
PHYS 210: Introduction to Computational Physics
Finite Difference Approximation (FDA)

The Nonlinear Pendulum

1. PHYSICAL & MATHEMATICAL FORMULATION
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• Consider idealized pendulum:

– Mass of bob, m

– Infinitely rigid, massless pendulum arm of length L

– No friction at pivot point O

– Total mechanical energy (kinetic + potential) strictly conserved
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1.1. Derivation of equation of motion

• Consider displacement vector, ~r(t) as shown in diagram

• ~r(t) makes an angle θ(t) with vertical

• Introduce normal-tangential coordinate systems with unit vectors n̂ and t̂ as shown

• Velocity, ~v(t), of bob given by

~v(t) =
d~r

dt
= vt̂

where v = |~v|; i.e. velocity is purely tangential

• Acceleration, ~a(t) is

~a(t) =
d2~r

dt2
=

d~v

dt
=

d

dt

(

vt̂
)

=
dv

dt
t̂ + v

dt̂

dt
=

dv

dt
t̂ +

v2

L
n̂

where we have used |~r(t)| = L = const. as well as a standard result from kinematics, dt̂/dt = (v/L)n̂

• No motion in the normal direction, n̂: consider only tangential motion

• Newton’s second law
mat = Ft = −W sin θ = −mg sin θ (⋆)

where g is accn due to gravity

• Thus we have
at = −g sin θ

• Rewrite this as equation for θ(t):

• First recall

• Angular velocity, ω(t)

ω(t) =
dθ(t)

dt

• Angular acceleration, α(t)

α(t) =
dω(t)

dt
=

d2θ(t)

dt2

• Then

at(t) = Lα(t) = L
d2θ

dt2

• Substituting in (⋆)
d2θ

dt2
= − g

L
sin θ 0 ≤ t ≤ tmax

• Need initial conditions

θ(0) = θ0

ω(0) = ω0

where θ0 and ω0 are specified values.
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Begin aside: Non-dimensionalization: Can choose system of units such that g = 1, L = 1, which
makes the equation that we need to solve simpler

• Let’s see how this would work for a specific set of initial units and length of rod: In particular, let’s
assume that we are working in MKS units so that g = 9.8 m/s2, and that L = 4.9m

• Then we first define a new unit of length that we will call a rod (not to be confused with the old
Imperial unit having the same name!), so that

1 rod ≡ 4.9 m

• We then have
L = 1 rod

• Now define a new unit of time, called the tick, so that

1 tick ≡ 1√
2

s

which implies
1 s ≡

√
2 tick

• Now we have

g = 9.8
m

s2
=

9.8 m

s2
=

2 rod

s2
=

2 rod

(
√

2 tick)2
=

2 rod

2 tick2
= 1

rod

tick2

• Therefore, in our new set of units we have (suppressing the units themselves)

L = g = 1

End aside

• Adopting our new set of units, the (simplified) equation that we want to solve is

d2θ

dt2
= − sin θ 0 ≤ t ≤ tmax (1)

with initial conditions
θ(0) = θ0 (2)

ω(0) = ω0 (3)

• Note: (1) is a nonlinear ordinary differential equation (ODE), since sin(θ(t)) is a nonlinear function
of θ(t). Closed form solution is possible, but quite complex. Numerical solution no more difficult in
principle/practice than linear case!
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1.2 Linear limit

• Assume that angular displacement θ(t) is very small, θ(t) ≪ 1

• Then
sin(θ) ≈ θ

and (3) becomes
d2θ

dt2
= −θ 0 ≤ t ≤ tmax (4)

• which has the general solution
θ(t) = A sin(t + δ)

where the constants A and δ are determined from the initial conditions (2) and (3).

• Key fact: In linear case, oscillation frequency Ω =
√

g/L = 1 with our choice of units (i.e. θ(t) =
A sin(Ωt + δ) with Ω = 1), is independent of amplitude, A of oscillation, or equivalently, independent
of the initial conditions (2) and (3)

• Not the case for nonlinear pendulum!
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2. SOLUTION VIA FINITE DIFFERENCE APPROXIMATION

2.1. Discretization: Step 1—Finite Difference Grid

• Continuum domain is
0 ≤ t ≤ tmax

• Specify mesh via level parameter, ℓ, as discussed previously

nt = 2ℓ + 1

∆t =
tmax

nt − 1
= 2−ℓtmax

tn = (n − 1)∆t, n = 1, 2, . . . , nt

2.2. Discretization: Step 2—Derivation of FDAs

• Continuum equations → discrete equations

• Usual FD notation
θn ≡ θ(tn) ≡ θ((n − 1)∆t))

