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Abstract
This paper continues the study of the Gregory–Laflamme instability of black
strings, or more precisely of the order of the transition, being either first or
second order, and the critical dimension which separates the two cases. First,
we describe a novel method based on the Landau–Ginzburg perspective for the
thermodynamics that somewhat improves the existing techniques. Second, we
generalize the computation from a circle compactification to an arbitrary torus
compactification. We explain that the critical dimension cannot be lowered in
this way, and moreover, in all cases studied the transition order depends only
on the number of extended dimensions. We discuss the richer phase structure
that appears in the torus case.

PACS numbers: 04.50.+h, 04.70.Bw

(Some figures in this article are in colour only in the electronic version)

1. Introduction and summary

In the presence of a compact dimension, Gregory and Laflamme (GL) discovered that uniform
black strings are perturbatively unstable below a certain critical dimensionless mass density
[1]. The order of the transition can be computed by following perturbatively the branch of
non-uniform solutions which emanates from the critical GL string, as first shown by Gubser in
the case of a five-dimensional spacetime [2] where the transition is first order. That calculation
was generalized by one of us (ES) to arbitrary spacetime dimensions with the surprising result
that the transition is first order only for D < D∗ = ‘13.5’ while it is second order for higher
dimensions [3]. Here, first order means a transition between two distinct configurations, while
a second-order transition is smooth—the uniform string changes smoothly into a slightly non-
uniform string. Kudoh and Miyamoto [4], who repeated the calculation in the economical
Harmark–Obers coordinates [5], confirmed previous results and observed that in the canonical
ensemble the critical dimension actually changes from D∗ = ‘13.5’ to D∗

can = ‘12.5’. All
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these data constitute an important piece in the construction of the phase diagram for this system
(see [6] and [7] for a review).

The present paper includes two main results. First, we show how to somewhat improve
the existing method of calculating the transition order by employing a Landau–Ginzburg
perspective (the basic idea was already described in appendix A of [8]). Secondly, we
generalize from the usual S

1 ≡ T1 compactification to an arbitrary torus compactification Tp.

Landau–Ginzburg improvement to the method. In section 2, we review our set-up and how the
description of phase transitions is achieved by the Landau–Ginzburg (LG) theory, where one
expands the free energy of the system around the critical point in powers of order parameters.
In particular, it is known that as long as the coefficient of a certain cubic term in the free energy
is non-vanishing then the transition is first order. If the cubic term vanishes, for instance due
to a parity symmetry such as in our case, then it is the sign of the coefficient of a certain quartic
term, which we denote by C, that determines whether the transition is first order or higher (of
course if this term vanishes one has to go to higher terms). A simpler and more intuitive form
of this criterion, which is, alas, less general and does not apply in our case (as expanded in the
text), is that the transition is second order iff the critical solution is a (local) minimum of the
free energy.

Before we can compare the Landau–Ginzburg method with Gubser’s method, we should
recall the features of the latter. There one computes order by order the metric of the static
non-uniform string branch emanating from the critical GL string. The first order is nothing
but the GL mode. At the second order one computes the back-reaction. Finally, the third order
is computed, or more precisely only the first harmonic along the compact dimension, from
which one can finally compute the leading coefficients of the changes in mass and entropy,
η1, σ2, of the new branch. The sign of these two quantities is correlated and determines the
order of the transition.

At first sight, the two methods look quite different. However, we show that in the LG
method one also needs to precisely compute the second-order back-reaction to the metric.
The third order however is not required in LG (thereby avoiding the solution of a set of
linear differential equations with sources). Rather one needs only to expand the action to
an appropriate quartic order, to substitute in the results from the first and second orders and
perform certain integrals that add up to the constant whose sign determines the order.

A way to understand the simplification is the following: in Gubser’s method one computes
the third order, but it turns out that all that is really needed is the projection of the third order
onto the GL mode. That is precisely the reason why the first harmonic sufficed (as the GL
mode is in the first harmonic). Our substitution into the quartic order of the free energy
achieves exactly that, without the need to compute other properties of the third order.

In section 3, we perform the ‘Landau–Ginzburg’ calculation for an S
1 compactification

in various dimensions and verify that we get the same bottom-line coefficients η1, σ2 as in the
previous method, see table 3.

