Here, a is as defined in chapter 1. Finally we
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can evaluate
∣∣JqTp(x0)

∣∣ where x0 is a point on the periodic orbit, using the leading

eigenvalue of the Jacobian to be;

λ̄i = lim
q→∞

npa

2πq
ln(|Λq

i |) (3.4.18)

This is in a form that we are readily capable of solving, for each located periodic orbit.

Since it is the average value, one should expect to simply replace the observable of

equation 3.4.9 with ln (|Λi|). We are interested in the asymptotic limit, and thus only

the largest eigenvalues contribute to the sum in 3.4.18, since the smaller eigenvalues

are negligible. As well, we must consider that as q increases we multiply the Jacobian

by itself q times, and thus we have the determinant as the qth power of the product

of the eigenvalues for the Jacobian. This leaves us with;

λ̄i =
npa

2π
ln(|Λi|) (3.4.19)

3.4.3 Escape Rate

The escape rate for a system is defined as the average time required for a trajectory

to diverge to infinity[52]. What we generally find is that the survival of a given

trajectory is a function of the area of phase space occupied by each of the elements

of the trajectory. In our case, for a survival probability of a period 2 orbit,

Γ̂1 =
|M0|
|M| +

|M1|
|M| (3.4.20)
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and a period n orbit becomes;

Γ̂n =
1

|M|
n∑
i

|Mi| (3.4.21)

where M is the total area of phase space, and |Mi| is the area of the ith strip. This

is expected to drop off exponentially with n and thus produce the limit;

Γn+1

Γn

→ e−γ (3.4.22)

where γ is the escape rate of the system.[52] According to Predrag [52] the periodic

points also keep track of the size of the partition. Each section of the partition contains

a periodic point. As the periods increase, the section of phase space becomes well

defined, until the width of the partition goes as li = ai/ |Λi|, where |Λi| is the stability

eigenvalue of the ith periodic point. Due to the hyperbolicity assumption we have

that ai are taken to the first order to be unity, in effect we ignore them. With this

in place we have that the area of the ith strip of the phase space is calculated by

|Mi| = Lli, with L being the width of the strip of phase space containing each orbit.

Rewriting 3.4.21, we have

Γn =
n∑
i

1

|Λi| . (3.4.23)

Now, for large n we have the limit Γn → e−nγ and so there is a great simplification

γ = lim
n→∞

1

n
ln Γn = lim

n→∞
1

n
ln

n∑
i

1

|Λi| (3.4.24)
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3.4.4 Measure

Now that we have defined the system in terms of the periodic orbits and their stability

eigenvalues, another idea must be investigated for completeness. This concept is the

measure of the system. The measure of the system must have one basic property, it

must sum to unity. Considering the description of the escape rate, it may be useful

to consider the function;

µi =
enγ

|Λi| (3.4.25)

which is the measure of the system for each periodic orbit.

For bounded systems such as ours, the escape rate is zero, or tends to zero in the

asymptotic limit. The consequences of this are a further simplification of equation

3.4.25 to match that of equation 3.4.23, since γ = 0.[8] We further expect that the

sum of the measure is unity. This will have significant consequences in dimensional

analysis in chapter 5.

3.5 Cycles

3.5.1 Zeta

Using the methods for finding the periodic orbit trajectories in the Poincaré section as

defined in chapter 1. We are interested in, due to the hyperbolicity assumption, the

sum in equation 3.4.23. Here, we are calculating the Γn for each period of orbit. To

continue the analysis, we must define a generating function for sums over all periodic
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orbits of all lengths to be:

Γ(z) =
∞∑

n=1

Γnzn. (3.5.1)

When observing the periodic orbits, we have a geometric consideration about the

expanding eigenvalue and the area encompassed by the attractor, where we may

think about 3.4.23 to produce:

Γ(z) =
∞∑

n=1

∑

x=fn(x)

zneβAn(xi)

|Λi| , (3.5.2)

where both the number of periods and the number of orbits within a period are consid-

ered. This falls directly from equation 3.4.6. When dealing with the periodic orbits,

the eigenvalues are restricted to prime cycles, and thus the sum is also restricted.

Each orbit of length np contributes np terms, reducing 3.5.2 to;

Γ(z) =
∑

p np

∑∞
r=1

(
znpeβAn(xi)

|Λp|

)r

=
∑

p
nptp
1−tp

, tp = znpeβAn(xi)

|Λp| . (3.5.3)

After some calculus this leads to the relation

Γ(z) = −z
d

dz

∑
ln (1− tp) (3.5.4)

and, due to the euler relation, we end up with the product relation;

1/ζ(z) =
∏

p

(1− tp) (3.5.5)

where ζ(z) is the dynamical zeta function.

The usefulness of the dynamical zeta function is that the 1/ζ(s) = 0 disappears

for s = s0 = s(0). where s is defined in equation 3.4.7.
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If we take z = e−s(β) the eigenvalue condition becomes

1

ζ(s, β)
= 0 (3.5.6)

where s and β are parameters of the zeta function. Now, we take the total derivative

of zeta with respect to β at β = 0 and we get:

0 =
d

dβ

(
1

ζ(s, β)

)

β=0

=
∂

∂β

(
1

ζ(s, β)

)

β=0

+
ds

dβ

∂

∂s

(
1

ζ(s, β)

)

β=0

(3.5.7)

which leads us to a natural conclusion from the averages worked out above

ds(β)

dβ
= −〈A〉ζ〈n〉ζ (3.5.8)

where

〈A〉ζ =
∂

∂β

∏
p

(1− tp)β=0 (3.5.9)

and

〈n〉ζ =
∂

∂z

∏
p

(1− tp)β=0. (3.5.10)

For more properties of the dynamical zeta functions see [51].

3.5.2 Cycle Expansion

Now that we have a working equation for the periodic orbit theory we can exploit

it to find what we need to know about the system. One method of doing so is to

use cycle expansions. We first expand equation 3.5.5 and group the terms in order

of the period of orbit. We must note that the cross products will result in values
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besides the original orbit. These are the pseudo-orbits, and they are important for

the calculations. As seen below we have groupings of pseudo-orbits and prime cycles,

this is referred to as shadowing since each of the orbits longer than period 1 will have at

least one pseudocycle that follows it mathematically and symbolically. As mentioned

earlier any cyclic permutation of a prime cycle is the same prime cycle. This matter

becomes important for the grouping of pseudo-orbits as any combination of smaller

orbits that returns the same prime cycle, as seen at the end of the example below.

Now considering the grouping individually one finds that pseudocycle shadowing can

actually disrupt the calculation tremendously. If one considers the meaning of tp from

equation 3.5.5, when looking at the shadowed terms you get

tab − tatb = tab

(
1−

∣∣∣∣
Λab

ΛaΛb

∣∣∣∣
)

(3.5.11)

where the term inside the brackets, if the cycles are weighted equally, reduces to zero.

Only the unshadowed (first few) terms contribute to the overall calculation.

In real cases, the shadowing usually does not actually reduce the higher order

terms to zero, but rather to a very small number. The reasons for this is that the

prime cycle and the pseudocycles lie close to each other in phase space. This becomes

significant when dealing with higher order periods, since the number of pseudocycles

is much greater and there are terms that get closer and closer to zero. This is why the

dynamics of the system can be found using only the smallest unstable eigenvalues.
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3.5.3 Pseudocycles

The prime cycles make up only part of the orbital spectrum that we are interested in

finding. Each real orbit beyond some lower limit begins to experience pseudocycles,

which are combinations of existing orbits to make up artificial orbits of the same

length. When these orbits begin to symbolically match existing larger orbits the

pseudocycles are said to shadow the larger orbits. The mathematical behaviour of

this shadowing effectively acts to cancel the effects of the larger orbits.

First, we describe the dynamical zeta function as a power series, by recombining

the product into leading order terms.

1/ζ =
∏

p

(1− tp) = 1−
′∑

p1p2...pk

(−1)k+1tp1tp2...tpk (3.5.12)

Then for simplicity we denote π = p1p2...pk, and the weights of each pseudocycle

becomes

tπ = (−1)k+1 1

|Λπ|e
βAπ−sTπznπ (3.5.13)

where Λπ is the product of the unstable eigenvalues for each sub-cycle in the pseu-

docycle. Since we know that the cumulative effect of retracing an orbit q times is to

add the observable q times, or have qAp, we can extend this idea to pseudocycles. If

we trace the first cycle in the pseudocycle we have Ap1, then continuing to the second

cycle in the pseudocycle we have Ap2 and so the net observable can be thought of as

Aπ = Ap1 + Ap2. The net period of orbit will then be nπ = np1 + np2, and the net
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eigenvalue will be Λπ = Λp1Λp2 since this system will be the product of two different

Jacobian matrices.

From this we may extend to any pseudocycle with the simple relations;

nπ = np1 + · · ·+ npk Tπ = Tp1 + · · ·+ Tpk

Aπ = Ap1 + · · ·+ Apk Λπ = Λp1Λp2 . . . Λpk

(3.5.14)

The important contributions come from the shorter cycles, since the longer cycles

offer exponentially decaying corrections.

Now we have the information on the prime cycles and the pseudocycles. To apply

this information to the dynamical averaging, the first realization is that we are looking

for roots, or singularities of the dynamical zeta function. These occur when β = 0, as

well as when s = s0 = 0 in the dynamical function for t, leaving tπ = (−1)k+1 1
|Λπ|z

nπ .

Technically, we know two different aspects of the system thus far, the level sum, and

the dynamical zeta function. We must use these to the best of our knowledge in

analyzing the remaining system properties.

We see from the definition of tπ in equation 3.5.13 that most of the important

information comes from the value ti, that is, the averages we are looking for fall

from the first and second derivatives of the functions defined in equation 3.4.8. The

observables in question are easily obtained from equation 3.4.9.

When considering the cycle expansions to calculate the corrected averages one

only needs to expand the definition of each average as a collective sum, over all of

the cycle space. Since we are looking for zeros of the dynamical zeta function so the
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calculations may be made when β = 0 or s(β) → s(0). Even here the shadowing

takes effect, offering small corrections for larger orbits.

3.6 Stability Ordering

For the gears and rod system, we have no finite grammar rules therefore the sequences

may go on indefinitely and organization of the cycles must change slightly, which

depends on a stability cutoff.

3.6.1 Ordering

Before making any mathematical calculations for the system constants that have

been generated thus far, there needs to be some form of ordering for the values

so that their evolution may be monitored. There are two methods, for ordering.

The first is ordering based on their symbolic dynamics, which would make sense for

systems that are well ordered and have a finite grammar. The second method is to

order the cycles based on their stability, leaving the symbolic dynamics behind and

concentrating solely on the stability eigenvalues. This type of ordering is useful for

the many dynamical systems that do not have a finite grammar, as well as for cases

where finding all of the orbits in a given period is arduous, such is the case for many

larger periods. This ordering reduces the finding of all the orbits to finding only the

more stable of the unstable orbits. Basically, any orbit that may have an eigenvalue

”fairly” close to 1. This is a relative concept, and must be considered carefully. For
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the application we had, this meant that all orbits with an eigenvalue less than 1000

had to be found. This number was selected due to the inverse relationship between

the averages and the eigenvalues. For four digit accuracy an eigenvalue of 1000 was

needed, for greater accuracy, larger eigenvalues will be needed.

3.6.2 Smoothing

Smoothing data is a method of data manipulation that was implemented to correct

for flaws in the data, such as missing values, and, in this case, was a compensation for

truncating data. This is a very common technique for controlling the noise output due

to data. This method is a necessity when one uses stability ordering over topological

ordering. When we truncate the data set we run the risk of creating partial shadowing

where some of the shadowing terms may exist but the cycle they shadow may be

removed.

The compensation goes as follows; for each eigenvalue in a function we multiply

the element by a smoothing function f(Λ), where f(Λ) is a monotonically decreasing

function with boundary conditions f(0) = 1 and f(Λmax) = 0. Clearly, there are

several functions that one can choose from, but for the purposes of the data used,

only 4 were tested, two of which came from Predrag’s [52];

f1(Λ) = 1−
(

Λ

Λmax

)2

(3.6.1)

g1(Λ) =
ef1(Λ) − e−f1(Λ)

e− 1
e

(3.6.2)
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f2(Λ) = 1−
( |Λ|

Λmax

)
(3.6.3)

and

g2(Λ) =
ef2(Λ) − e−f2(Λ)

e− 1
e

(3.6.4)

The effects of smoothing can be tested by varying the cutoff value. If the variations

are large then smoothing is required. One can adjust the extent of the smoothing by

changing the smoothing function. See figure 3.1 for the plots of the four smoothing

function used.

3.6.3 Cutoff

The choice of a cutoff value is important to this project. For an appropriate choice

of cutoff we must consider the data set as a whole and pick a point which looks

smooth, such as a plateau. With this choice of cutoff, we avoid the transient section

of the data, where output would be utterly meaningless, and we can also avoid the

regions where the data becomes falsified by the partial shadowing. Ordinarily we

are only interested in order of magnitude cutoffs. Further considerations to obtain a

proper cutoff would be that it maximizes usable data. That is to say, when we do

our orbit hunting one cannot be entirely sure if all the cycles from a given period

are found, or that all of the orbits with a particular magnitude of stability have

been found. Contributions from larger stabilities will be harmful for our system since

the missing orbits may have provided the necessary shadowing to remove the cycles
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Figure 3.1: The Smoothing Functions
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from consideration. Since the zeta functions are sensitive to only the most stable of

the eigenvalues the larger stabilities may be removed to prevent false data output.

However, to be sure that this is the effect of the cutoff, the plateau technique is also

required.

3.7 Conclusion

I have presented here a complete method of both calculating the periodic orbits, as

well as a method of calculating the dynamical averages in the system. These methods

are broad in their scope as they can be applied to any system of differential equations,

of any order. One still has to be cautious since random processes will produce results,

but their meaning will be null. Computational implementation of these ideas will be

described in the chapter 4, since not all of the methods are immediately obvious.



Chapter 4

Computation and Calculation

4.1 Introduction

We have been through the theoretical approach to orbit finding, the root finding

techniques and the analysis of the observables of each system. However, as is often

the case, the theoretical approach is clean and easy to follow whereas the real solutions

for these systems rely on the numerical calculations, which are cumbersome, and are

worthy of mention.

4.2 Finding The Periodic Points

We have already described the Poincaré section calculation of the system as the time

step evolution of the ordinary differential equation in some detail. We will restate it

here for clarity.

The Poincaré section of ODE solving is best implemented for a driven system, since

it is this driving frequency that we will exploit as a natural stroboscopic frequency

94
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of the system. In our system this driving frequency is the parameter a as defined

in chapter 1. Effectively, we are altering our output time step to correspond to the

inverse driving frequency. It is a minor change to the coding, but it has rather

dramatic effects on the output.

