
PHYS 210: Introduction to Computational Physics Fall 2012 Homework 4
Due: Tuesday, November 20, 11:59 PM

PLEASE report all bug reports, comments, gripes etc. to Matt: choptuik@physics.ubc.ca

Please make careful note of the following information and instructions:

1. I struggled a bit with an appropriate due date for this assignment. I would really like you to complete it by
November 15, but thought you might think (collectively) that that would be a bit too close to the Homework
3 deadline.

The crucial thing to bear in mind here is that most of you will need a significant amount of time to complete
your term projects. I thus encourage you to complete the homework as soon as you can, so that you can devote
your attention to your projects.

2. That said, the following assignment requires you to write (only!) one octave function.

3. As in the previous homework, there is an associated instructor-supplied “driver” script that you will use to
generate the final results for the question. As usual, these results will consist of an inventory of files that is
listed at the end of the problem description.

You can also use my driver as a guide/template for the design of your own script that can be used to test your
function as you code it.

Warning!! If you do modify my script for your own purposes, ensure that you give it a different name. That
is, the script tvdp that you must eventually execute to complete the homework must be the one defined in
/home/phys210/octave/hw4, not your own version.

4. If you want to work on this homework using octave on your laptop or home machine, then you will need to
copy the contents of /home/phys210/octave/hw4 from hyper to some directory on your personal machine(s),
and, as necessary, ensure that the directory has been added to your octave path.

5. As usual, it is your responsibility to ensure that when your homework is complete, all requested files are in the
correct directory with the correct names.

6. Comments and error checking: Your function should be commented at about the same level as my driver
script is. You do not have to perform any checks for validity of input arguments.

1

Problem 1: The Van der Pol Equation

1.1 Mathematical specification

Consider the following non-linear ordinary differential equation (ODE), known as the Van der Pol equation,

d2u(t)

dt2
− ǫ

(

1 − u(t)2
) du(t)

dt
+ u(t) = 0 , 0 ≤ t ≤ tmax , (1)

where t is time, u(t) is the displacement of the Van der Pols oscillator, ǫ > 0 is a specified positive constant, and
tmax is the time to which we wish to compute the dynamics of the oscillator.

Since (1) is a second order ODE, if we are to calculate a particular solution of it we must specific initial values for
the displacement and the first time derivative of the displacement. That is, we must supplement (1) with the initial
conditions:

u(0) = u0 , (2)

du

dt
(0) = v0 , (3)

where u0 and v0 are values that we can choose freely.

Physically, the Van der Pol equation describes the voltage behaviour of a tunnel diode oscillator, although for the
purposes of this homework we will primarily be viewing it as providing a simple yet interesting example of non-linear
dynamics.

We note that ǫ is to be considered a control parameter of the problem: variation of ǫ will induce significant changes in
the behaviour of the oscillator. We will return to this point in the following section. We will solve equations (1)–(3)
using second order finite difference techniques. To that end, and following the basic procedure outlined in class for
treating any differential problem using the finite difference approach, we first replace the continuum solution domain,
0 ≤ t ≤ tmax with a finite difference grid, or mesh, denoted tn and defined by

tn = (n − 1)∆t, n = 1, 2, . . . , nt . (4)

Thus there are a total of nt grid points, and the grid spacing, ∆t, is given by

∆t =
tmax

nt − 1
. (5)

In addition, as in a previous homework problem—and although not necessary—we will find it convenient to make
the number of mesh intervals a power of 2, and identify that power with the level, ℓ, of discretization, so that we
have

nt = 2ℓ + 1 , (6)

for some integer ℓ ≥ 1. Note that in practice, and depending on the value of tmax, we will need to take ℓ significantly
larger than 1 to ensure that the grid spacing is sufficiently small to provide a reasonable approximation of the
oscillator’s motion.