Torus compactification. It is interesting to generalize the compactifying manifold, and the
simplest option beyond the circle S

1 ≡ T1 is a product of circles or more generally a p-torus
Tp. The number of extended spacetime dimensions is denoted by d and the total spacetime
dimension is D = d + p. The critical GL density for such a torus compactification is easily
found to be given in terms of the shortest vector in the reciprocal lattice [9].

We proceed to analyse the transition order in section 4. First, we motivate restricting
ourselves to square torii. Basically, we view the space of torii as having two boundaries—on
the one hand highly asymmetrical torii, where one (or more) dimensions are much larger than
the rest, and on the other hand highly symmetrical torii such as the square torus. Since the
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limit of a highly asymmetrical torus reduces to the case of a lower dimensional torus (mostly
the well-understood case of S

1 compactification), we argue that by studying the opposite limit
of a highly symmetrical torus, we achieve an understanding of both limits and thereby also
some understanding of the intermediate region of general torii.

For a square Tp torus compactification, p modes turn marginally tachyonic at the same
(GL) point. We find that the constant C is replaced by a p × p quadratic form Cij , in order
to allow for the various possible directions in the (marginally) ‘tachyon space’ and that the
transition is second order iff Cij is positive for all directions. Namely, it is enough that there
is a single direction in tachyon space which sees a first-order transition for the transition to be
one. Taking into account the T1 results we may immediately deduce that the critical dimension
cannot be lower than in the T1 case with the same number of extended dimensions, d. This
shows that the indicators of [9] for second-order transition at lower dimensions, which were
part of the motivation for this work, were misleading, as further discussed in the text.

Due to the high degree of symmetry of the square torii Cij consists only of two independent
entries: all the diagonal entries are the same, denoted by C=, and all the off-diagonal entries
are the same, denoted by C �=. Since the diagonal term is precisely the one computed in the
T1 compactification, we set to compute the off-diagonal term. Due to the symmetry C �= is
the same for all p and for that purpose it suffices to consider p = 2, namely we consider the
square T2 torus. The only parameter remaining is the number of extended dimensions.

In practice, we do not compute C �= directly, but rather the effective C for a diagonal
direction in tachyon space, which we denote by C̄. Then we solve for C �= which is a linear
combination of C=, C̄|p=2.

In section 5, we proceed to the actual calculation for T2. Once we have chosen the
diagonal direction in tachyon space we are not bothered any longer by the presence of several
(marginally) tachyonic modes. However, the number of metric components involved in the
calculation (back-reaction and quartic coefficient) is larger than in the T1 case. Certain discrete
symmetries are found to be helpful in simplifying the calculation. The calculations and results
are described in detail, thereby applying our improved method to achieve new results.

In section 6, we analyse the results and their implications. We find that for all the studied
values of d where the T1 transition is second order, the Tp transition is also second order for
all p. Combining this result with observation mentioned above we conclude that the transition
order for square torii shows some robustness in that it depends only on d, the number of
extended dimensions, and not on p.

In addition, we discuss some subtler implications, including the finding that for almost
all d the diagonal direction in tachyon space is disfavoured relative to turning on a tachyon in
a single compact dimension, and in this sense we have spontaneous symmetry breaking.

The appendices A and B contain the details of the full equations, of the numerical
technique and summarize various numerical parameters.

2. Set-up and Landau–Ginzburg theory of phase transitions

2.1. Set-up

The Gregory–Laflamme instability and associated phase transition physics appear in the
presence of compact dimensions, namely for backgrounds of the form R

d−1,1 ×Yp, where Yp

is any p-dimensional compact Ricci-flat manifold, d � 4 is the number of extended spacetime
dimensions and the total spacetime dimension is D = d + p.