The calculation of the actual orbits, based on the initial guesses, is less than

obvious. The first step was to develop an ODE solver for the system, fortunately

most of the ground work was done in the code used for the Poincaré section, as

described in chapter 1, and seen in Appendix I, we just alter the program slightly.

The next step was to create two functions, one to calculate the vector F found in the

following equation [52]



1 −Jn v1

−J1 1
. . . . . .

. . . 1

−Jn−1 1 vn

a 0
. . . . . .

a 0







δ1

δ2

...

...

δn

δt1
...

δtn




=




−F1

−F2

...

...

−Fn

0
...

0




(4.2.1)

which is of the form,

DF · δ = F (4.2.2)

This equation is found and proven in Predrag’s [52]. The other function, to calculate

the differential matrix, DF. Each of these calculations were done in two parts. To

produce these functions; First we setup the shell of each matrix, in more detail this
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went as follows;

- Initialize F to zero

- Load y vector with initial guess vector line by line

for i = 1 → 3

- Use the Poincare ODE solver to evolve the initial guess y[i] → y’[i]

- If the current guess, y[k], is one less than the full Period of Orbit

- Calculate y[i] = y’[i] - Initial Guess[i]

- Modulate the vector y to keep problem bounded

for j = 1 → 3

- set F[j] = -y[j]

- Otherwise Calculate y[i] = y’[i] - Initial Guess[3*(k+1)+i]

- Modulate the vector y to keep problem bounded

for j = 1 → 3

- set F[3*[k+1]+j] = -y[j]

Now to calculate the differential matrix DF

- Initialize DF to zero

- create and load the Poincare hypersurface, since it is in the

x-y plane, the vector (0,0,1) is sufficient

- set top left of DF to identity

- Load y vector with initial guesses line by line
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- Load v, the flow vector by using initial points in the

original differential equations

- Use the Poincare ODE solver to evolve the initial guess thus

producing the Jacobian matrix

- Load DF with the Jacobian matrix in the appropriate locations

as seen in equation 4.2.1

- Load DF with the flow vector according to 4.2.1

- Load DF with the Poincare hypersurface according to

Now we have the form of the solution form as seen in equation 4.2.1. This method

works very quickly, and is easily implemented using predefined libraries such as the

Gnu Scientific Library. The rate of convergence to a root depends on two things,

the first being the density of roots. If two roots are closely spaced on the attractor,

it may be difficult to find the individual roots without an incredibly accurate initial

guess. The second issue to consider is the sensitivity of the system. As was seen

earlier, different systems can have varying degrees of sensitivity. The more sensitive

the system, the more difficult it is to find the roots. This led us to the desire to find

an automated search technique.

4.2.1 Automation

The most obvious method would be to use points on the attractor for the initial

guesses, this was fairly easy to implement. The first step was to create the attractor
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with as many points as possible. This required running the Poincaré section program

using an array of initial guesses:

- Cover the phase space with a one or two decimal precision grid of points

- Use this grid as locations of the initial positions of the points and

run the Poincare section

- Let the code run long enough to skip the transient points, in our case

30 points were sufficient

- Save the output which should contain millions of points that are on

the attractor

Now all one needs to do is read in points generated from the above code, and use

them for initial guesses. Our method required two levels of approach for efficiency.

The first level required that the initial guesses carried an error on the order of 1E6,

this will guarantee that the output points have a converging trend. Since many point

combinations taken from the attractor will not easily converge, this weeds out the

useless point combinations. This method requires several hours to run, on an Intel

Pentium p4 desktop computer, for around 2 million points on the attractor. The next

level of approach is to take the information received from the previous level, and take

the error down to 1E-13 by performing more iterations. This method needed to be

separate from the previous since the root finding method can become stuck on the

bad orbit guesses while trying to reduce their error. By refining the filtered orbits,
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the process takes only a few seconds per orbit.

Now we have a list of orbits that are of a specific period, with a small error. This

is the list of orbits that may be used for calculating the zeta function, and consequent

values as described in chapter 3. There is a disadvantage of this method, one cannot

be entirely sure that all orbits have been found. However, when one also considers the

symbolic dynamic techniques, one can be confident in the results. For larger period

orbits, the number of initial guesses that are needed for the search of all orbits, is

tremendous and often unnecessary, since, as stated earlier, we are only interested in

the smaller stability eigenvalues, because they offer the largest contribution to the

zeta functions. Fortunately, with this automated search method, the smaller stability

eigenvalue orbits are found very quickly, and most of the larger stability eigenvalues

take longer to find. For expediency, there was no attempt to find all orbits of a larger

period orbit, which could potentially take months. With the orbits we have at hand

we must find the stability eigenvalues, winding number and Lyapunov exponents.

4.3 Eigenvalues

To calculate the eigenvalues of the periodic orbits requires reading the orbit values

line by line for each orbit found:

- Read orbit values in line by line (x,y,z)

- Copy the Jacobian matrix into a temporary matrix

- Run the orbit vector in the Poincare iterate function to obtain the
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Jacobian matrix for that orbit location

- Multiply the new Jacobian matrix by the temporary matrix and store

the result in the Jacobian matrix

This is repeated for the entire orbit, satisfying equation 3.2.8. Now with the

Jacobian, we find the trace and discriminant of that matrix to solve for the eigenvalues

by three methods;

Λ = 1
2

√
Trace2 −Discriminant, if Discriminant < 0;

Λ = 1
2
Trace− 1

2

√
Discriminant, if Discriminant > 0 and Trace < 0;

Λ = 1
2
Trace + 1

2

√
Discriminant, if Discriminant > 0 and Trace > 0.

4.4 Winding Number

The calculation of the winding number is also fairly straightforward, following the

instructions in chapter 1.

- Read in the orbit values in line by line (x,y,z)

- Save the orbit vector as a temporary vector

- Perform a Poincare iterate of the orbit

- Compare the difference between the new orbit x value and the temporary

vector x value

- Sum the previous step over all values obtained within an orbit

- Add the period of orbit to the result

- Divide the result by the period of orbit
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Now we have all the information we need from the orbits. We now may proceed

to the zeta function analysis of the system.

4.5 Pseudocycles

Calculating the pseudocycles effects requires at least one previous step, we must

calculate all possible pseudocycles. To do this one must load all existing orbits into

some kind of list, and then produce all combinations of orbits. All combinations of

existing orbits are possible, this effectively acts like n!, which is easy to calculate

for a small number of orbits; however it quickly gets out of hand for even 10 orbits.

Therefore a more intelligent method is required. What we did is one of two things,

the first would be to sort the orbits in terms of their period of orbit, then find all

pseudocycles depending on their period. The drawback to this method is that all of

the orbits of one period are necessary in order to calculate higher periods. As we have

discussed in chapters 2 and 3, one cannot be entirely certain if all periods have been

found, (this problem may occur as early as period 10, depending on the stability of

the system.) In order to circumvent this issue we rely on the second method, which

involves sorting the entire orbit list in terms of their stability eigenvalues. This is

more complicated, however since one only has to be sure of finding all eigenvalues up

to a specific magnitude, one can be more certain of the results. Our method was to

use linked lists, which was a very fast method of sorting, since all the work done was

in the computer memory, only outputting to file when completed. Another benefit
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of using the eigenvalues for sorting is that one can introduce a cutoff eigenvalue.

Since all of the information we are interested behaves as 1/Λ a large Λ can make the

contribution of that orbit negligible. A cutoff may be used to analyze the data more

efficiently, by removing the unshadowed information. Again, since we can only use

eigenvalues that are complete we must also use cutoff to remove unknown values, for

instance with table 2.1 values we may only know the orbits up to 1E4, and thus that

has to be our cutoff. Another technique that was the assignment of negative values.

All elements of pseudocycle space that is created by an odd multiple of prime cycles

is negative as seen in [52], including the prime cycles themselves. This was easiest

to handle while sorting the cycles, rather than trying to keep the information on the

multiples of orbits in the pseudocycle.

4.6 Results

When the shadowing was done we were left with only the most relevant information

was retained, which was used in the zeta evaluations. Here the coding was very much

like the theory in chapter 3, due to the discrete infinite sums. Therefore, we need

only a truncation for the data and further description of the algorithm is unnecessary.

However, we are now able to describe the results in a little more detail.

What we expect for our system as discussed in chapter 3 is that the escape rate

tends to zero as we include more data from higher orbits. Since this is a requirement

for our system, we need to select a cutoff that reflects that property. With that
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cutoff selected, we must also select a smoothing function that will also allow the

escape rate to be a minimal. This is basically done by trial and error, using the four

given smoothing functions. As we see in figures 4.1 and 4.2 the escape rate does

change slightly depending on the cutoff selected. Since the pseudocycles offer the

only negative contribution to the escape rate average we may conclude that if the

Gamma function goes below zero, we have an over compensation for the system, that

is at that point we can say that we are missing orbits, and so that particular cutoff

is too high.

What we see in the plots in 4.1, 4.2, and 4.3 is that the escape rate is closest to

zero when we use a cutoff at 1E3. This is strong evidence that we are missing orbits

of stability 1E4 and higher. Thus further calculations with table 2.1 values must also

use a cutoff at 1E3, otherwise the numerical calculations are not true to our system.

Likewise we see that in 4.6, 4.6, and 4.6 the largest cutoff allowed is 1E3, although

the escape rate with the cutoff at 1E4 is only slightly larger.

With the cutoff for the systems, defined we may now pursue the appropriate

smoothing function. Keeping in mind that we must use monotonic functions so that

the data is not distorted, just smoothed. What we have used are the four functions
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Figure 4.1: The escape rate for table 2.1 with a third order cutoff, γ = -0.008721
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Figure 4.2: The escape rate for table 2.1 with a fourth order cutoff, γ = -0.040234
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Figure 4.3: The escape rate for table 2.1 with a fifth order cutoff, γ = -0.096006
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Figure 4.4: The escape rate for table 2.2 with a third order cutoff, γ = -0.019135
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Figure 4.5: The escape rate for table 2.2 with a fourth order cutoff, γ = -0.096006
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Figure 4.6: The escape rate for table 2.2 with a fifth order cutoff, γ = -0.065199
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Figure 4.7: Observables for Table 2.1, Q = 0.76, a)λ = 0.082489 b)Winding Number
= 0.593845

as described in chapter 3. To recap we have;

f1(Λ) = 1−
(

Λ

Λmax

)2

f2(Λ) = 1− |Λ|
Λmax

g(Λ) =
efi − e−fi

e− 1/e
, i = 1, 2

(4.6.1)

From this we have that the smoothing function used for tables 2.1 and 2.2 is g(Λ) =

(ef2 − e−f2)/(e − 1/e), since this smoothing function allowed the escape rate to be

closest to zero.

Using the above information, we are now prepared to move on to the rest of the

observables in the system.

We also expect that stability ordering and period ordering will offer the same

results. The plots are seen in 4.9 and 4.10, here we drop the smoothing and the

cutoff, since these are calculations for the system as it is for each orbit.

What is expected is that if all orbits were found properly the period ordering plots
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Figure 4.8: Observables for Table 2.2, Q = 1.2577, a)λ = 0.114000 b)Winding Num-
ber = 0.844202
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Figure 4.9: Observables for Table 2.1, Q = 0.76, a)λ = 0.088563 b)Winding Number
= 0.591646
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Figure 4.10: Observables for Table 2.2, Q = 1.2577, a)λ = 0.109098 b)Winding Num-
ber = 0.866934
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would result with a smooth transition from one period to the other, in some form of

convergence to the final result. However, what we find is a plot with several spikes in

regions where smooth transitions are expected. This is a rough indication as to how

many orbits are really missing. We see in figures 4.9, as an example, at or around

period 26 we find an incredible spike, which tells us that we are missing some least

unstable orbits, since this orbit, in our case, is only comprised of pseudocycles. Soon

after that period we do find the system converging again, thus indicating that the

pseudocycles in period 26 are actually shadowed by higher period orbits. Due to the

complexity of the cycle expansions this type of behaviour is expected. However, in a

proper period orbiting plot these spikes would not exist, and validating our stability

ordering method. If we had a complete set of data, that is, all orbits from each period,

there would be no difference between the stability ordering and the period ordering.

For a technical comparison, we take the calculation for the largest Lyapunov

exponent, which is easily calculated using well studied methods, [52] [24] [57]. It was

also discussed in detail in chapter 4. Using this method, we expect an Lyapunov

exponent to be 0.083044 for table 2.1, and 0.104560 for table 2.2. Using Haken’s

theorem we can easily find the other two expected Lyapunov values. By comparison,

we see that the values obtained through stability ordering are tending towards the

expected values. This means that if we were to include more orbits, the numbers

would tend closer to the expected value, just as the theory predicts.
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Further analysis of the system requires an observation of the winding number.

Our brute force method produces the values 0.593573, and 0.850911 for Q = 1.2577

and Q = 0.76, respectively. The data set produced by periodic orbit theory, produces

0.593845 and 0.844202, respectively. By inspection we see yet again that the values

obtained in Q = 0.76 are at least an order of magnitude closer to the expected value

of the system. Again, I attribute this to the escape rate value. If more orbits from Q

= 1.2577 were located the agreement would be much better.

It has been established that the escape rate must tend to zero as the stabilities

are added to the system. If this is not the case, the data may be incomplete and no

further computations are necessary until the missing orbits are located. The closer the

gamma plot comes to zero, the more credible the final results of the other plots will

be. Clearly, our first plot figure 4.1 approaches zero, thus allowing us to pursue other

analysis methods. The second plot figure 4.6 also comes close to zero, but not as fast

as the escape for Q = 0.76. This shows that we may proceed with the calculations,

however, the results will not be as good as for Q=0.76. Ultimately more orbits of a

higher period may be needed, but since our results come within the expected value

within error, further orbit hunting is unnecessary.

4.7 Conclusion

We have shown in this chapter methods of finding the periodic orbits as they are

presented in chapter 2. A method of automating this method was also presented.
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More work in this area is still necessary to make the programs utilize better search

algorithms and thereby much more efficient. However, this extended beyond the

scope of the project, and is best left for further study in this field. Although the

code is quite complicated as a whole, each of the parts easily correspond to the

theory described in chapter 3. The resulting effect was a program that could take

a moderately good guess, i.e. the methods used in chapter 2, and form an accurate

prediction of the allowed orbit in relatively short time. The orbits were used for

averaging, and easily produced results for the system that came within a few decimal

places of the brute force calculations. The benefit of this method is that long term

prediction becomes possible since one only observes the known periodic orbits of the

system, and calculates the chaotic propertied from there. This leaves the original

chaotic system alone, which is where most of the difficulties in long term calculation

lie.



Chapter 5

Fractals

”Big gaskets are made of little gaskets,

The bits into which we slice ’em.