• Have one derivative to replace, use O(∆t2) accurate approximation derived earlier in class

d2θ

dt2

∣

∣

∣

∣

∣

t=tn

≈ θn+1 − 2θn + θn−1

∆t2
(5)

• Note: We view this formula as being applied (“centred”) at the grid point tn; thus the appropriate
discretization of sin(θ) is simply sin(θn)

• Substitute (5) in (1), get desired FDA

θn+1 − 2θn + θn−1

∆t2
= − sin θn n + 1 = 3, 4, . . . nt (6)

• We now regard this as an equation for θn+1, assuming that θn and θn−1 are known

θn+1 = 2θn − θn−1 − ∆t2 sin θn n + 1 = 3, 4, . . . nt (7)

• First discrete time at which we can use (6) is tn+1 = t3

• Thus need values θ1 = θ(0) and θ2 = θ(∆t) to initialize scheme

• θ1 is given by initial condition (2)
θ1 = θ(0) = θ0

• Determining θ2 is a bit more involved. State without proof that in order for overall solution to be
O(∆t2), must determine θ2 = θ(∆t) up to and including terms of O(∆t2) (i.e. leading order error
term in θ(∆t) must be O(∆t3))

• Proceed via Taylor series expansion, and use initial conditions (2) and (3)

θ(∆t) = θ(0) + ∆t
dθ

dt
(0) +

1

2
∆t2

d2θ

dt2
(0) + O(∆t3)

≈ θ0 + ∆t ω0 +
1

2
∆t2

d2θ

dt2
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• Now use equation of motion (1) to eliminate d2θ/dt2; i.e. d2θ/dt2 = − sin θ, so we have

θ(∆t) ≈ θ0 + ∆t ω0 −
1

2
∆t2 sin θ0

• Assembling results we have

θn+1 = 2θn − θn−1 − ∆t2 sin θn n + 1 = 3, 4, . . . nt (8)

θ1 = θ0 (9)

θ2 = θ0 + ∆tω0 −
1

2
∆t2 sin θ0 (10)

• Equations (8)–(10) constitute our complete FDA (note that we have a total of nt equations for the
nt unknowns θn, n = 1, 2, . . . , nt)

2.3. Convergence Analysis (EXTREMELY IMPORTANT!!)

• Want to examine behaviour of numerical solution as ∆t → 0

• Assumption: (following L.F. Richardson, 1909) Let u⋆(t) be the exact (continuum) solution of (1)–(3)

Then the error, e(tn), in the numerical solution, u(tn)

e(tn) ≡ u⋆(t
n) − u(tn)

takes the form
lim

∆t→0
e(tn) = u⋆(t

n) − u(tn) = ∆t2e2(t
n) + O(∆t4) (11)

• Note: e2(t
n) is a function, not “random” values as would be the case if we were analyzing the error

in experimental data!

• Why should we expect (11) to hold? Rather deep question, full answer beyond scope of this course—
but, can be verified empirically

• Note: We expect second error term to be O(∆t4) due to the centred nature of the FDA for the
second derivative that we are using (previously left as exercise for you)

2.3.1 Convergence Test (ALSO EXTREMELY IMPORTANT!!)

• Draw sample mesh sequence

• Define un
ℓ

to be the soln computed at level ℓ with ∆t = ∆tℓ

• Define un
ℓ+1 to be the soln computed at level ℓ + 1 with ∆t = ∆tℓ+1 = ∆tℓ/2

• Define un
ℓ+2 to be the soln computed at level ℓ + 2 with ∆t = ∆tℓ+2 = ∆tℓ+1/2 = ∆tℓ/4

• Then from (10) we have
uℓ(t

n) ≈ un

⋆ (tn) − (∆tℓ)
2e2(t

n)

uℓ+1(t
n) ≈ un

⋆ (tn) − (∆tℓ+1)
2e2(t

n)

uℓ+2(t
n) ≈ un

⋆ (tn) − (∆tℓ+2)
2e2(t

n)

where tn is the common set of discrete times tn
ℓ

(the times on the coarsest grid)
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• Now consider subtracting solutions on adjacent levels; then

uℓ(t
n) − uℓ+1(t

n) ≈ −
(

(∆tℓ)
2 − (∆tℓ+1)

2
)

e2(t
n) = −3

4
∆t2ℓe2(t

n)

uℓ+1(t
n) − uℓ+2(t

n) ≈ −
(

(∆tℓ+1)
2 − (∆tℓ+2)

2
)

e2(t
n) = −3

4
(∆tℓ+1)

2e2(t
n) = − 3

16
(∆tℓ)

2e2(t
n)

• Observe:

1. Simply subtracting 2 solns computed on 2 different levels gives direct estimate of solution error
(very general result!)

