
Project 1: The Wave Equation on the SchwarzschildBackground in Eddington-Finkelstein Coordinates
July 11, 20031.1 IntroductionIn this project, after the derivation and veri�cation of some equations of motion and otherresults, you will use RNPL-generated �nite-di�erence codes to study the spherically-symmetricdynamics of a massless scalar �eld on a Schwarzschild (black hole) background|i.e. the \backreaction" of the scalar �eld will be ignored, so the spacetime will be �xed, and completelyknown a priori. The chief physics which this model describes, and the physics on which youwill focus, is the absorption and/or scattering of spherically-symmetric pulses (\S-waves") ofscalar radiation which \infall" onto a black hole, and whose self-gravitation can be ignored.You will solve the problem in the 3+1 form of ingoing Eddington-Finkelstein coordinates (seee.g. MTW [1], 31.4 & Box 31.2 for a general discussion of Eddington-Finkelstein coordinatesand corresponding line-elements), which will allow you to excise the interior of the blackhole simply by limiting the spatial domain of integration to the region r � 2M . Becausethe inner boundary, r = 2M , of the spatial domain is actually null, in principle no specialboundary conditions are needed there for the scalar �eld|one simply applies the equationsof motion (the covariant wave equation) up to and including r = 2M .Units and Conventions We adopt MTW units (in particular G = c = 1) and metricconventions. Latin indices from near the start of the alphabet (a; b; c; � � �) are spacetimeabstract indices (See Wald [2], \Notation and Conventions" for an explanation); Greekindices label 4-dimensional tensor components and range over the spacetime values 0, 1, 2,3; Latin indices from near mid-alphabet (i; j; k; � � �) label 3-dimensional tensor componentsand take on the spatial values 1, 2, 3. The Einstein summation convention applies to bothtypes of component index.1.2 The Wave Equation for a General, Static, Spherically Symmetric MetricConsider the following general 3+1 form of the static, spherically symmetric, vacuum metric(i.e. the Schwarzschild spacetime):ds2 = ���2 + a2�2� dt2 + 2a2� dtdr + a2dr2 + r2 �d�2 + sin �2d�2� (1)where � � �(r), � = �(r) and a = a(r). In 3+1 language, � is the known as the lapsefunction, while � is the radial component of the shift vector, i.e. �i = (�; 0; 0), �i � 
ij�j =1



(a2�; 0; 0), where 
ij is the intrinsic metric of the 3-dimensional, spacelike hypersurfacesde�ned by t = const:. Speci�cally, we have 
ij � diag(a2; r2; r2 sin2 �)We note that (1) is not themost general form for a static spherically-symmetric spacetime;we have chosen a so-called \areal" radial coordinate|i.e. r provides a direct measure of thearea, 4�r2, of r = const: spheres.Problem 1a) Show that the characteristics (null geodesics) of (1) are given by drdt!� = �� � �a : (2)Problem 1b) Show that, given the metric (1), the massless Klein-Gordon equation (thewave equation): rara� (r; t) = 0 (3)can be written as the pair of �rst-order-in-time (3+1, \Hamiltonian") equations@t� = @r ��� + �a�� ; (4)@t� = 1r2@r �r2 ���+ �a��� ; (5)where � (r; t) � @r� ; (6)� (r; t) � a� (@t�� � @r�) : (7)Hints Use the fact that (3) can be rewritten as1p�g @@x�  p�gg�� @�@x�! = 0 (8)where g is the determinant of the 4-metric, and where the components g�� of the inverse4-metric are given by (verify)g�� = 26664 ���2 ���2 0 0���2 a�2 � �2��2 0 00 0 r�2 00 0 0 r�2 sin�2 � :37775 (9)
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1.3 The Schwarzschild Solution in Ingoing Eddington-Finkelstein CoordinatesNow consider the usual Schwarzschild form of (1), and bear in mind that, as discussed inthe introduction, we will be restricting attention to r � 2M :ds2 = ��1� 2Mr � dt2 + �1� 2Mr ��1 dr2 + r2d
2 : (10)If we now de�ne the \Regge-Wheeler tortoise coordinate", r?,r? � r + 2M ln� r2M � 1� ; (11)then u and v de�ned by u = t� r? ; (12)v = t + r? : (13)are outgoing (u) and ingoing (v) null coordinates.Problem 1c) Show that if we adopt a timelike coordinate, ~t, based on the ingoing nullcoordinate, v, as follows ~t = v � r = t + 2M ln� r2M � 1� ; (14)then the Schwarzschild metric (10) takes the ingoing Eddington-Finkelstein (IEF) formds2 = ��1� 2Mr � d~t2 + 4Mr d~tdr + �1 + 2Mr � dr2 + r2d
2 : (15)Note that this form di�ers from the usually quoted IEF metric|for example, from MTW,Box 31.2, equation (2): ds2 = ��1� 2Mr � dv2 + 2dvdr + r2d
2 ; (16)in that, in (15) we adopt a timelike coordinate, ~t, rather than the null coordinate, v. Relativeto the original Schwarzschild form (10), we can summarize the IEF coordinates as follows:� We maintain an areal radial coordinate, r|i.e. r continues to provide a direct measureof proper surface area.� We choose our time coordinate, ~t, so that the ingoing tangent vector: @@~t!a �  @@r!a ;is null.Observe the key property of IEF coordinates|namely that, as is evident from (15), allmetric components, g�� are perfectly well behaved, both on the horizon of the black hole,r = 2M , and in the exterior region, r > 2M .Let t now and in the following denote IEF time, so that we haveds2 = ��1� 2Mr � dt2 + 4Mr drdt+ �1 + 2Mr � dr2 + r2d
2 : (17)3