And little gaskets are made of lesser gaskets

And so ad infinitum.”

5.1 Introduction

Some of the most intricate pictures in existence are fractals.

Figure 5.1: One of an infinity of fractal sets
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A fractal may be described to be a space filling object that is completely made out

of corners. A more mathematical description of a fractal is that it is made completely

out of singularities, but these singularities fall close to each other, and never actually

repeat themselves. [36] Another definition is a complicated geometric structure that

does not simplify upon magnification. [35] Although there is no specific definition of

a fractal, they are incredibly interesting structures to study. In traditional mechanics,

standard geometric shapes are used to describe trajectories such as periodic orbits.

Fractals are the geometric standard for chaotic mechanics. Basically this is the con-

nection between chaos and fractals. A better visual relation between the two will be

offered shortly. The study of fractals goes back to Gaston Maurice Julia who was

a French mathematician that studied iterative functions and the space they existed

in. He wrote a paper on the topic, ”Memoire sur l’iteration des fonctions” in 1918.

These findings were then forgotten for several years until a fellow mathematician, and

former student, Benoit Mandelbrot, came along and started a more general investiga-

tion. Mandelbrot’s name is often synonymous with fractals, as he actually coined the

term ”Fractals”, meaning broken or fractional dimension. His set is said to be com-

prised of all possible Julia sets. Through the work of Mandelbrot and Hausdorff the

dimension of a fractal could be calculated. What has been established is that fractals

may have non-integer dimension, and so-called fat fractals, such as the Mandelbrot

set, have integer dimension. One could easily lose themselves in the mathematical
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richness of such objects, however for realistic uses of these objects one only needs to

know how they behave in general and are classified.

5.1.1 Dimension

Dimensionality is a critical piece of information about a fractal, since this is the

method by which a fractal may be readily identified. Effectively, it is like fingerprint-

ing a fractal. There are several methods to determine the dimension, and there are

several different definitions of dimension. We will only concentrate on the three men-

tioned in chapter 1, the Box dimension, the information dimension, and the correlation

dimension. Many books for example [36, 22, 24], summarize the basics of each dimen-

sion discussed here. The dimension of a fractal needs to exhibit a power law relation-

ship between the measurement scale and the type of counting used, for example count-

ing every point in a measurement region, or counting every pair of points in the mea-

surement region, before it may be considered a fractal. A standard geometric shape,

such as a square exhibits an integer power relationship, and thus we are left with the

standard integer dimensions for these shapes. For a while it was thought that fractals

could only consist of fractional dimensions, however it was shown that fractals may

also exhibit integer dimension. Table 5.1 shows the various dimensions for several dif-

ferent shapes.

As we can see, even the logistic bifurcation diagram has a fractional dimension, and
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Table 5.1: Fractal Dimensions of Various Fractals

Shape Box Dimension Entropy Dimension Correlation Dimension
Square 2.00 1.997 ± 0.003 1.998 ± 0.001
Logistic

Bifurcation Diagram 1.52 ± 0.02 1.12 ± 0.02 1.04 ± 0.01
Henon Map 1.259 ± 0.007 1.233 ± 0.003 1.197 ± 0.005
Table 2.1 1.03 ± 0.01 1.021 ± 0.009 0.95 ± 0.01
Table 2.2 1.2 ± 0.1 1.04 ± 0.001 0.81 ± 0.02

therefore we see a clear connection between chaos and fractals. Further observations

from table 5.1 is that the topological dimension of the two Poincaré sections are

close to one. Basically, table 2.1 (Q=0.76) Poincaré section appears to be almost

a line, which has box dimension one. Since the fractal shape is almost a line, one

may expect that the degree of chaos exhibited by the system will be very similar to

a one dimensional system, whereas the fractal dimension of table 2.2 (Q=0.12577)

shows a stronger deviation from a line, and consequently one expects the system to

act somewhere between a one dimensional attractor and a two dimensional attractor,

but closer to the one dimensional case.

Another dimension that has not found its way into a geometric standard is the

Lyapunov dimension. This dimension was discovered by Kaplan and York. The

Lyapunov dimension is calculated based on the Lyapunov exponents of the system.

For a simple 2 dimensional map the Lyapunov dimension, DLy is defined as;

DLy = 1 +

(
λ1

|λ2|
)

(5.1.1)
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with λ1 being the largest Lyapunov exponent, which is positive, and λ2 being the

negative Lyapunov exponent. A second constraint is that the relation λ1 < |λ2| must

also be observed. This may be generalized to higher dimensional systems as;

DLy = K +

(
K∑

j=1

λj

|λK+1|

)
(5.1.2)

[48] where K is the largest index that makes a sum of Lyapunov exponents non-

negative.[36] However, since we have been dealing with maps, we will only be con-

cerned with the primary case in equation 5.1.1.

From our system we found that the largest Lyapunov exponent for Q = 0.76

was 0.082489, therefore by equation 1.2.22 we have at one of the Lyapunov exponents

equal to zero, and the second is -1.233300. This leads to a Lyapunov dimension of 1.07

± 0.02. For Q = 1.2577 we have the largest Lyapunov exponent equal to 0.114000,

and likewise the second is -0.681102, so we get a Lyapunov dimension 1.16 ± 0.02.

Kaplan and York conjectured that the Lyapunov exponent spectrum is related to the

morphological dimension, and that its value is between the box dimension and the

information dimension, which is held true in our case. The q value for the Lyapunov

exponent is expected to fall between 0 and 1, which is allowable since the restriction

to integer dimensions, or integer counting is lifted by the Renyi proof for fractal

dimensions. [36]
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Figure 5.2: A Self Affine Fractal since the scaling in x is different than in y

5.2 Fractal Classes

There are 2 major classes that fractals may fit into.

• Self Affine - where the fractal has some dependence on scale, and is anisotropic.

These fractals are generally distorted at some scales, and may not exactly re-

peat. See figure 5.2 for an example.

• Self Similar - This type is the more well known fractal. A self-similar fractal is

defined by the similarity of the object to itself regardless of the scale observed.

Simple examples of these may be found in Peitgen [24], but for quick reference

see figure 5.3.

A fractal generally starts with what is called an initiator, which is followed by a

generator. The initiator is any geometric shape, the generator is a procedure that acts

on the initiator changing it by either adding or removing structure from the initiator.

The most common examples are the Cantor set, the last line in (figure 5.4) and the
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Figure 5.3: A Self Similar Fractal since the scaling in x is the same as in y

Koch curve (figure 5.5). The initiator is a line in both cases, and is included in the

figures for comparison. The cantor set is an example of structure being removed from

the initiator, as at each step we remove the middle third of the line from the remaining

lines in the set. The Koch curve is an example of adding structure, since the middle

third is removed, like in the Cantor set, however the middle third is then replaced by

two lines as long as the middle third to make a triangle over the missing third from

the initiator.[36] The dimension of these objects may be determined by the specific

traits of the set. One pattern is consistent: if you are using the structure removing

method, the dimension of the resulting set will be less than the initiator. Thus, in

figure 5.4 we expect a dimension less than one, and the structure adding method

will result in a dimension greater than the initiator dimension, figure 5.5 will have

a dimension greater than one. Since the Cantor set has a known form of reduction

we can easily calculate the dimensions. The reduction is always removing the middle

third, so after each step we have two pieces remaining for each piece removed. The
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Figure 5.4: The Cantor Set

Figure 5.5: The Koch Curve

number of segments remaining then goes as Nk = 2k, and the scale goes as rk = 1/3k

thus taking the log of each of these qualities and the resulting ratio we can find the

box dimension, as seen in equation 5.2.1.

DBox = − lim
k→∞

log(Nk)

log(rk)
= − lim

k→∞
log(2k)

log(1/3k)
=

log(2)

log(3)
≈ 0.631 (5.2.1)

Likewise, for the Koch curve we have the segment count at each of the curves as

Nk = 4k and the scale is again rk = 1/3k so in finding the box dimension we have;

DBox = − lim
k→∞

log(Nk)

log(rk

= − lim
k→∞

log(4k)

log(1/3k)
=

log(4)

log(3)
≈ 1.262 (5.2.2)

which is exactly double the Cantor set box dimension.
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5.2.1 Fractal Dimension & Stability Eigenvalues

The dimension of a system is invariant under change of coordinates, and in order

to complete our analysis of the pendulum equations, we must calculate the fractal

dimensions. More specifically, we look at the box and entropy dimensions.

We have established in chapter 3 that we can create a metric for a given system

and that in our system the metric is the same as the Γ function. Recall;

µi =
1

|Λi| (5.2.3)

where
n∑
i

µi = 1 (5.2.4)

Remarkably, this definition of a metric corresponds to the probability of the tra-

jectory of the system entering a specific region of phase space. Since the fractal

dimensions are dependent on probability, we have an immediate connection. Effec-

tively we have;

Dq =
1

1− q
lim

n→∞
µq

log rn
(5.2.5)

where q is an index indicating the dimension: q = 1 for the box dimension, q = 2 for

the Entropy dimension and so on. This generalized description of the dimension of

a system is known as the Renyi dimension. Now we may define the entropy of the

system in the original way;

Entropy = K =
n∑
i

µi log µi. (5.2.6)
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The Kalmogorov entropy calculated for the systems in our case are K = 1.193307

for Q = 1.2577, and K = 1.335254 for Q = 0.76.

5.2.2 Fat Fractals

A fat fractal is defined as any fractal with a nonzero Lebesgue measure. Effectively,

what this is claiming is that a fat fractal contains subsets that are measurable – they

are not a set of singularities. The mathematical definition of this is: a set lying in

an N -dimensional Euclidean space that for every x in the set and every ε > 0, a ball

of radius ε centered at the point x contains a nonzero volume of points in the set, as

well as a nonzero set outside the volume element (vel).[48] We define the fat fractal

since it may be useful in IFS theory, however, our systems do not use them directly.

5.2.3 MultiFractals

Simply put, a multifractal is a compilation of several fractals. That is, the multifrac-

tal in itself is not self affine or self similar, but subsets of the multifractal are self

replicating. An example of such a set is the Henon Map. As seen in figure 5.6, if

one looks at the smooth flow of the attractor and zoom in to a small subsection of

this attractor, one would not see a repeat of the full attractor, as would be expected

if the Henon map were a standard fractal, but rather one sees a series of lines. If

one were to zoom in on these lines, they would find yet another series of lines, much

like the original zoomed set (figure 5.7). When one really wishes to investigate IFS
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Figure 5.6: The Henon Map

Figure 5.7: The Zoomed Henon Map
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Figure 5.8: The Fractal Tree

compression, they have to look at the multifractal nature of any natural surface.

Fractals are very natural structures and come up everywhere from mountain ranges

to living structures such as the fern. Even the human body is riddled with fractals,

the cardiovascular system and the pulmonary system are two prime examples. Frac-

tals can be space filling curves, and thus they are an optimal method of relaying

information, or maximizing (hyper) surface area in a finite amount of (hyper) volume

(especially needed in the lungs). Due to these features, the fractal became heavily

studied.

5.3 Iterated Function Systems

Iterated Function Systems (IFS’s) are a method of breaking down fractal images to

their most basic parts and using this data for compression and image manipulation.

As the name suggests, they are an iterative process that depends on a countable

system of functions. From a mathematical standpoint this basically means the union
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of all homeomorphisms mapping an image set onto itself. [27] An IFS is defined as a

set of n functions, denoted as Ω, defined on a compact space, and the corresponding

set of n probabilities which sum to unity.[34]

F = {Ω, fi : Ω → Ω, pi : Ω → [0, 1]}∀i = 1, ..., n (5.3.1)

Before we can go on to describe the iterated function systems there are a few

basics that are required for understanding. The first is the idea of a metric, defined

as a method by which one can determine the distance between two points in a set.

We have already come across this idea when we needed to plot symbolic space, for the

periodic orbits. When one is dealing with an IFS they are likely to come across the

Hausdorff metric, [6], which is used to define the distance between two sets. Before

we can define that, we need to know how to find the distance from a point to a set.

From [57], we have the distance from a point to a set defined as;

The distance, d(x,A), between the point x ∈ X and set A⊂ X in the metric space

is given by;

d(x,A) = inf
y∈A

d(x, y) (5.3.2)

Basically what this is saying is that the distance between a given point and the set

is the minimal distance between the given point and any point in the set.

By similar logic we can define the Hausdorff metric as;

The distance between two sets for two sets A,B ⊂ X and two points x ∈ A, y ∈ B
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we can define the distance between the sets A and B as;

h(A,B) = sup {d(x,B), d(y,A)} (5.3.3)

This says that the distance between two sets is equal to the maximum distance be-

tween points in each set. So, whichever set has the largest distance from a point in

the other set, is the distance between the two sets. [27]

With the metrics defined we may now look at the idea of a contraction.

5.3.1 Contraction Mapping Principle

Let (X,d) be a complete metric space and let w:X→ X be a contraction on X. Then

w has a unique fixed point in X. The proof for this is found in several sources [6] [27]

and consists of induction and contradiction.

5.3.2 The Hutchinson Operator

The Hutchinson operator is defined to be a finite set of maps {wi}N
i=1 on a set A,

which is commonly written as w(A) or more precisely;

w(A) =
N⋃

i=1

wi(A) (5.3.4)

The definition of an IFS is a collection of contractive Hutchinson operators that are

homeomorphic.
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5.3.3 Fundamental Theorem of Iterated Function Systems

For any IFS w = {wi}N
i=1 there exists a unique non-empty compact set A ∈ Rn, the

invariant attractor of the IFS, such that

A = w(A) (5.3.5)

The proof may be found in Hart [27], Barnsley [6, 43], Welstead [72]. Basically, what

is being shown here is that the set must be eventually convergent, and therefore the

system of equations result in an observable image set.

Possibly the most important feature of the IFS is the corollary that may be drawn

from the above theorem;[27]

Corollary 5.3.1. Let w be an IFS with attractor A, and let B be a bounded set in
Rn. Then limi→∞w◦i(B) = A

This simply states that given an IFS, operating on any space of the same dimension

will result in the attractor A being generated. [36, 6, 43]

Classical fractals may be obtained as attractors of appropriate IFS’s. As an initial

example we will turn to the 1 dimensional Cantor set. As we saw in Chapter 4, the

Cantor set has a single generator, the removal of the middle third of any remaining

line segments. One may characterize the generator by a set of three equations

w0(x) = 1
3
x w1(x) = 1

3
x + 1

3
w2(x) = 1

3
x + 2

3
(5.3.6)

where one can easily verify the fixed points of the system are 0, 1/2, and 1 respectively.