The simplest compactifying manifold is a single compact dimension Y = S
1. We shall

first demonstrate the Landau–Ginzburg method in that context and then turn to Y = Tp, a
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Figure 1. The uniform black string together with the definition of the cylindrical coordinates (r, z).
r0 is the Schwarzschild radius.

square p-dimensional torus. We denote the torus size by L and work with Euclidean time of
period β (corresponding to a canonical ensemble). Such backgrounds are characterized by a
single dimensionless constant

µβ ∝ β

L
, (2.1)

where henceforth we shall omit the subscript β.
The non-rotating black objects in which we are interested are static and spherically

symmetric (in the extended dimensions). After suppressing the time and the angular
coordinates the remaining essential coordinates are r, the radial coordinate in the extended
spatial directions, and zi, 1 � i � p, the periodic coordinates zi ∼ zi + L which parameterize
Tp. Thus, the essential geometry has p+1 dimensions and we employ ‘cylindrical coordinates’
(r, zi).

The uniform black p-brane3, the background around which we perturb (see figure 1), is
given by

ds2 = ds2
Schw + ds2

Y (2.2)

where ds2
Y is the metric on Yp, which for our square torus is

ds2
Y =

p∑
i=1

dzi dzi, (2.3)

and ds2
Schw is the d-dimensional Schwarzschild black hole,

ds2
Schw = −f (r) dt2 +

1

f (r)
dr2 + r2 d�2

d−2, (2.4)

where

f (r) = 1 −
( r0

r

)d−3
, (2.5)

and d�2
d−2 is the metric on the unit sphere. r0 is related to the black hole mass, M, via [10]

rd−3
0 = 16πGdM

(d − 2)�d−2
, (2.6)

where Gd is the d-dimensional Newton constant and �d−1 = d πd/2

(d/2)! = 2π
d
2

�( d
2 )

is the area of a unit

sphere Sd−1. In Euclidean signature, the spacetime ends at the horizon. As usual, requiring
the absence of a conical singularity there fixes β, the asymptotic size of the Euclidean time
direction, and it is given by

β = 2π

κ
= 4π

f ′(r0)
= 4πr0

d − 3
. (2.7)

Gregory and Laflamme discovered that the uniform black string solution (2.4) develops a
z-dependent metric-instability below a certain critical (dimensionless) mass [1]. Equivalently,
3 A 1-brane is often called ‘a string’.
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Table 1. The marginally static mode wavenumbers kGL in units of r−1
0 as a function of d [3, 9].

d 4 5 6 7 8 9 10 11
kGL 0.876 1.27 1.58 1.85 2.09 2.30 2.50 2.69

d 12 13 14 15 19 29 49 99
kGL 2.87 3.03 3.19 3.34 3.89 5.06 6.72 9.75

for a fixed r0 there is a critical wavenumber

k ≡ 2π/L (2.8)

for instability. At k = kGL, the GL mode is marginally tachyonic, namely a zero mode. In
[1, 3], the critical GL lengths were obtained for Schwarzschild black holes in various
dimensions (see table 1). From these the high d asymptotic form was extracted and later
proven analytically in [9] to be

kGL �
√

d
1

r0
. (2.9)

This means that for large d the black string becomes unstable when r0/L � √
d, namely when

it is quite ‘fat’ and this indicates that such a string would not decay into a black hole which
would not ‘fit’ inside the extra dimension.

Having an unstable mode brings us to the issue of the order of the transition and the
existence of additional phases. Rather than review the state of the art in this respect, we
proceed in the following subsection to describe a somewhat novel method, which in section 3
will be shown to reproduce the known results and then will be used in section 5 to obtain new
results.

2.2. Landau–Ginzburg: review and application

The central insight of the Landau–Ginzburg (LG) theory of phase transitions (see, for example,
[11]) is that the nature of a phase transition can be deduced from the local behaviour of the
free energy around the critical solution. This local analysis is achieved by focusing on the
low energy modes and zooming, namely carrying a Taylor expansion up to a specified order.
For pedagogical reasons4, we divide the discussion into three steps: first we discuss a one-
dimensional configuration space which is the simplest example, then the general configuration
space and finally we utilize the translation symmetry in z of our background to arrive at the
final form of our formulae.