Problem 1d) Show that, in terms of the general 3+1 form (1), we have� = � rr + 2M �1=2 ; (18)a = ��1 = � rr + 2M ��1=2 ; (19)� = 2Mr + 2M : (20)1.4 Asymptotics|Radiation Boundary ConditionsAs r!1, the IEF metric (17) approaches the Minkowskii metric in spherical coordinatesdss = �dt2 + dr2 + r2d
2 : (21)Problem 1e) Show that in this limit, the wave equation (3) can be written@tt (r�) = @rr (r�) : (22)Clearly, the outgoing solution of (22) is(r�) (r; t) = g (t� r) ; (23)where g is an arbitrary function of one variable. Explicitly introducing the characteristic(wave) speed, c+, associated with the outgoing solution (we have implicitly been assumingc2+ = c2� = c2 = 1), (23) becomes (r�) (r; t) = g (c+t� r) ; (24)Now, from Problem 1a), we have that, in the curved spacetime casec+ = �� + �a ; (25)so that, asymptotically, we should expect(r�) (r; t) = g ���� + �a� t� r� ; (26)which we can also express as @t (r�) + ��� + �a� @r (r�) = 0 : (27)When solving the wave equation (4)-(5) on a �nite spatial domain 2M � r � R, we canimpose (27) (and other equations derived using it) as a boundary condition at r = R. Sucha condition is called an outgoing radiation boundary condition, or, often, a Sommerfeldcondition. 4



1.5 Initial DataWith the wave equation written in the �rst order form (4)-(5), we must supply initial con-ditions � (r; 0) = �0(r) ; (28)� (r; 0) = �0(r) ; (29)where �0(r) and �0(r) are arbitrary functions. Since we are most interested in studying thescattering of pulses of scalar radiation o� of, and into, the black hole, we focus attention ondata which, at the initial time, is \as ingoing as possible".Assume that the initial con�guration of the scalar �eld itself, �(r; 0) = �0(r), describessome \pulse" shape|i.e. that �0(r) (e�ectively) has compact support|such as a \Gaussian"�0 (r; A; r0;�) = A exp ��r � r0� �2! ; (30)(where A; r0 and � are adjustable parameters). Further make the approximation that@t (r�) (r; 0)� @r (r�) (r; 0) = 0 : (31)This approximation is exact for an ingoing pulse as the support of the pulse !1, and, for�nite r, amounts to ignoring curvature{backscatter in attempting to set up precisely ingoinginitial data.Problem 1f) From (28), (29) and (31), derive initial conditions, �0(r) and �0(r), in termsof �0(r) and d�0(r)=dr.1.6 A Conserved Mass for the ModelRecall that the stress energy tensor, Tab, for the scalar �eld satisfying the wave equation (3)is Tab = ra�rb�� 12gabrc�rc� : (32)Consider a foliation, �t, of spacetime with associated unit normal �eld na. Assume, as is thecurrent case, that the spacetime has a timelike Killing vector �eld, ta. Then we can de�ne aenergy-momentum 4-vector, Ja Ja � T abtb ; (33)which is conservedraJa = ra �T abtb� = �raT ab� tb + T abratb = �raT ab� tb + T abr(atb) = 0 ; (34)by virtue of the conservation of T ab and Killing's equations. We integrate raJa over aspacetime volume and apply Gauss's theorem (see Wald B.2):ZV raJa = Z@V JaNa = 0 ; (35)5