For these simple equations to contain all of the information of the Cantor set, all that
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is needed is a recursive calling to each of these functions. Each function will map the

entire unit line into a smaller version of itself. Thus, recursively taking the last step

and reducing the length by a third. If we omit the w1 function we will obtain the

Cantor set. So, the infinite nature of the cantor set can easily be captured using two

simple functions, thus leading to the usefulness of IFS’s for image compression. As we

have done for the cantor set we may do for all fractals. The trick is to understand the

mapping structure of the fractals, or rather the path by which the fractals contract and

grow. These methods are applicable to higher dimensional objects, just as easily. It

is all a matter of understanding the generator. Due to corollary 5.3.1, these functions

may be applied to any 1 dimensional set to produce the cantor attractor, regardless

of the initial length.

As seen in the Fundamental theorem of IFS, the idea of attractors is paramount to

an understanding the IFS’s. They require that a system has a convergence throughout

the iterative process, or evolution. For the Cantor set the attractor is a infinite set of

disjoint points, for the Sierpinski triangle it is a Sierpinski triangle. One of the easiest

transforms to capture the convergence and evolution is the affine transformation.

Affine transformations are marked by the rotation and scaling of a system as well

as a linear shift it its position. They have the general form w(~x) = A~x + ~b These

transformations are the method by which we carry out the iterated function systems,

since they hold all of the possible transformation, depending on the value of the
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constants.

wi(x, y) =

(
ri θi

φi si

)(
x

y

)
+

(
ei

fi

)
(5.3.7)

where ri and si are scale factors for the coordinates x and y respectively. θi and φi are

skew factors, they induce rotations and skewness. ei and fi are simple linear shifts in

image space. All of the mentioned values are constants in the affine transformation.

These six parameters are often referred to as the IFS code for a given attractor. There

are direct analogies for three, or higher dimensional affine transformations, these will

be discussed in Chapter 6.

To continue a previous example, the Cantor set may be extended to a 2 dimen-

sional analog, a cantor sheet. For this type of strange attractor, we again need four

transformation like in the 1 dimensional case. Here we need

w1(x, y) =

(
1/3 0

0 1/3

)(
x

y

)
+

(
0

0

)
,

w2(x, y) =

(
1/3 0

0 1/3

)(
x

y

)
+

(
0

2/3

)
,

w3(x, y) =

(
1/3 0

0 1/3

)(
x

y

)
+

(
2/3

0

)
,

w4(x, y) =

(
1/3 0

0 1/3

)(
x

y

)
+

(
2/3

2/3

)
.

(5.3.8)

Which appears to be a simple expansion of the 1 dimensional system. Higher order

cantor sets can be calculated using similar techniques. In this example there are no

rotational properties in the matrix A.

Here is where the probabilities come into play. One decides the probability that
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Figure 5.9: Output of equation 5.3.8

a b c d e f
A1 0 0 0 0.16 0 0
A2 0.85 0.04 -0.04 0.85 0 1.6
A3 0.2 -0.26 0.23 0.22 0 1.6
A4 -0.15 0.28 0.26 0.24 0 0.44

Table 5.2: IFS code for Barnsley’s Fern [43]

any given portion of a fractal becomes iterated, and each section is produced at a

different rate. Eventually the entire fractal will be reproduced, but the more impor-

tant parts of the fractal will be given a higher probability, depending on the desired

effect. For a common example one can look at the Barnsley Fern, which has a IFS

transformation seen in table 5.2;

Now, as we see in table 5.2 the probability of each transformation is p1 ≈ 0.0001,

which was actually zero, however the rules given by Barnsley [6] say that a zero

probability will be given a comparatively small probability. This method is justified

since rounding considerations will cause the sum of probabilities to be less than one.
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Figure 5.10: Barnsley’s Fractal Fern

Following the form pi = (Ai)(detA) where Ai is the ith element in the matrix A.

p2 = 0.7730, p3 = 0.1108, p4 = 0.1161 and, as we scale down each sub-square with

the same probability distribution, (our generator), we will have the desired effect.

This may be seen graphically through the histogram method described in [20] for

the Sierpinski triangle. We start with the probability distribution;

T =
0.3 0.3

0.1 0.3
(5.3.9)

Then we produce the second iterate of the system by taking the tensor product
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of T with itself;

T ⊗ T =

0.09 0.09 0.09 0.09

0.03 0.09 0.03 0.09

0.03 0.03 0.09 0.09

0.01 0.03 0.03 0.09

(5.3.10)

We then continue to take the tensor products T ⊗ T ⊗ T... for each iterate. The

first five iterates may be seen in figure 5.11.

Obviously, the highest probability regions form the Sierpinski gasket, the lower

probability regions form the removed sections. For a crisp image at the predefined

truncation of the infinite calculation, one simply needs to remove everything except

the highest probability regions. Often this is done naturally by extending the dimin-

ishing probabilities well below computational limits. For a well behaved system this

may take only a few iterations.

Barnsley introduced the IFS procedure [6] and consequently found that many sim-

ple fractals that are made up of an uncountable set could be reproduced by preserving

only a few numbers. A comprehensive list of the values may be found in several refer-

ences [24, 43]. This type of setup is great for what may now be considered standard

fractal shapes, but what of the more complicated fractals such as a fern, seen in

figure 5.10? Barnsley’s investigations have shown that the fractal fern, which does

look somewhat like a real fern, can be completely captured using only 24 numbers, 4

sets of 6 values. Once again, we have seen that a fractal of great resolution may be

reproduced in full with a very small amount of information. It is obvious from this
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Figure 5.11: The first five iterates of the Sierpinski probability square
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that fractal compression techniques are able to achieve incredible compression ratios.

Another such ”real” image is the fractal tree as seen in 5.8

Along with the IFS structure there comes a predefined natural measure. Simply

put, this probability is calculated as;

pi =
|Ai|∑n
i=1 |Ai| (5.3.11)

where |Ai| is the determinant of Ai. It is clear that the sum of the probabilities goes

to unity, as expected.

If the probability pi is zero, we assign a small value to it. This small value may

be defined by the sum of the probabilities of the remaining transformations. Due to

rounding errors this will likely be less than 1, so the zero probability may be adjusted

to fill in for this error. [6] With this done, we have that the probability for the

four transforms that produce the 2 dimensional cantor set, have equal probability, at

pi = 1/4.

Probability has a firm footing in the practicality of the random reconstruction

algorithm. The randomness is slightly skewed towards higher probability transfor-

mations. That is, in the cantor set all transformations have equal probability, so

the algorithm may call these each equally. However, for systems with different prob-

abilities, the weighting of the randomness must tend to call the higher probability

transformations more frequently. [72, 43] This is easily done with proper random

number generators.
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The second issue follows the adage that you cannot get something for nothing.

What we gain in compression we lose in time. To produce the fractal fern out of

IFS’s, with a good resolution, one would need a significant amount of time, 1010

years [24]. Thus, methods again must be developed to obtain the original picture in

polynomial time. This is only true for the deterministic method of reconstruction.

As stated earlier the random algorithm reproduces the attractor faster since the more

significant parts, the ones with higher probabilities, are repeated more often. So for

our perception of the attractor, the random algorithm is the better method.

The fact that one could make complicated geometric structures simplify to only a

small amount of information is a great achievement, but how practical is this ability?

How much information do we really have that is based on pure self-similar fractal

structures such as the Sierpinski triangle? The truth is, not a lot. So then why are we

still studying this material? What is of practical importance is the inverse problem.

Taking a picture, finding its fractal nature, and then storing this information in a

condensed form. Effectively, determining the IFS codes is like trying to determine a

generator that will take a simple initiator to the desired attractor, the picture being

compressed. This way we can record only a simple picture and the transformation

codes to get there. The interesting part is that one does not know the components of

the affine transformations, nor do they know how many are needed. Along with this

are methods of interpolation so that the recovery of the stored images may be even
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better. For work done on this matter, see [19], or Barnsley [6, 43, 5].

There are some fundamental requirements of determining IFS codes. Simply put,

one must be able to see a recursive pattern in a picture. That is, take the original

picture and segment it, only to see the segments are smaller versions of the whole

picture. Once this has been performed, one must now find suitable fixed points in

the picture. This process is basically best left to trial and error. Finding patterns in

a picture is easily done, however finding the appropriate fixed points can be difficult.

[72] Observe the figures 5.12,and 5.13, for a visual description. With this process there

are two methods by which the attractor may be produced. The first is a deterministic

algorithm, where each of the transforms recorded occur an equal number of times,

and in a cyclic pattern. This method can take a long time to reproduce the attractor

since it covers the attractor with greater and greater detail over each cycle of the

transformations. The second algorithm is the random algorithm, where one takes

each transformation, at basically random levels of detail, thus covering the entire

attractor in fewer steps than the deterministic algorithm. However what is gained in

speed is lost in resolution. If we consider again that human eye resolution does not

require a great deal of detail to see an image, the random algorithm is often sufficient

for reproduction of images, whereas in the deterministic algorithm the same number

of steps may not cover enough of the attractor to be recognizable. The random

number algorithm calls each of the IFS’s at random, producing what is referred to as
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a trajectory through the image space. This trajectory is seen as;

xn = wi(xn−1) (5.3.12)

so, as each transformation is called we get a set of points, referred to as an orbit. If the

system is truly driven by a random sequence of values, we will have a non-repeating

sequence [72].

Part of the idea for finding the fractal nature of any system comes from the collage

theorem that simply states that any image may be created from subsections of its

parts. A graphical display of this is seen in figures 5.12, 5.13, and 5.14. The different

colour in the reconstructed image are only for emphasis.

Each part, if layered properly, would be completely reproduced. Thus the image

space would consist of a small collection of sub pictures, and a mapping for the sub-

pictures. From a topological standpoint we are trying to produce a minimal set of

allowed structures, or rather we are finding a basis set. Mathematical definitions of

the collage theorem may be found in several references [43, 27]. So, when we save a

fractal image as only a few constants we save a multifractal as an independent set of

single fractal constants, as well as a map joining the sets. This was evident in the

examples in figure 5.13 and 5.14. The leaf itself could be treated as a self affine fractal

but the stem was a separate entity. A decent reconstructed image will require a good

choice of initial image. What is seen in 5.14 is a poor choice of partial image, since

the reconstructed image looks very different from the original in a few steps, whereas
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in figure 5.13 the choice reproduces the image very well over several steps.

The procedure laid out works well for two dimensional two colour image spaces.

However, for practical use this would be very limited. An extension to at least grey-

scale images is required. This may be seen in [67] where they describe the extension

as the affine transformation;

W




x

y

z(x, y)


 =




a11 a12 0

a21 a22 0

0 0 p







x

y

z(x, y)


 +




tx

ty

q


 (5.3.13)

The upper-left sub-matrix, with the upper sub-vector is the already introduced

affine transformation, with identical properties. The values p and q that are intro-

duced are defined to be the contrast and brightness, respectively which simply control

the third vector entry, z, the shade of grey. There are several good papers on the

topic, see [9], [17], [23] to name a few. It is this type of transformation that we hope

to exploit in Chapter 6.

5.4 Fractal Interpolation

Interpolation is a common method for determining information between two plotted

points. This method is very commonly employed in real data structures, where only

a few pieces of information are well known and the data in between is unknown, thus

the use of formulae for interpolation. Anyone that has performed data fitting, has

effectively performed an interpolation. One must understand the set of points being
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used, clearly a linear interpolation will provide poor results if the original set was

most likely, say parabolic. So when we define our system, the types of interpolation

will have to correspond to the way we treat the data points.

The IFS is reliant on an attractor of the system. Fortunately, one may easily

assess the attractor of any given system simply because they can define it themselves.

With the random IFS the attractor of a system may be defined as a function that

passes through a few fixed points of the system. [59]

What may been seen here is that the regular IFS requires at least 3 fixed points

to define the IFS code. Here we are simply applying the same requirements on the

system. As mentioned above, these fixed points are necessities of the system as they

are the points by which the system can begin the interpolation. In general, one

expects that the higher the order of interpolation, the greater the number of fixed

points needed. The simplest such affine transformation is

wn

(
t

x

)
=

(
an 0

cn 0

) (
t

x

)
+

(
en

fn

)
, (5.4.1)

which follows from the simplest fractal to model, the cantor set. Here we impose the

endpoint, or fixed point, conditions;

wn

(
t0

x0

)
=

(
tn−1

xn−1

)
(5.4.2)

wn

(
tN

xN

)
=

(
tn

xn

)
(5.4.3)
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where N is the total number of points.

What we have done in 5.4.1 is scale the x and replace y with another scale of x

and given them some linear shift, ei and fi. All that is left is to combine the end

points with the affine transformation, to determine the interpolation parameters as

follows;

an =
tn − tn−1

tN − t0
, en =

tN tn−1 − t0tn
tN − t0

, cn =
xn − xn−1

tN − t0
, fn =

tNxn−1 − t0xn

tN − t0
(5.4.4)

What is interesting here is that we have managed to produce a system of trans-

formations with a zero determinant. Therein we know 2 things about the system.

The first is that the probability for each transform is very small, according to the

rule generated by Barnsley in [6]. Since the probabilities are all equal this system

is a prime candidate for the random algorithm. The second is that the system in

non-invertible, therefore decoding the system requires knowledge of the entire sys-

tem, including initial conditions, not just the output of the transforms. Thus we may

have a secure system for information passage.

What we may be interested in is the contractivity of the system. To determine

this we take the definition of contractivity;

d(ω(x), ω(y)) ≤ sd(x, y) (5.4.5)

for s ∈ R

So, we simply take two arbitrary points in the image space S, (x,y) and a ball
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of radius ε to find a second point. We receive the general distance formula for 2

dimensions, p ≥ 1, depending on the metric selected.

d(x, y) = ((x1 − x2)
p + (y1 − y2)

p)1/p

which, with our selected points, becomes

d(x, y) = ε21/p

and, after the affine transformation,

d(ω(x), ω(y)) = ((aε)p + (cε)p)1/p = ε(ap + cp)1/p

so for comparison between the two distances as seen in equation 5.4.5

(ap + cp) ≤ 2s (5.4.6)

Now, clearly the contraction is independent of the original displacement between

the two points in S. Further, we must see that the value s has to be less than 1

for a contracting set. If the contractivity is 1, then our functions are similtudes,

a set that may not contract any further. To check this feature we have to look at

the values setup for our constants a and c, as seen in equations 5.4.4. We know that

inf(S) = (t0, x0) and that sup(S) = (tN , xN) so that tN−t0 is a maximal displacement

in the set. Consequently, we also have that the set S is well ordered, the points within

are ordered such that t0 < tn−1 < tn < tN and likewise for x. Thus, the values for
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an and cn are less than 1. Since both values are less than 1, taking them to a power

equal or greater than one, produces a smaller value. Thus the equation 5.4.6 is at a

maximum when p=1, and since the sum of two values less than one will always be

less than 2, we have a contraction for all values p. This validates our claim that the

system defined above is an IFS.