Having introduced the finite difference mesh, tn, we define the associated discrete values of the oscillator displacement,
un, by

un ≡ u(tn) , (7)

where it is to be understood that for any finite ∆t, the un will only be an approximation to corresponding values of
the continuum solution of (1)–(3)

u(t)|t=tn . (8)

The next step in the discretization process involves replacement of the derivatives appearing in (1) with finite
difference formulae. Here we will use the “standard” second-order, centred approximations for the first and second
derivatives discussed in class, namely:

un+1 − un−1

2∆t
=

du

dt

∣

∣

∣

∣

t=tn

+ O(∆t2) , (9)

un+1 − 2un + un−1

∆t2
=

d2u

dt2

∣

∣

∣

∣

t=tn

+ O(∆t2) . (10)

2

Using (7), (9) and (10) in (1) we get our FDA (finite difference approximation) of the oscillator equation

un+1 − 2un + un−1

∆t2
− ǫ

(

1 − (un)2
) un+1 − un−1

2∆t
+ un = 0 , n + 1 = 3, 4, ...nt . (11)

Note that in solving (11) we will assume that the values un and un−1 are known, leaving un+1 as the single unknown
in the equation. This is why we have written the discrete domain of applicability of the algebraic finite difference
equations as n + 1 = 3, 4, ...nt. It also implies that in order to begin the process of solving (11) for discrete times
t3, t4, . . . , tnt , we must have the values u1 = u(0) and u2 = u(∆t). To avoid confusion of the last quantity with
“u-squared”, I will introduce the additional notation u(2) = u(∆t).

The appropriate value for u1 follows immediately from the initial condition (2)

u1 = u(0) = u0 . (12)

Determining an appropriate value for u(2) is a little trickier. As for the case of the nonlinear pendulum discussed
in class, we proceed using Taylor series expansion. We state without proof that we need to compute terms up to
and including O(∆t2) in the expansion to ensure that the overall solution un is computed to second order accuracy.
Thus, we write

u(2) = u(∆t) = u(0) + ∆t
du

dt
(0) +

1

2
∆t2

d2u

dt2
(0) + O(∆t3) . (13)

We note that we can evaluate the first two terms in (13) using the initial conditions (2) and (3). This leaves us the
third, O(∆t2), term—which involves the second time derivative of u—to calculate, and the initial conditions will not

directly allow us to do so.

However (and this is an approach that can be applied quite generally to second order differential equations that
have been approximated using a three-time-level finite difference scheme such as (11)), we can use the ODE itself to
replace the second time derivative with quantities that can be computed from the initial conditions.

Specifically, solving (1) for d2u/dt2 we have

d2u

dt2
= ǫ

(

1 − u2
) du

dt
− u . (14)

Substituting this into (13), and neglecting the O(∆t3) and higher order terms, we find

u(2) = u(∆t) = u(0) + ∆t
du

dt
(0) +

1

2
∆t2

[

ǫ
(

1 − u(0)2
) du

dt
(0) − u(0)

]

. (15)

Then using the initial conditions (2) and (3) we can rewrite (15) as

u(2) = u0 + ∆t v0 +
1

2
∆t2

[

ǫ
(

1 − u2
0

)

v0 − u0

]

. (16)

We are now almost done with our mathematical development of the problem. The last thing we need to do before
proceeding to a specification of the octave function that you will code to solve the Van der Pols equation is to
manipulate (11) so that it provides an explicit expression for the (advanced-time) unknown, un+1.

I thus leave it as an exercise for you (please do it!) to verify that if we define an auxiliary quantity, q, as follows:

q ≡
1

2
ǫ∆t

(

1 − (un)2
)

, (17)

then (11) implies that

un+1 = (1 − q)
−1 [(

2 − ∆t2
)

un − (1 + q) un−1
]

n + 1 = 3, 4, ...nt . (18)

In summary, equations (18), (12) and (16) provide a complete set of algebraic equations for the unknowns un, n =
1, 2, . . . , nt, and we are now in a position to implement their solution as an octave function.