where @V is the (three-dimensional) boundary of the integration region, Na is the normalvector to @V , and both integrals are taken with respect to the natural volume elements onthe respective manifolds. If we now take our \Gaussian pillbox" to be the region boundedby any two hypersurfaces, �t, �t0 , then assuming that JaNa ! 0 at spatial in�nity (thetimelike part of the pillbox), we haveZ�t Jana � Z�t0 Jana = 0 ; (36)or m1 = Z�t Jana = constant : (37)i.e. m1 is our conserved mass.Using our current 3+1 metric (1) we havem1 = Z T ��t�n� d� = Z T ��t�n� d� = Z (��T tt)(ar2 sin2 �) drd�d� = 4� Z �r2�aT tt dr(38)where we have used t� = (1; 0; 0; 0) and n� = (��; 0; 0; 0). For the purposes of monitoring ourcalculation, it is convenient to de�ne a space- and time-dependent \mass aspect" function,m(r; t), via m (r; t) = Z r2M dmd~r (r; t) d~r ; (39)dmdr � �4�r2�aT tt : (40)Problem 1g) Verify the following expression for dm=dr:dmdr = 4�r2 � �2a ��2 +�2�+ ���� : (41)1.7 Solution of the Equations of MotionProblem 1h) Write an RNPL program to solve the wave equation@t� = @r ��� + �a�� ;@t� = 1r2@r �r2 ���+ �a��� ;� (r; t) � @r� ;� (r; t) � a� (@t�� � @r�) ;
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on the Schwarzschild background, and in IEF coordinates� = � rr + 2M �1=2 ;a = ��1 = � rr + 2M ��1=2 ;� = 2Mr + 2M :Take as the solution domain 2M � r � R 0 � t � T ; (42)and use ingoing initial data and outgoing radiation boundary conditions as discussed above.It will be up to you to choose a value (or values) of T appropriate to the dyamics of theparticular evolutions that you consider.It is recommended that you �rst quickly work through the on-line tutorial Solving aSimple 1d Wave Equation with RNPL [4] available via the Computational Lab web page, andthen use the RNPL code from that example as a template for your work. In particular, asin w1dcn your solution should use a Crank-Nicholson di�erence scheme, with O(h2) centredFDAs for the spatial derivatives in the interior of the domain, and O(h2) forwards andbackwards approximations, as appropriate, for spatial derivatives at the domain boundaries.Once you have your program implemented and thoroughly tested (including convergencetesting, as described in [4]), extend your code so that it computes dm=dr and m de�nedby (41) and (39) respectively. In doing this, you may wish to refer to the w1dcnm example,also documented on-line via the Lab web page [3], which illustrates the incorporation ofexternal Fortran code into RNPL.When you are satis�ed that your code is working properly, set M = 1, R = 100, A = 1and r0 = 50. Then compute what values of � result in 25%, 50% and 75% absorption,respectively, of the total initial mass of the scalar pulse (you should determine the values of� to about 10% accuracy or so).If time permits, you may wish to make a more systematic survey of parameter space(using � as the parameter), and make a plot using gnuplot or sm (supermongo) showingthe fractional absorption of pulse energy as a function of �.References[1] C.W. Misner, K.S. Thorne, J.A. Wheeler, \Gravitation", W.H. Freeman, San Francisco,1973.[2] R.M. Wald, \General Relativity", The University of Chicago Press, Chicago, 1984.[3] Graduate Summer School on General Relativistic Hydrodynamics: Computational LabPagehttp://laplace.physics.ubc.ca/�matt/grhydro/7



[4] Solving a Simple Wave Equation with RNPLhttp://laplace.physics.ubc.ca/�matt/grhydro/w1dcn.html
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