Thus with only a small piece of information one may determine the interpola-

tion of nearest neighbour points. Further extensions may be made to higher order

interpolations using K+1 initial points. That is the linear (1D) required two points,

quadratic (2D) requires three points etcetera.[59] Again using similar solution meth-

ods as the linear case, one can find the equation of transformation in terms of the

starting points. The graphs of the interpolating functions may be produced by the

random iterative function[59]

- initialize (t, x) to a point in the interval of interest

- for a set number of iterations

- randomly select a transformation wn(t, x)

- plot (t0, x0) = wn(t, x)

- set (t, x) = (t0, x0)

- end for

The interpolation functions for 1 dimensional systems requires 1 parameter vari-

able, ie a variable that is well defined. A 2 dimensional system requires two parameter
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variables. This trend is obvious but incredibly important to formulating the theory

for higher dimensional systems. The higher dimensional systems have a further level

of complication. They require an exponential number of fixed points for interpolation.

That is for the 1D system we required 3 fixed points for the quadratic interpolation,

however for the 2D system we require 12 fixed points with the same interpolation.

This pattern may be met with 3 ·22 where the 3 is the ”standard” 1D number of fixed

points, and 2n are the requirements of an n-dimensional interpolation. This leads us

to a tradeoff, the better the interpolation the more points are needed, likewise with

higher dimensions, even the simplest interpolation could require a large number of

points. The variables that may be solved for the quadratic system may be solved to

be as seen in [58], which is not necessarily the nicest solution but it is far less com-

plicated than the alternative. What must be keep in mind is the fact that we cannot

get more out of the picture than was originally there [59]. Basically, if the details of

the picture were non-existent in the original picture they can not show up in scaled

versions, despite what popular crime shows may exhibit. A popular example of this

is using a mirror in a picture to fully identify an assailant, especially when they mix

it with a 3 dimensional rotation to see around the frame of the mirror. With the

interpolation functions one may not be able to get the exact picture quality when

blown up but they will be able to determine a fair approximation. This is seen in

Chapter 6 with the standard picture of Lena.
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5.5 Conclusion

In this chapter we have presented the ideas and observations that lead to the concepts

of fractal geometry. We have discussed the link between the concepts of chaos and

fractals, and given an example of such a relationship through the system observed in

chapters 2, 3 and 4. In the following chapter we will take the work done on fractals

to yet another form of image manipulation, magnification.
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Figure 5.12: A Canadian Maple Leaf

Figure 5.13: A Canadian Maple
Leaf using a small tip of the main
lobe to reconstruct. A second image
would be necessary for the stem.

Figure 5.14: A Canadian Maple
Leaf using a larger piece of the main
lobe to reconstruct. Again a second
image is needed to reconstruct the
stem.



Chapter 6

Iterated Interpolation Function
Systems

6.1 Introduction

An Iterated Function System (IFS), as defined in Chapter 5, may be used to construct

fractal interpolation functions for a given set of data. This same system may be used

for more immediate practical purposes. That is, to magnify or enlarge a picture, with

moderate to high definition. By the same principle, it is also possible to shrink a

picture. The important feature of this method is that it requires real image spaces

for a high quality output. Artificial spaces, such as cartoons and geometric shapes

will work but with very limited quality output.

A two dimensional interpolation acting via a two dimensional IFS is necessary

to map a two dimensional black and white picture onto a two dimensional map.

Since grey-scale images have RGB values all equal, any calculation that happens

to one colour coordinate, is treated as happening to them all, and the complexity

144
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of calculations easily reduce to two dimensional mappings. If this greyscale IFS is

expanded to three dimensions, using the same two dimensional interpolation, a picture

with colour may be properly mapped. If the third dimension is itself treated as a three

component vector representing the red, green, and blue components of a colour, a full

colour picture may be properly transformed.

With the use of the 2 dimensional IFS, one can easily produce a 3 dimensional IFS.

Likewise, with the use of the 2 dimensional case and the 2 dimensional higher order

interpolation, a generalization may be drawn for k - degree interpolation accuracy.

6.2 Linear Two Dimensional Interpolation Func-

tions

First of all, we understand that the two dimensional linear interpolation between

points may be written as follows:

y =
x− x0

x1 − x0

y1 +
x1 − x

x1 − x0

y0 (6.2.1)

with initial conditions y(x0) = y0 and y(x1) = y1.

The three dimensional linear interpolation between points would then be written

as:

z = (x−x0)(y−y0)
(x1−x0)(y1−y0)

z1,1 + (x1−x)(y−y0)
(x1−x0)(y1−y0)

z0,1+
(x−x0)(y1−y)

(x1−x0)(y1−y0)
z1,0 + (x1−x)(y1−y)

(x1−x0)(y1−y0)
z0,0

(6.2.2)

The 1 dimensional linear fractal interpolation involves solving an IFS where

wn

(
x

y

)
=

(
an 0

bn 0

) (
x

y

)
+

(
en

fn

)
, (6.2.3)
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given the initial, or fixed point, conditions

wn

(
xN

yN

)
=

(
xn

yn

)
wn

(
x0

y0

)
=

(
xn−1

yn−1

)
.

When we consider that the dimension of the image space is M × N there are 3

times as many initial conditions to be considered. M is the number of pixels in the

width of the image, and N is the number of pixels in the height of the image.

The 2 dimensional linear interpolation involves solving an IFS where

Wm,n(x) = amx + em

Wm,n(y) = bny + fn&

Wm,n(z) = Am,nx + Bm,ny + Cm,nxy + Dm,n,

(6.2.4)

where A,B,C, and D are coefficients to be determined, given the initial conditions

Wm,n

(
xM

yN

)
=

(
xm

yn

)
Wm,n

(
x0

y0

)
=

(
xm−1

yn−1

)

Wm,n(zM,N) = zm,n Wm,n(zM,0) = zm,n−1

Wm,n(z0,N) = zm−1,n Wm,n(z0,0) = zm−1,n−1

(6.2.5)

where we have used zm,n = z(xm, yn) for compactness.

Here xm takes on the linear interpolation

xm =
xn−1 − xn−2

xn − xn−2

xN +
xn−1 − xn

xn−2 − xn

x0 (6.2.6)

of the fixed point between the 2 known end points. The definition for ym is similar.

The coefficients in the 1 dimensional case were solved for in terms of initial con-

ditions, and likewise for the 2 dimensional case coefficients. After some simple math-

ematics the coefficients were solved to be:

am = xm−xm−1

xM−x0
bn = yn−yn−1

yN−y0

em = x0xm−xm−1xM

x0−xM
fn = y0yn−yn−1yN

y0−yN

(6.2.7)
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and the z component coefficients were:

Am,n =
(zm,n−1 − zm−1,n−1)yN + (zm−1,n − zm,n)y0

(xM − x0)(yN − y0)
(6.2.8)

Bm,n =
(zm−1,n − zm−1,n−1)xM + (zm,n−1 − zm,n)x0

(xM − x0)(yN − y0)

Cm,n =
zm−1,n−1 − zm,n−1 + zm,n − zm−1,n

(xM − x0)(yN − y0)

Dm,n =
zm−1,n−1xMyN − zm,n−1x0yN + zm,ny0x0 − zm−1,nxMy0

(xM − x0)(yN − y0)

6.2.1 Simplify

The problem of working out the above fixed points for the z′ = Wm,n(z) transfor-

mation is quite tedious, and highly prone to mistakes. Fortunately, a shortcut was

determined, it may not make the coding any simpler, but does prove to make solving

the systems of equations rather trivial. Basically, all one needs to do is calculate

z’=x’y’, where x′ = W (x) and y′ = W (y) as seen above. Effectively, what will be

worked out is that the following relations will be evident, say for the linear transfor-

mation,

Am,n = amfn Bm,n = bnem Cm,n = ambn Dm,n = emfn (6.2.9)

with am etcetera as seen in 6.2.7. When using this method one must keep in mind that

the resulting product substitution must be made before programming xmyn = zm,n for

all values of x and y that are not endpoints. Furthermore, use of this information, and

the contraction proof for the 2 dimensional grey scale picture proof in Chapter 5, we
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have that the transformation above is also contracting. We may then assume without

loss of generality that the product of two contracting systems is also contracting.

Another observation of the values calculated for the coefficients of the transforma-

tion is that we know the resulting value for the x coordinate will be located between

x0 and xM and likewise for y between y0 and yN . Thus, we expect the indices on z

to reflect this behaviour. In particular, we have that the scaling value, say for the

coefficient Bm,n, that the xM will not allow the present position to be taken into

consideration, for the first index on any of the multiplying z values. This also applies

to the y multipliers. The x0 multiplier appears to force the restriction that only the

current position may be considered for the first index on z. This takes care of the

positions allowed to be considered, however there is still the issue of the sign. What

can be done for the sign is that the z values, based on their index, can be written as a

matrix. Considering the restrictions above, one may remove the disallowed z values.

Now, if there are an even number of multipliers (remember that zero is even) the

elements of the remaining sub-matrix will take on a negative of the sign matrix. If

there are an odd number of multipliers then the elements of the remaining sub matrix

will take on the sign from the sign matrix.
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6.3 Quadratic Two Dimensional Interpolation Func-

tions

The interpolation technique may also be extended to the quadratic interpolation.

One method of doing this might follow a quadratic interpolation of the position

components, which follow;

x′ = amx2
m + bmxm + cm (6.3.1)

y′ = dny2
n + enyn + fn

and the quadratic interpolation of the colour,

z′ = Am,nx
2
my2

n+Bm,nx2
myn+Cm,nxmy2

n+Dm,nx2
m+Em,ny

2
n+Fm,nxmyn+Gm,nxm+Hm,nyn+K

This method may very well be useful for image analysis, however it falls away from

iterated function systems, specifically it does not follow an affine transformation.

Clearly a different method is needed to attempt an IFS approach.

6.4 Partial Quadratic Two Dimensional Interpola-

tion Functions

The interpolation techniques described above may be mixed resulting in a linear

interpolation for the coordinates of the image space, and a quadratic interpolation of

the colour at each location.
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x′ = amxm + em (6.4.1)

y′ = bnyn + fn

z′ = Am,nx
2
my2

n+Bm,nx2
myn+Cm,nxmy2

n+Dm,nx2
m+Em,ny

2
n+Fm,nxmyn+Gm,nxm+Hm,nyn+K

With this method we are still obeying an Affine transformation, since the coordinates

are the only part of the vector that need to obey any such rules, in order to still be

considered affine.

As with the linear case the 1 dimensional solutions will be utilized to work out a

solution for the two dimensional case. For the 1 dimensional case the coefficients for

the x and y components of the transformation are the same as in 6.2.7.

The resulting coefficients for the colour transformation are a little more compli-

cated to work out. A simplification arises when one looks at the z subscripts and

the multiplying coordinate subscripts. Again we consider the multiplier index. If the

index is the maximal position, we have that the corresponding z index cannot be the

current position. If the index is minimal, the corresponding z index is not allowed

to be 2 less than the current position. Finally, if the index of the multiplier is the

current position, then 1 less than the current position may not be considered. This

generalization of the system can greatly reduce the amount of work to be done in

calculating the coefficients. But as in the linear interpolation we also must consider

the sign of the z values. Just as in the linear case we can write the z values into a
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matrix based on the subscripts. Then considering the restrictions stated above, we

will be left with a sub-matrix consisting of only allowed positions for z. If there are

an even number of multipliers, and the indices of the multipliers are the same, the

off diagonal values are negative. If the indices differ by one, the off diagonals become

positive. Finally, if the indices differ by two then the off diagonals are negative. Fur-

ther relations for odd number of multipliers show that the opposite signs holds true.

This can be easily stated in an equation if we allow the following to be true;

Let us order the fixed points in the image space 0→0, m or n→1, and M or N→2.

Furthermore, we write the z values in matrix form, based on their subscripts. Now

using standard matrix form we are left with;

l∑

k,w=0

zm−k,n−w(−1)i+j+q+p+h (6.4.2)

where h is the order of interpolation, q is the number of multipliers, k is the fixed

point index for the x coordinates, w is the same for the y coordinates, and p is defined

as

p =

{
1, if the index on the multipliers are different;

0, if the index on the multipliers are the same.

Again, we have to keep in mind that the multiplier subscripts will determine which of

the matrix elements are not allowed. This method is general for any order interpola-

tion. It is a useful tool for determining the coefficients, since the actual computation

based on the initial conditions is lengthy and is incredibly error prone when coding.

This may be used as a check against potential errors.
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As an example we take the coefficient Em,n for the quadratic case, where we expect

four multipliers, y, and 3 x’s. So we are left with;

Em,n =
2∑

a,b,c=0

x2
aybxczi,j(−1)i+j+4+p+2 =

2∑

a,b,c=0

x2
aybxczi,j(−1)i+j+p (6.4.3)

where in this case zi,j is written as;

z =




zm−2,n zm−1,n zm,n

zm−2,n−2 zm−1,n−1 zm,n−1

zm−2,n−2 zm−1,n−2 zm,n−2


 (6.4.4)

and we will end up with terms where the multipliers are, for example x2
My0xm so we

cannot allow terms that have a two step separation in the y index, (for y0 we do not

allow n−2 subscripts). We also do not allow a one step separation in the x index, nor

do we allow a zero step separation in the x index (due to xm, and xM respectively.)

As complicated as this method is, it is less complicated than programming the re-

sults from the endpoint mappings. Since there are nine constants in this case, higher

order interpolations will push the calculation limits beyond a computer’s computa-

tional ability and other methods of solution would be necessary.

The program as described above was implemented using the linear interpolation

method and then the quadratic method, and the resulting images were compared for

resolution. Further comparisons are made when one looks at the traditional linear

extrapolation. The fractal interpolation methods resolution is much superior to the

traditional linear interpolation method. These are seen in figures 6.6 to 6.4.
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It should also be mentioned that the magnification of the original picture is limited

to the hardware of the PC used. Several magnifications were attempted on a test

picture and the resolution of the magnifications were acceptable. When comparing

the linear method to the quadratic it was easily seen that the difference between these

methods became more apparent at larger magnifications. It was assessed that with

a higher degree interpolation the resolution could be improved even further. All of

these pictures were not included here to save space.

In figures 6.11,6.14, and 6.17, clearly one can see that the higher the order of

interpolation the better looking the resulting picture. The fuzzyness exhibited by the

quadratic magnification is a feature of the interpolation, and would be remedied by

further iterations. Obviously the linear interpolation does not have the same degree

of fuzzyness, but the tradeoff here is the pixelation of the magnified picture makes

the image unrecognizable at higher magnifications.

6.5 Higher Degree Interpolation Techniques

For the two dimensional systems, in a higher order interpolation we need to consider

the same transforms for the spatial dimensions as was done in the past two techniques.