3

1.2 The problem per se

Make the directory /phys210/$LOGNAME/hw4/a1, and within that directory create an octave source file, vdp.m, that
defines the function vdp having the following header:

function [t u dudt] = vdp(tmax, level, u0, dudt0, epsilon)

The input arguments to vdp are as follows:

• tmax: tmax as defined above.

• level: The integer-valued discretization level, ℓ, as described above. This argument is used to define the
number of points, nt, in the finite difference mesh, the discrete time step (mesh spacing), ∆t, and the discrete
times, tn, via equations (6), (5) and (4), respectively.

• u0 and v0: The initial values u(0) and du/dt|t=0.

• epsilon: The control parameter ǫ.

Again, you do not have to do any checks of the validity of the input arguments.

Your implementation of vdp must define the 3 return values as follows:

• t: A row vector of length nt containing the discrete times, tn.

• u: A row vector of length nt containing the discrete solution, un, as given by equations (12) and (16) and (18).

• dudt: A row vector of length nt containing a finite difference approximation of du/dt(tn) computed using
formula (9) for n = 2, 3, . . . , nt − 1. For n = 1 and n = nt you should use the following

dudt(1) = v0;

dudt(nt) = 2 * dudt(nt-1) - dudt(nt-2);

The first of these expressions follows immediately from the initial condition (3), while the second computes the
final value of dudt using linear extrapolation of the second- and third-to-last values.

The driver script for this problem is

/home/phys210/octave/hw4/tvdp.m

and, again, you are welcome to use it as an aid in designing your own script to develop and test your implementation
of vdp. (Remember, though, do not name your script file tvdp.m !!) You can also use interactive experimentation for
this purpose should you find it more convenient. No matter how you proceed with development, you are urged to
make use of octave’s plotting facilities: it is almost always much easier to understand what a program such as vdp
is or is not doing through visualization, rather than staring at numbers.

As part of your testing process, you should try to establish that your finite difference solution is converging as
expected, using the basic technique discussed in class and demonstrated in lab activities. Note that convergence
testing is implemented in tvdp.

Once you are convinced that your octave function for approximately solving (1)–(3) is correct, and to the extent
that time permits, you are encouraged to experiment with a variety of values of ǫ (0 ≤ ǫ ≤ 5 suggested), u0

(10−3 ≤ u0 ≤ 10 suggested) and v0 (−5 ≤ v0 ≤ 5 suggested). When performing your studies, ensure that you specify
tmax large enough to determine the long-time behaviour of the oscillator, and, dependent on the values of ǫ and tmax,
choose a minimum value for ℓ so that the oscillator’s behaviour is well resolved.

An interesting way to view the output of vdp is through a phase space plot; i.e. a plot of du(t)/dt vs u(t). Again,
this is something that is done in the driver tvdp, and you are encouraged to include phase space plotting in your
own driver script.

You should briefly document what you find through your numerical experiments in hw4/a1/README.

4

To complete this problem, execute the supplied driver script, tvdp, which should produce output as follows

>> tvdp

These calculations should take a few seconds ...

Type ’Enter’ to continue:

Type ’Enter’ to continue:

These calculations should take a second or two more ...

Type ’Enter’ to continue:

Done!!

You should also see three plots appear on your screen as the script executes.

Provide a summary of what you can deduce from the phase space plot (hardcopy in phase 12.ps) that
is produced by running tvdp in your README file.

NOTE: You are free to use the function pendulum, defined in ∼phys210/octave/pendulum.m, as a template for
your implementation of vdp (although you are encouraged to try to write the function on your own). If you do use
pendulum for inspiration, you should acknowledge that fact in a comment block, e.g.

% This function based on the instructor-written function ’pendulum’

In fact, you should always cite your source(s) for code that you borrow, modify, etc., for the same reasons that you
must always cite material that you use in writing papers etc.

File Inventory

1. vdp.m

2. u 12 13 14.ps

3. du 12 13 14.ps

4. phase 12.ps

5. README

5