By assumption (equation (11)) we have

e(tn) = ∆t2e2(t
n) + · · ·

and we have just shown

uℓ(t
n) − uℓ+1(t

n) ≈ 3

4
(∆tℓ)

2e2(t
n)

so

−4

3

(

uℓ(tn) − uℓ+1(t
n)

)

≈ e(tn)

2. If we consider the ratio
uℓ(t

n) − uℓ+1(t
n)

uℓ+1(tn) − uℓ+2(tn)

then in the limit ∆tℓ → 0, should get

−(3/4)(∆tℓ)
2 e2(t

n)

−(3/16)(∆tℓ)2 e2(tn)
= 4

3. More useful for labs/homeworks/projects: If we scale (multiply)

uℓ(t
n) − uℓ+1(t

n) by 40 = 1

uℓ+1(t
n) − uℓ+2(t

n) by 41 = 4

uℓ+2(t
n) − uℓ+3(t

n) by 42 = 16

etc., and plot all the curves as fcn of tn, curves should nearly coincide, and should become more
coincident as ∆t → 0 (as was the case for the first order approximation of the first derivative
example covered in the lab, where we rescaled the (known) errors by powers of 2)

4. Don’t have to restrict convergence test to 3 levels, can use as many as possible, but should
always do 3-level test at a minimum!

5. IMPORTANT! Don’t have to know what the error is to do the convergence test (if we did
know the error, what would be the point of doing the numerical calculation?)

– Assume error has the form (11)

– Do convergence test by running simulation with different grid spacings (levels), and subtract
the results computed at successive levels, and rescale as above

– If we do see near coincidence of the rescaled subtracted values, then we have confidence in
our numerical solutions, and also have a good estimate of the error

6. MORE IMPORTANT!, if we do not observe convergence, then we know that there is some
problem with our implementation, and that we need to do some debugging!
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2.4. Energy Conservation

• For systems such as the nonlinear (linear) pendulum, where total (mechanical) energy is conserved,
we can use conservation of energy as an additional check of the correctness and convergence of our
numerical implementation

• For the nonlinear pendulum we have

Kinetic energy ≡ T (t) =
1

2
mv(t)2 =

1

2
m (Lω(t))2

Potential energy ≡ V (t) = mgh(t)

where h(t) is the vertical displacement of the bob/mass relative to its stable equilibrium position.

• Basic trigonometry tells us that h(t) = L(1 − cos θ(t)) so we have

V (t) = mgh(t) = mgL [1 − cos θ(t)]

• Thus we have

Total energy ≡ E(t) = T (t) + V (t) =
1

2
m (Lω(t))2 + mgL [1 − cos θ(t)]

• Now, in our units g = L = 1, and we will also take m = 1: can always do this via further choice
of units (what would that choice be?), but in any case, since both terms are proportional to m, any
particular choice of m is irrelevant to the central issue of how well the discrete solutions “conserves
energy”

• Thus we have

E(t) = T (t) + V (t) =
1

2
ω(t)2 + [1 − cos θ(t)]

• In order to check for energy conservation, we can define the deviation in the total energy relative to
the initial time

dE(t) ≡ E(t) − E(0)

• An obvious thing to do is to plot dE(t) vs t to see whether the total energy “looks” conserved.

• However, a much better idea is to check the convergence of dE(t) which, if our implementation is
correct, should tend to 0 as ∆t → 0 like O(∆t2)

• That is, we ensure that our calculations display “convergence to conservation”

• IMPORTANT! Note that the above formulae for the potential and total energies are NOT valid
for the linear pendulum. We can get the correct formula by using the small angle approximation
θ(t) ≪ 1 and keeping only the leading-order term.

• From Taylor series of cos θ about θ = 0 we have

cos θ = 1 − 1

2
θ2 + O(θ4) ≈ 1 − 1

2
θ2

• So we have

Elinear(t) = T (t) + V (t) =
1

2
ω(t)2 +

1

2
θ(t)2
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