The colour dimension will be the only dimension changed. We will end up with a

system where;

wn(x) = anx + en (6.5.1)
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wn(y) = cny + fn

wn(z) = C(0,0)
n + C(1,0)

n x + C(1,1)
n xy + C(2,1)

n x2y + ... + C(k,k)
n xkyk

where k denotes the degree of interpolation.

wn




x0

y0

z0


 =




xn−k

yn−k

zn−k,n−k


 and wn




xm+1

ym+1

zm+1


 =




xn−k+1

yn−k+1

zn−k+1,n−k+1


 & ... &

wn




xN

yN

zN


 =




xn

yn

zn,n




Calculating this system of equations will devastate a computer, and basically any-

one trying it by hand. The method of solution shown in general for the quadratic

interpolation method will have to be implemented. However, there is a cost of high

level interpolations that is the number of fixed points needed. Such high level inter-

polations will require a larger image space to operate on, as well as a high correlation

between pixels. If this correlation is not met the picture will appear distorted regard-

less of the number of iterations performed.

6.6 Potential Applications

As an application of this work, in this section we consider the task of re-scaling a

given colour space. This is a natural problem for an interpolating function of two

variables (x, y), the pixel coordinates. The function z(x, y) in this case is a vector-

valued function having three components representing the RGB value of the pixel
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specifying the amount of red, green, and blue present. The procedure used to scale

an image of size M pixels wide by N pixels high is as follows. We first read in the

RGB values of each pixel of the image, and use that as the data to construct a fractal

interpolating function z(i, j), where i = 1, 2, ... ,M and j = 1, 2, ... ,N. Then to resize

the image so that the resulting image is of size sxM×syN , we construct a new fractal

interpolating function z′(i, j) = z(sxi, syj). Applying the random iteration algorithm

to z′(i, j), choosing independently a transformation index (i, j) at each stage, will

then result in the re-scaled image. Simply we re-arrange the information from the

fractal interpolations so to take on the appearance as seen in Kobes [58], which is

re-capitulated here,

wmn(x) ≡ x∗ =
x− x0

xM − x0

xm +
x− xM

x0 − xM

xm−1 (6.6.1)

wmn(y) ≡ y∗ =
y − y0

yM − y0

ym +
y − yM

y0 − yM

ym−1

wmn(z) ≡ z∗ =
(x∗ − xm−1)(y

∗ − yn−1)

(xm − xm−1)(yn − yn−1)
zm,n − (x∗ − xm)(y∗ − yn−1)

(xm − xm−1)(yn − yn−1)
zm−1,n−

(x∗ − xm−1)(y
∗ − yn)

(xm − xm−1)(yn − yn−1)
zm,n−1 +

(x∗ − xm)(y∗ − yn)

(xm − xm−1)(yn − yn−1)
zm−1,n−1

What we have done here is re-ordered the coefficients found in section 6.2 to produce

a functional form for the colour transformation. Since the x∗ and y∗ components are

the same under our affine transformations, we can re-write the z transformation for
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the quadratic fractal interpolation as;

wmn(z) ≡ z∗ =
(x∗ − xm−2)(x

∗ − xm−1)(y
∗ − yn−2)(y

∗ − yn−1)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm,n−

(x∗ − xm−2)(x
∗ − xm−1)(y

∗ − yn−2)(y
∗ − yn)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm,n−1+

(x∗ − xm−2)(x
∗ − xm−1)(y

∗ − yn)(y∗ − yn−1)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm,n−2−

(x∗ − xm)(x∗ − xm−2)(y
∗ − yn−1)(y

∗ − yn−2)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm−1,n+

(x∗ − xm)(x∗ − xm−2)(y
∗ − yn−2)(y

∗ − yn)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm−1,n−1−

(x∗ − xm)(x∗ − xm−2)(y
∗ − yn)(y∗ − yn−1)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm−1,n−2+

(x∗ − xm)(x∗ − xm−1)(y
∗ − yn−2)(y

∗ − yn−1)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm−2,n−

(x∗ − xm)(x∗ − xm−1)(y
∗ − yn)(y∗ − yn−2)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm−2,n−1+

(x∗ − xm)(x∗ − xm−1)(y
∗ − yn)(y∗ − yn−1)

(xm − xm−1)(xm − xm−2)(yn − yn−1)(yn − yn−2)
zm−2,n−2

(6.6.2)

where the value zm,n are vectors containing the colour components of the pixels whose

location is determined by {m,n}. These vectors in the code may be 4-vectors, where

the fourth element in the vector is the transparency, α, of the value. The transparency

of the image is the ability to see through the image. The resulting image with the use

of transparency will have smoothed edges and true colour forms since the artificial

colours will have high alpha values. The image may be transformed only considering

the RGB values, however artificial colouring will become very apparent, especially in

brighter areas.
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The generalization of this procedure to re-scale a portion of an image is straight-

forward. As examples of the results of this procedure, see the figures 6.9 to 6.17.

We start with the image appearing in 6.10, and zoom in on the area of the face.

The results appears in figure 6.14 and 6.12, together with a comparison done using a

simple linear interpolation scheme. Zooming further into the area of the eye results

in 6.17 and 6.15, again with a comparison of the result of a simple linear interpola-

tion. Generally, the number of iterations needed in the random iteration algorithm

to produce acceptable images is of the order of sxM × syN , where the original image

is of size M × N. Also, while slower, the quadratic fractal interpolating function typ-

ically produces, for the same number of iterations, a ”smoother” looking image than

the corresponding linear interpolating function. However, as with all interpolation

schemes, there comes a point where such higher-order interpolating formulas actually

start to produce worse results due to an artificially high sensitivity to fluctuations

in the data. Evidence of this is seen in the fractal zoom around the eye, artifacts of

the high sensitivity cause discolouration on the boundary between the iris and the

sclera. Some informal tests of this procedure seem to indicate that better results are

obtained for images of people, natural scenery, etc., as opposed to those containing

lettering, simple geometric shapes, and similar constructs, as seen in figures 6.1, 6.2,

6.3, 6.4. The Dilbert pictures are courtesy of Scott Adams. The Dilbert cartoon is

copyright Scott Adams.



158

Figure 6.1: Full size Dilbert re-
construction using linear fractal
interpolation

Figure 6.2: Full size Dilbert re-
construction using linear interpo-
lation

Figure 6.3: Full size text recon-
struction using linear fractal in-
terpolation

Figure 6.4: Full size text recon-
struction using linear interpola-
tion
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Figure 6.5: 4x zoom Dilbert re-
construction using linear fractal
interpolation

Figure 6.6: 4x zoom Dilbert re-
construction using linear interpo-
lation

However during the zoom process the smoothing effects seen in the real image

space picture, exists in the artificial image space produced by a cartoon or a block of

text. This is seen in figures 6.5, 6.6, 6.7, 6.8.

The preceding method demonstrates that these non-linear fractal interpolating

functions of two variables can be used in principle to represent images.

A potentially useful extension of these considerations is to the method of parti-

tioned iterated function systems, which is the currently best method of image com-

pression. This method breaks an image into several parts and attempts to create an

IFS for each sub-image. This has a higher probability of producing a highly compact
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Figure 6.7: 4x zoom text recon-
struction using linear fractal in-
terpolation

Figure 6.8: 4x zoom text recon-
struction using linear interpola-
tion

Figure 6.9: The
quadratic fractal re-
construction of entire
image

Figure 6.10: The lin-
ear reconstruction of
entire image

Figure 6.11: The lin-
ear fractal reconstruc-
tion of entire image

Figure 6.12: The
quadratic fractal mag-
nification around the
face

Figure 6.13: The
linear magnification
around the face

Figure 6.14: The lin-
ear fractal magnifica-
tion around the face
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Figure 6.15: The
quadratic fractal mag-
nification around the
eye

Figure 6.16: The
linear magnification
around the eye

Figure 6.17: The lin-
ear fractal magnifica-
tion around the eye

image, rather looking at the image as a whole to produce one IFS. [30]

6.7 Conclusion

Here we have presented the full usefulness of the fractal interpolation methods. There

are several good industrial applications of these methods. Since current video capture

methods usually result in fuzzy images upon magnification, better methods of image

magnification are needed. This becomes rather critical when it comes time for police

to identify suspects from a surveillance video.



Chapter 7

Conclusions

7.1 Symbolic Dynamics

We established a method of determining a maximal list of allowed orbits, and a

prescription for calculating the phase space location of these orbits based solely on

the symbolic dynamics. The methods discussed in Chapter 2 are generic to the level

of 2 dimensional maps. Extending these ideas to 3 dimensional maps is an open area

for research, but for now we can easily use Poincaré sections to reduce the mappings

to 2 dimensions, allowing the use of the presented methods.

7.2 Numerical Periodic Orbit Methods

I have presented in Chapter 3 a complete method of both calculating the periodic

orbits, as well as a method of calculating the dynamical averages in the system. The

method described are broad in their scope as they can be applied to any system

of differential equations, of any order. One still has to be cautious since random
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processes will produce results, but their meaning will be null, and general trends will

not likely be seen.

7.3 Numerical Periodic Orbits

I have shown in Chapter 4, methods of numerically finding the periodic orbits as they

are found symbolically in Chapter 2. A method of automating this method was also

presented. More work in this area is still necessary to make the programs utilize better

search algorithms and thereby much more efficient. However, this extended beyond

the scope of the project, and is best left for further study in this field. Although

the code is quite complicated as a whole, each of the parts easily correspond to the

theory described in Chapter 3. The resulting effect was a program that could take

a moderately good guess, i.e. the methods used in Chapter 2, and form an accurate

prediction of the allowed orbit in relatively short time. The orbits were used for

averaging, and easily produced results for the system that came within a few decimal

places of the brute force calculations. The benefit of this method is that long term

prediction becomes possible since one only observes the known periodic orbits of the

system, and calculates the chaotic propertied from there. This leaves the original

chaotic system alone, which is where most of the difficulties in long term calculation

lie.
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7.4 Fractals

In this chapter we have presented the ideas and observations that lead to the concepts

of fractal geometry. We have discussed the link between the concepts of chaos and

fractals, and given an example of such a relationship through the system observed in

chapters 2, 3 and 4. Specifically the most important concept from this chapter was

the use of fractal geometry rather than the traditional Euclidean geometry in chaotic

dynamics. The link between the fractal nature of real systems and chaotic analysis

is fundamental to nature, and needs to be investigated in more physical systems.

7.5 Image Manipulation

Finally in Chapter 6 we presented the full usefulness of the fractal interpolation

methods. There are several good industrial applications of these methods. Since

current video capture methods usually result in fuzzy images upon magnification,

better methods of image magnification are needed. This becomes rather critical when

it comes time for police to identify suspects from a surveillance video.

7.6 Future Projects

The concepts studied here have all been for classical systems. A natural extension

of both of these methods would be to quantum systems. The beauty of the IFS is

that the methods may have applications in several different fields, it does not have to
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be solely associated with image compression. They may also have more immediate

physics applications through quantum mechanics. Currently IFS’s are being applied

to the topological study of quantum systems, in a paper by Artur Loziński, Karol

Zyczkowski and Wojciech Slomczyński (2003). In this paper they describe quantum

iterated functions systems or as they dub it QIFS. QIFS are described as functions

acting randomly in Hilbert space, where each function acts according to a prescribed

probability. These are designed to describe specific nonunitary quantum dynamics.

Therein any research into this field may have effects on the study of their research.

Further investigation into QIFS resulted into the discovery that they are also being

used to describe event enhanced quantum theory, EEQT. Quantum fractals also play

an important role in this

Further applications of periodic orbit theory may be applied to quantum chaos,

see Steiner [65] where he discusses the general trace formula as a sound mathematical

basis for the semiclassical quantization of chaos. He presents two conjectures where

it is argued that there are unique fluctuation properties in quantum mechanics which

are universal. He states that these properties constitute the quantum mechanical

analogue of the phenomenon of chaos in classical mechanics. His overall claim is that

quantum chaos has been found.

Periodic orbit theory also has applications to relativistic mechanics, as shown by

Carl Dettmann [12, 11]. Although, my speculation is that the higher dimensional
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symbolic dynamics have to be developed long before periodic orbit theory will be

of any use, since relativistic dynamics is usually described in hyperspace. Poincaré

sections may not be able to reduce the system to 2 dimensions without significant

loss of information about the system.

An immediate computer science application of iterated function systems is that

shown in [66] since it extracts the contour of an image given an outline, thus singling

out that part of the image space where our fractal zoom method may be used to

enhance that particular part of the image. Of course we have to admit there is a long

way to go for image compression using the interpolating methods.

As briefly mentioned in chapter 6 the method presented have applications in video

image shots. What may be a logical next step would be to apply this magnification

procedure to video. We have seen that the linear magnification for images is weak

when compared to fractal methods, it only stands to reason that the same would be

true for motion pictures.

7.7 Final Remarks

When all is said and done, it appears that chaos may be rigorously studied, as our

system is a random choice for a test of the validity of symbolic dynamics, and periodic

orbit theory. Our system has been able to match to a small level of accuracy the well

tested brute force methods of determining the Lyapunov exponent of a system, the

winding number, as well as the topological and entropy dimensions of the system.



167

To obtain a higher level of accuracy one only needs to continue the orbit searching

methods to higher periods, and possibly spend more time trying to find all of the

orbits within a given period. Creating the programs as suggested in this thesis will

lead to faster methods of determining allowed orbits, and ultimately more accurate

results.

As for the interpolated IFS methods, we have shown that the methods developed

in [59] could easily be extended to higher dimensions as well as higher order extrapola-

tions. We have successfully shown that the outcome of these methods does allow one

a secure method of resizing the image with minimal information loss. With further

optimization it is felt that this method may also be useful for image compression.

AMDG



Appendix A

Periodic Orbit Hunting Code

/*

Multishooting program v0.3.2.

A collaborative effort between S. Peles, Georgia Institute

of Technology, School of Physics, A.J. Penner, University

of Manitoba, and R. Kobes, University of Winnipeg.

This program takes guesses for periodic orbits from a file that

contains the points of a Poincare section of a given set of

ODE’s, processes them and attempts to generate periodic orbits,

if the guesses are close enough to an expected orbit.

Approximate running time on an intel Pentium IV 2.4 GHz

processor is 8 hours, with an input file on the order of 7

million Poincare section points.

*/

#include <stdio.h>

#include <math.h>

#include "gsl/gsl_errno.h"

#include "gsl/gsl_matrix.h"

#include "gsl/gsl_odeiv.h"

#include"gsl/gsl_linalg.h"

#include <gsl/gsl_blas.h>

#include <gsl/gsl_multiroots.h>

#define ODE_DIM 3
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struct ODE_params {

double Q, drive_freq, r;

int period;

};

// this function sets up the ODE’s appropriate to our system

int func (double t, const double y[], double f[],

void *params)

{

struct ODE_params *p

= (struct ODE_params *) params;

double Q = p->Q;

double a = p->drive_freq;

double r = p->r;

f[0] = y[1];

f[1] = - y[1]/Q +

( -sin(2.*M_PI*y[0]) - r*a/Q + (1.0+r)/r*sin(2.*M_PI*y[0] - y[2]))/2./M_PI;

f[2] = a;

return GSL_SUCCESS;

}

// this function allows for the multiplication of the individual

// Jacobian functions

// this is necessary for the calculation of the appropriate

// eigenvalues for each orbit

int linfunc (double t, double J[], double dJdt[], double A[]) {

// Set the matrix of variations of the flow

gsl_matrix_view A_mat

= gsl_matrix_view_array (A, ODE_DIM, ODE_DIM);

// Set NxN linearized equations

gsl_matrix_view J_mat

= gsl_matrix_view_array (J, ODE_DIM, ODE_DIM);

// Initialize derivatives of linearized equations

gsl_matrix_view dJdt_mat
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= gsl_matrix_view_array (dJdt, ODE_DIM, ODE_DIM);

// Calculate derivatives of linearized equations: dJ/dt = A*J

gsl_blas_dgemm (CblasNoTrans, CblasNoTrans,

1.0, &A_mat.matrix, &J_mat.matrix,

0.0, &dJdt_mat.matrix);

return GSL_SUCCESS;

}

// This function sets up the Jacobian matrix of our system

int jac (double t, const double y[], double *dfdy,

double dfdt[], void *params)

{

struct ODE_params *p

= (struct ODE_params *) params;

double Q = p->Q;

double a = p->drive_freq;

double r = p->r;

gsl_matrix_view dfdy_mat

= gsl_matrix_view_array (dfdy, ODE_DIM, ODE_DIM);

gsl_matrix * m = &dfdy_mat.matrix;

gsl_matrix_set (m, 0, 0, 0.0);

gsl_matrix_set (m, 0, 1, 1.0);

gsl_matrix_set (m, 0, 2, 0.0);

gsl_matrix_set (m, 1, 0, -cos(2.*M_PI*y[0]) + (1.0+r)/r*cos(2.*M_PI*y[0] - y[2]));

gsl_matrix_set (m, 1, 1, -1.0/Q);

gsl_matrix_set (m, 1, 2, -(1.0+r)/r*cos(2.*M_PI*y[0] - y[2])/2./M_PI);

gsl_matrix_set (m, 2, 0, 0.0);

gsl_matrix_set (m, 2, 1, 0.0);

gsl_matrix_set (m, 2, 2, 0.0);

dfdt[0] = 0.0;

dfdt[1] = 0.0;

dfdt[2] = 0.0;

return GSL_SUCCESS;

}
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int func1 (double t, const double x[], double f[],

void *params)

{

int i;

double y[ODE_DIM], dy[ODE_DIM], J[ODE_DIM*ODE_DIM], dJdt[ODE_DIM*ODE_DIM];

double dfdy[ODE_DIM*ODE_DIM], dfdt[ODE_DIM];

// Set equations of the flow

for(i = 0; i < ODE_DIM; i++)

y[i] = x[i];

// Evaluate derivatives of the flow

func(t, y, dy, params);

for(i = 0; i < ODE_DIM; i++)

f[i] = dy[i];

// Calculate the matrix of variations of the flow and store it in dfdy

jac(t, y, dfdy, dfdt, params);

// Set linearized equations

for(i = 0; i < ODE_DIM*ODE_DIM; i++)

J[i] = x[ODE_DIM + i];

// Evaluate derivatives of the linearized equations

linfunc(t, J, dJdt, dfdy);

for(i = 0; i < ODE_DIM*ODE_DIM; i++)

f[ODE_DIM + i] = dJdt[i];

return GSL_SUCCESS;

}

int jac1 (double t, const double y[], double *dfdy,

double dfdt[], void *params)

{ /* Still to implement. Right now you cannot use */ /* bsimp

integrator. */

return GSL_SUCCESS;

}



172

// this function calculates the Poincare iterate at each step of

// the ODE solver

int Poincare_map_strob_wjac (double *y, double *Jacobi_Matrix,

void *params) {

const int STEPS_PER_SECTION = 1;

int i,j;

const gsl_odeiv_step_type * T

= gsl_odeiv_step_rk8pd;

gsl_odeiv_step * s

= gsl_odeiv_step_alloc (T, ODE_DIM*(1+ODE_DIM));

gsl_odeiv_control * c

= gsl_odeiv_control_y_new (1e-12, 0.0);

gsl_odeiv_evolve * e

= gsl_odeiv_evolve_alloc (ODE_DIM*(1+ODE_DIM));

struct ODE_params *p

= (struct ODE_params *) params;

double STROBE_PERIOD = 2.0*M_PI / (p->drive_freq);

double tin=0.0, deltat=STROBE_PERIOD/STEPS_PER_SECTION;

double t, t1;

double h = 1e-6;

double x[ODE_DIM*(1+ODE_DIM)];

gsl_odeiv_system sys = {func1, jac1, ODE_DIM*(1+ODE_DIM), params};

gsl_ieee_env_setup();

// Set initial conditions of the flow + linearized equations

for(i = 0; i < ODE_DIM; i++)

x[i] = y[i];

for(i = 0; i < ODE_DIM; i++)

for(j = 0; j < ODE_DIM; j++)

{

if(i == j)

x[ODE_DIM + ODE_DIM* i + j] = 1.0;
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else

x[ODE_DIM + ODE_DIM* i + j] = 0.0;

}

t = tin;

do

{

t1 = t + deltat;

if ( t1 > STROBE_PERIOD ) t1 = STROBE_PERIOD;

while (t < t1)

{

int status = gsl_odeiv_evolve_apply (e, c, s,

&sys,

&t, t1,

&h, x);

if (status != GSL_SUCCESS)

break;

}

t = t1;

}

while ( t < STROBE_PERIOD );

for(i = 0; i < ODE_DIM; i++)

y[i] = x[i];

for(i = 0; i < ODE_DIM*ODE_DIM; i++)

Jacobi_Matrix[i] = x[ODE_DIM + i];

gsl_odeiv_evolve_free(e);

gsl_odeiv_control_free(c);

gsl_odeiv_step_free(s);

return 0;

}

// this function prints to file

void print_orbits(const gsl_vector *F, const gsl_vector *x,
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void *param, FILE * out, const int count)

{

int i,j;

double error=0.0;

struct ODE_params *p

= (struct ODE_params *) param;

int PERIOD_OF_ORBIT = p->period;

/* Print vector F */

for( i=0; i < PERIOD_OF_ORBIT; i++)

{

for( j=0; j < ODE_DIM; j++)

{

printf(" %18.14f",gsl_vector_get( F, ODE_DIM* i + j));

}

printf("\n");

}

for( i=0; i < ODE_DIM*PERIOD_OF_ORBIT; i++ )

error += fabs(gsl_vector_get(F,i));

if(error < 1E-13){

fprintf(out,"%d %g\n",count,error);

/* Print orbits */

for( i=0; i < PERIOD_OF_ORBIT; i++)

{

for( j=0; j < ODE_DIM; j++)

{

fprintf(out," %18.14f", gsl_vector_get(x,ODE_DIM* i + j));

}

fprintf(out,"\n");

}

fprintf(out,"\n"); } // ends new if control

printf("---------------------------------------\n");

return;

}

// this function crates the matrix DF as described in chapter 3
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void ConstructDF(gsl_matrix *DF, int d, int n, int k,

double J[], double v[], double a[])

{

int i,j;

// Add Jacobi matrix in the upper right block.

if (k == n-1)

{

for( i=0; i<d; i++)

for( j=0; j<d; j++)

gsl_matrix_set( DF, i, (n-1)*d + j, -J[i*d +j] );

}

// Add other Jacobi matrices. Index k denotes point at the orbit.

else

{

for( i=0; i<d; i++)

for( j=0; j<d; j++)

gsl_matrix_set( DF, (k+1)*d + i, k*d + j, -J[i*d +j]);

}

// Add flow vector. Index k denotes point at the orbit.

for( i=0; i<d; i++)

{

gsl_matrix_set( DF, k*d + i, n*d + k, -v[i]);

}

// Add Poincare (hyper)surface vector.

for( i=0; i<d; i++)

{

gsl_matrix_set( DF, n*d + k, k*d + i, a[i]);

}

return;

}

// this function produces the vector F as described in chapter 3

void ConstructF(gsl_vector *F, int d, int n, int k, double

value[]) {

int i;
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for( i=0; i<d; i++)

{

gsl_vector_set( F, d * k + i, -value[i]);

}

}

void SPmod(double *x) {

if ( fabs(x[2]) > M_PI ) x[2] -= 2.0*M_PI*x[2]/fabs(x[2]);

while ( fabs(x[0]) > 0.5 ) x[0] -= x[0]/fabs(x[0]);

// if ( x[2] >= 2.0*M_PI ) x[2] -= 2.0*M_PI;

return;

}

// this function completes the previous DF function, it is

// separate for debugging purposes only

int CompleteDF(const gsl_vector *Guess,

void *param, gsl_matrix *DF )

{

int i,k;

struct ODE_params *p

= (struct ODE_params *) param;

int PERIOD_OF_ORBIT = p->period;

double J[ODE_DIM*ODE_DIM], y[ODE_DIM], v[ODE_DIM];

// Poincare (hyper)plane vector

double a[ODE_DIM] = { 0.0, 0.0, 1.0 };

// Initialize matrix DF

gsl_matrix_set_zero (DF);

for(i=0; i < ODE_DIM*PERIOD_OF_ORBIT; i++)

gsl_matrix_set( DF, i, i, 1.0); // makes the top left the identity matrix

for ( k=0; k < PERIOD_OF_ORBIT; k++)

{

// Take initial conditions for a point on the orbit

for( i=0; i < ODE_DIM; i++ )

{

y[i] = gsl_vector_get( Guess, ODE_DIM * k + i);
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}

// Dynamical flow.

func( 0.0, y, v, param);

// Poincare map step.

Poincare_map_strob_wjac( y, J, param );

ConstructDF(DF, ODE_DIM, PERIOD_OF_ORBIT, k,J,v,a);

}

return GSL_SUCCESS;

}

// this function completes the F vector, again separate for

// debugging purposes

int CompleteF(const gsl_vector *Guess, void *param, gsl_vector *F)

{

int i,k;

struct ODE_params *p

= (struct ODE_params *) param;

int PERIOD_OF_ORBIT = p->period;

double J[ODE_DIM*ODE_DIM], y[ODE_DIM];

// Initialize vector F

gsl_vector_set_zero(F);

for ( k=0; k < PERIOD_OF_ORBIT; k++)

{

// Take initial conditions for a point on the orbit

for( i=0; i < ODE_DIM; i++ )

{

y[i] = gsl_vector_get( Guess, ODE_DIM * k + i);

}

// Poincare map step.

Poincare_map_strob_wjac( y, J, param );

// Calculate -( x - f(x))

if(k == PERIOD_OF_ORBIT - 1)
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{

for( i=0; i < ODE_DIM; i++ )

y[i] -= gsl_vector_get(Guess, i);

SPmod(y);

ConstructF(F, ODE_DIM, PERIOD_OF_ORBIT, 0, y);

}

else

{

for( i=0; i < ODE_DIM; i++ )

y[i] -= gsl_vector_get(Guess, ODE_DIM * (k+1) + i);

SPmod(y);

ConstructF(F, ODE_DIM, PERIOD_OF_ORBIT, k+1, y);

}

}

// print_orbits(F, Guess, param);

return GSL_SUCCESS;

}

int CompleteFDF(const gsl_vector *Guess, void *param,

gsl_vector *F, gsl_matrix *DF)

{

CompleteDF( Guess, param, DF);

CompleteF( Guess, param, F);

return GSL_SUCCESS;

}

int main(void) {

const gsl_multiroot_fdfsolver_type *T;

gsl_multiroot_fdfsolver *s;

FILE *in, *out;

int status;

size_t iter = 0;

const size_t n = (ODE_DIM+1)*2; // multiplied by the period of orbit!

int i, j, k;

struct ODE_params rod_param={ 0.76, // Quality factor "Q"
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1.028, // Drive frequency "a"

1.088, // Radii ratio "r"

15 }; // PERIOD_OF_ORBIT

in = fopen("Period2II.txt","rb");

out = fopen("p2valuesII.dat","wb");

int PERIOD_OF_ORBIT=rod_param.period;

int count=0;

gsl_multiroot_function_fdf f = {&CompleteF,

&CompleteDF,

&CompleteFDF,

n, &rod_param};

gsl_vector * Guess = gsl_vector_alloc ( PERIOD_OF_ORBIT * (ODE_DIM+1) );

double InitialGuess[ODE_DIM*15];

// the following few lines reads the initial guesses from the

// Poincare section file

while(fscanf(in,"%lf%lf%lf

%lf%lf%lf",

&InitialGuess[0],&InitialGuess[1],&InitialGuess[2],

&InitialGuess[3],&InitialGuess[4],&InitialGuess[5] )!=EOF){

// these lines keep the orbit points in the correct normalization

for(i=0;i<PERIOD_OF_ORBIT;i++){

while(InitialGuess[i*ODE_DIM]<0.0){InitialGuess[i*ODE_DIM]+=1.0;}

while(InitialGuess[i*ODE_DIM]>1.0){InitialGuess[i*ODE_DIM]-=1.0;}

}

for(i=0;i<PERIOD_OF_ORBIT;i++){

while(InitialGuess[i*ODE_DIM+1]>0.0){InitialGuess[i*ODE_DIM+1]-=1.0;}

}

iter =0; // this allows the multishoot method to look at multiple

// guesses

gsl_vector_set_zero(Guess);

for( i=0; i < PERIOD_OF_ORBIT*ODE_DIM; i++)



180

gsl_vector_set(Guess,i,InitialGuess[i]);

// Setup GSL variables for the multiple root finding algorithms

T = gsl_multiroot_fdfsolver_gnewton;

s = gsl_multiroot_fdfsolver_alloc (T, n);

gsl_multiroot_fdfsolver_set (s, &f, Guess);

do

{

iter++;

// iterates the multiroot solver one step

status = gsl_multiroot_fdfsolver_iterate (s);

if (status) // if the root solver method does not converge,

// or diverges, then it will return a failure,

// and this process must end.

break;

status = gsl_multiroot_test_delta (s->f, s->x, 1e-14, 0.0);

// check the error calculation to within a specific range,

// if the error is larger, the status is set to continue.

}

while(iter < 15 && status == GSL_CONTINUE);

// send the information to a print function for proper output

print_orbits(s->f, s->x, &rod_param,out,count);

count++; } // ends while

fclose(in);

fclose(out);

gsl_vector_free( Guess);

gsl_multiroot_fdfsolver_free (s);

return 0;

}
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Iterated Function System Code

All of the following code was written as a collaboration between R. Kobes, University

of Winnipeg, and A.J. Penner, University of Manitoba.

B.1 Draw.c

#include "fractalResized.h"

int main (void) {

gdImagePtr srcImg, dstImg, cmpImg; // create necessary image

// pointers

FILE *in, *out, *cmp;

float min_factor = 0.999999, max_factor = 7;

int width = 35, height = 57, neww, newh; // portion of picture

// to be scaled

float scale = 4;

neww = (int) (scale * width); // output image size

newh = (int) (scale * height);

in = fopen("lena.jpeg", "rb");

if (!in) nrerror("Input file does not exist");

srcImg = gdImageCreateFromJpeg(in); // source input

dstImg = gdImageCreateTrueColor(neww, newh); // destination

// output
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cmpImg = gdImageCreateTrueColor(neww, newh); // comparison

// image

// this calls the resizing function

gdIFSCopyResized(dstImg, srcImg, 0, 0, 80, 40, //110,120

neww, newh, width, height, min_factor, max_factor);

// this calls the image resizing function

gdImageCopyResized(cmpImg, srcImg, 0, 0, 80, 40, //110,120

neww, newh, width, height);

out = fopen("lena1.jpeg", "wb");

if (!out) nrerror("Output file cannot be created");

gdImageJpeg(dstImg, out, -1); // finalize the destination image

cmp = fopen("lena2.jpeg", "wb");

if (!cmp) nrerror("Output file cannot be created");

gdImageJpeg(cmpImg, cmp, -1); // finalize the comparison image

fclose(in);

fclose(out);

fclose(cmp);

return 0;

}

B.2 fractalResized.h

#include <gd.h>

#include <stdio.h>

#include <stdlib.h>

typedef struct {

float x, y;

int rgb[3];

} ifs;

void fractalResized (gdImagePtr dstImg, gdImagePtr srcImg,
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int dstX, int dstY, int srcX, int srcY,

int dstW, int dstH, int srcW, int srcH,

float min_factor, float max_factor);

void generate_ifs (gdImagePtr srcImg, ifs **z,

int srcX, int srcY, int dstX, int dstY,

int srcW, int srcH, int dstW, int dstH);

void generate_ifs_image (gdImagePtr dstImg, ifs **z, int **seen,

int srcX, int srcY, int dstX, int dstY,

int srcW, int srcH, int dstW, int dstH,

int dstXend, int dstYend,

float min_factor, float max_factor);

void fill_in_blanks (gdImagePtr dstImg, int **seen,

int dstX, int dstY, int dstXend, int dstYend);

void rgb_linear (float newx, float newy, ifs **z,

int m, int n, float x, float y, float xm1, float ym1,

int *rgb);

int nearest (int **seen, int i, int j,

int xstart, int ystart, int width, int height);

ifs **ifsmatrix(long nrh, long nch);

int **imatrix(long nrl, long nrh, long ncl, long nch);

void free_ifsmatrix(ifs **m, long nrh, long nch);

void free_imatrix(int **m, long nrl, long nrh, long ncl, long

nch);

void nrerror(char error_text[]);

B.3 gdIFSCopyResized.c

#include "gdIFSCopyResized.h"

/* ************************************************************
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copy an image from srcImg to dstImg via an IFS algorithm. The

source starts at (srcX, srcY), of size (srcW, srcH), and is copied

to the destination, starting at (dstX, dstY), of size (dstW,

dstH).

min_factor, between 0 and 1, determines the minimum fraction of

the destination points to be colored by the IFS algorthm. The

remainder simply use the nearest available pixel to determine the

colour. Values very close to 1 will produce better looking images,

but will take longer.

max_factor, greater than 1, determines the maximum number of

iterations that the IFS algorithm uses. A value of 1 will have

this iteration number equal to the number of pixels in the

destination; increasing this value will produce better looking

images, but at the expense of speed. Reasonable values are around

5. ********************************************************** */

static int gdImageGetTrueColorPixel (gdImagePtr im, int x, int y)

{

int p = gdImageGetPixel (im, x, y);

if (!im->trueColor)

{

return gdTrueColorAlpha (im->red[p], im->green[p], im->blue[p],

(im->transparent == p) ? gdAlphaTransparent :

gdAlphaOpaque);

}

else

{

return p;

}

}

void gdIFSCopyResized (gdImagePtr dstImg, gdImagePtr srcImg,

int dstX, int dstY, int srcX, int srcY,

int dstW, int dstH, int srcW, int srcH,

double min_factor, double max_factor) {

ifs **z;

int **seen, i, j, dstXend, dstYend;
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if (min_factor < 0 || min_factor > 1) min_factor = 0.999;

if (max_factor < 1) max_factor = 4;

dstXend = dstX + dstW;

dstYend = dstY + dstH;

/* allocate some arrays */

z = ifsmatrix(srcX, srcX + srcW, srcY, srcY + srcH);

seen = imatrix(dstX, dstX + dstW, dstY, dstY + dstH);

/* initialize some arrays */

for (i=dstX; i<=dstXend; i++) {

for (j=dstY; j<=dstYend; j++) {

seen[i][j] = 0;

}

}

generate_ifs(srcImg, z, srcX, srcY, dstX, dstY,

srcW, srcH, dstW, dstH);

generate_ifs_image(dstImg, z, seen, srcX, srcY, dstX, dstY,

srcW, srcH, dstW, dstH, dstXend, dstYend,

min_factor, max_factor);

fill_in_blanks(dstImg, seen, dstX, dstY, dstXend, dstYend);

free_ifsmatrix(z, srcX, srcX+srcW, srcY, srcY+srcH);

free_imatrix(seen, dstX, dstX+dstW, dstY, dstY+dstH);

}

void generate_ifs (gdImagePtr srcImg, ifs **z,

int srcX, int srcY, int dstX, int dstY,

int srcW, int srcH, int dstW, int dstH) {

int srcXend, srcYend, i, j, index, srcIsTrue;

double scaleX, scaleY;

srcXend = srcX + srcW;

srcYend = srcY + srcH;
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scaleX = (double) (dstW) / (double) (srcW);

scaleY = (double) (dstH) / (double) (srcH);

srcIsTrue = srcImg->trueColor;

for (i=srcX; i<=srcXend; i++) {

for (j=srcY; j<=srcYend; j++) {

z[i][j].x = dstX + scaleX * (i-srcX);

z[i][j].y = dstY + scaleY * (j-srcY);

if (srcIsTrue) {

index = gdImageGetTrueColorPixel(srcImg, i, j);

z[i][j].rgb[0] = gdTrueColorGetRed(index);

z[i][j].rgb[1] = gdTrueColorGetGreen(index);

z[i][j].rgb[2] = gdTrueColorGetBlue(index);

z[i][j].rgb[3] = gdTrueColorGetAlpha(index);

}

else {

index = gdImageGetPixel(srcImg, i, j);

z[i][j].rgb[0] = gdImageRed(srcImg, index);

z[i][j].rgb[1] = gdImageGreen(srcImg, index);

z[i][j].rgb[2] = gdImageBlue(srcImg, index);

z[i][j].rgb[3] = gdImageAlpha(srcImg, index);

}

}

}

}

// this function performs the IFS zoom on the original image

void generate_ifs_image (gdImagePtr dstImg, ifs **z, int **seen,

int srcX, int srcY, int dstX, int dstY,

int srcW, int srcH, int dstW, int dstH,

int dstXend, int dstYend,

double min_factor, double max_factor) {

int count = 0, hits = 0, max, min, m, n, im, in, rgb[4], index,

transparent, dstIsTrue;

double oldx = 3.3, oldy = 4.7, newx, newy, x, y, xm1, ym1;

transparent = gdImageGetTransparent(dstImg);

dstIsTrue = dstImg->trueColor;
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max = (int) (max_factor * dstW * dstH);

min = (int) (min_factor * dstW * dstH);

for (count=0; count<max; count++) {

m = 1 + srcX + (int) ((double) srcW * rand() / (RAND_MAX + 1.0) );

n = 1 + srcY + (int) ((double) srcH * rand() / (RAND_MAX + 1.0) );

x = z[m][n].x;

y = z[m][n].y;

xm1 = z[m-1][n].x;

ym1 = z[m][n-1].y;

newx = ( (oldx-dstX)*x + (dstXend-oldx)*xm1 ) / dstW;

newy = ( (oldy-dstY)*y + (dstYend-oldy)*ym1 ) / dstH;

im = (int) newx;

in = (int) newy;

if (seen[im][in] > 0) continue;

rgb_linear(newx, newy, z, m, n, x, y, xm1, ym1, rgb);

index = gdImageColorResolveAlpha(dstImg, rgb[0], rgb[1], rgb[2], rgb[3]);

seen[im][in] = index;

if (index == transparent || index <= 0) continue;

if (hits++ > min) break;

gdImageSetPixel(dstImg, im, in, index);

oldy = newy;

oldx = newx;

}

}

// this function fills the blank spaces from the IFS zoom with a

// colour determined by neighbouring pixels

// this is necessary since the IFS is based on a random calling

// sequence, and not all pixels will be covered by this method in a

// reasonable amount of time.

void fill_in_blanks (gdImagePtr dstImg, int **seen,

int dstX, int dstY, int dstXend, int dstYend) {

int transparent, i, j, index;

transparent = gdImageGetTransparent(dstImg);
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for (i=dstX; i<=dstXend; i++) {

for (j=dstY; j<=dstYend; j++) {

if (seen[i][j] > 0) continue;

index = nearest(seen, i, j, dstX, dstY, dstXend, dstYend);

if (index <= 0 || index == transparent) continue;

gdImageSetPixel(dstImg, i, j, index);

}

}

}

// this function performs a linear zoom on the original image

// using a classic zoom technique

void rgb_linear (double newx, double newy, ifs **z,

int m, int n, double x, double y, double xm1, double ym1,

int *rgb) {

double denX, denY;

int i;

denX = x - xm1;

denY = y - ym1;

for (i=0; i<=3; i++) {

rgb[i]=

(int) ( ( (newx-xm1)*(newy-ym1)*z[m][n].rgb[i] -

(newx-x)*(newy-ym1)*z[m-1][n].rgb[i] -

(newx-xm1)*(newy-y)*z[m][n-1].rgb[i] +

(newx-x)*(newy-y)*z[m-1][n-1].rgb[i]

) / denX / denY);

if (rgb[i] < 0) rgb[i] = 0 ;

if (rgb[i] > 255) rgb[i] = 255 ;

}

}

int nearest (int **seen, int i, int j,

int dstX, int dstY, int dstXend, int dstYend) {

int m, n;

for (m=i-1; m<=i+1; m++) {



189

if (m<dstX || m>dstXend) continue;

for (n=j-1; n<=j+1; n++) {

if (n<dstY || n>dstYend || seen[m][n] == 0) continue;

return seen[m][n];

}

}

return -1;

}

/* allocate an ifs matrix with subscript range

m[nrl..nrh][ncl..nch] */ ifs **ifsmatrix(long nrl, long nrh, long

ncl, long nch) {

long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;

ifs **m;

/* allocate pointers to rows */

m=(ifs **) malloc((size_t)((nrow+1)*sizeof(ifs*)));

if (!m) nrerror("allocation failure 1 in matrix()");

m += 1;

m -= nrl;

/* allocate rows and set pointers to them */

m[nrl]=(ifs *) malloc((size_t)((nrow*ncol+1)*sizeof(ifs)));

if (!m[nrl]) nrerror("allocation failure 2 in matrix()");

m[nrl] += 1;

m[nrl] -= ncl;

for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;

/* return pointer to array of pointers to rows */

return m;

}

/* allocate a int matrix with subscript range

m[nrl..nrh][ncl..nch] */ int **imatrix(long nrl, long nrh, long

ncl, long nch) {

long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;

int **m;
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/* allocate pointers to rows */

m=(int **) malloc((size_t)((nrow+1)*sizeof(int*)));

if (!m) nrerror("allocation failure 1 in matrix()");

m += 1;

m -= nrl;

/* allocate rows and set pointers to them */

m[nrl]=(int *) malloc((size_t)((nrow*ncol+1)*sizeof(int)));

if (!m[nrl]) nrerror("allocation failure 2 in matrix()");

m[nrl] += 1;

m[nrl] -= ncl;

for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;

/* return pointer to array of pointers to rows */

return m;

}

/* free a ifs matrix allocated by ifsmatrix() */ void

free_ifsmatrix(ifs **m, long nrl, long nrh, long ncl, long nch) {

free((char*) (m[nrl]+ncl-1));

free((char*) (m+nrl-1));

}

/* free an int matrix allocated by imatrix() */ void

free_imatrix(int **m, long nrl, long nrh, long ncl, long nch) {

free((char*) (m[nrl]+ncl-1));

free((char*) (m+nrl-1));

}

/* standard error handler */ void nrerror(char error_text[]) {

fprintf(stderr,"Run-time error...\n");

fprintf(stderr,"%s\n",error_text);

fprintf(stderr,"...now exiting to system...\n");

exit(1);

}
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B.4 gdIFSCopyResized.h

#include <gd.h>

#include <stdio.h>

#include <stdlib.h>

typedef struct {

double x, y;

int rgb[4];

} ifs;

void gdIFSCopyResized (gdImagePtr dstImg, gdImagePtr srcImg,

int dstX, int dstY, int srcX, int srcY,

int dstW, int dstH, int srcW, int srcH,

double min_factor, double max_factor);

void generate_ifs (gdImagePtr srcImg, ifs **z,

int srcX, int srcY, int dstX, int dstY,

int srcW, int srcH, int dstW, int dstH);

void generate_ifs_image (gdImagePtr dstImg, ifs **z, int **seen,

int srcX, int srcY, int dstX, int dstY,

int srcW, int srcH, int dstW, int dstH,

int dstXend, int dstYend,

double min_factor, double max_factor);

void fill_in_blanks (gdImagePtr dstImg, int **seen,

int dstX, int dstY, int dstXend, int dstYend);

void rgb_linear (double newx, double newy, ifs **z,

int m, int n, double x, double y, double xm1, double ym1,

int *rgb);

int nearest (int **seen, int i, int j,

int xstart, int ystart, int width, int height);

int **imatrix(long nrl, long nrh, long ncl, long nch);

ifs **ifsmatrix(long nrl, long nrh, long ncl, long nch);
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void free_imatrix(int **m, long nrl, long nrh, long ncl, long

nch);

void free_ifsmatrix(ifs **m, long nrl, long nrh, long ncl, long

nch);

void nrerror(char error_text[]);
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