One-dimensional configuration space. The main idea can be demonstrated by a system with
a configuration space consisting of a single variable λ̃ and by a control parameter µ. The
thermodynamics is encoded by the free energy function F = F(λ̃;µ). Generically, the
free energy does not have a definite parity in λ̃, however sometimes additional symmetries
of the system make the free energy even in λ̃, namely F(−λ̃;µ) = F(λ̃;µ), which will
be seen to hold in our case. This reflection symmetry implies that λ̃ = 0 is an extremum
of the free energy (namely that the linear term in the Taylor expansion of F in λ̃ around
λ̃ = 0 vanishes). Assuming the existence of a critical solution with a marginally stable mode
means that for some critical value of µ denoted by µc the quadratic term vanishes. Thus,
F(λ̃;µ) = F0(µ)+A(µ−µc)λ̃

2 + · · · where A is some constant, which we take to be positive

4 A brief outline of the method was already present in appendix A of [8].



4568 B Kol and E Sorkin

F

λ

(µ;λ)

ph
as

e

µ>µcµ=µc

branch

µ<µc

~

non-uniform

un
if

or
m

 

Figure 2. An illustration of a first-order phase transition. A condensed plot showing two kinds of
graphs. The thin solid lines show the free energy as a function of λ̃ for a sequence of µ values, while
for the thick lines the vertical axis becomes µ (the horizontal remains λ̃) and they designate the
various phases corresponding to the extremum of the free energy. The free energy has a minimum
for µ > µc that corresponds to the stable symmetric phase (thick solid line) which becomes
unstable below µc (thick dashed line). It follows that the asymmetric phase branch emergent from
the critical point (thick dotted line) is unstable since the free energy has a negative direction for
µ � µc at λ̃ = λ̃b . Note that the free energy in this phase is higher relative to that of the critical
state.

without loss of generality (if A were negative we could redefine µ → −µ). In order to
determine the order of the transition it is sufficient to expand F further as follows:

F(λ̃;µ) = F0(µ) + Aδµλ̃2 + Cλ̃4 + · · · (2.10)

where we defined

δµ ≡ µ − µc (2.11)

and C is another constant. Actually, the whole function F0(µ) is not required for the LG
theory, only its expansion around µ � µc, but we shall not be concerned with this expansion.

Once the constants A, C are determined, the local thermodynamics may be deduced by
following the form of the free energy and its extrema as µ is adjusted in the vicinity of µc.
Seeking additional extrema of (2.10) through ∂F/∂λ̃ = 0 results in a new branch of extrema
in addition to λ̃ = 0, namely,

λ̃2
b = −A(µ − µc)

2C
, (2.12)

where λ̃b = λ̃b(µ) describes the new branch. Note that since λ̃2 � 0 the new branch exists
only for sgn(µ − µc) = −sgn(C) (locally). Depending on the sign of C, we now get two
possibilities which are depicted in figures 2 and 3. For negative C, the new branch exists only
for µ > µc and thus cannot serve as the end state of the decay for µ < µc (moreover it
is unstable), and therefore a first-order transition will occur into a phase at finite distance in
configuration space. For positive C, the new branch can and does serve as the end point of the
decay. The transition is smooth as one lowers µ below µc. The difference in free energies
between the two phases is given by

Fb(µ) − F0(µ) = F(λ̃b(µ);µ) − F0(µ) = −A2(µ − µc)
2

4C
= −Cλ̃4

b. (2.13)

In particular, there is a jump in the second derivative of Fb − F0 with respect to µ at µ = µc.
Hence, by definition this transition is second order.
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Figure 3. An illustration of a second-order transition from a symmetric to an asymmetric phase,
with the same condensed conventions as in figure 2. The free energy (designated by the thin solid
line) has a minimum for µ > µc corresponding to the stable symmetric phase (thick solid line)
which becomes unstable below µc (thick dashed line). The free energy is at minimum also for
µ = µc and the minimum continuously moves away from λ̃ = 0, indicating that the emergent
asymmetric phase is stable and has the asymmetry developing smoothly.

Given A, C and hence the form of F = F(µ), which is the fundamental thermodynamic
potential (in the canonical ensemble), we may find the rest of the thermodynamic quantities
through the usual thermodynamic relations, as we now describe.

We particularize to the black branes in which case the temperature is T ≡ h̄/β, and so
the dimensionless temperature is θ = µ−1 (2.1). Rephrasing (2.12), we obtain the leading
behaviour for the dimensionless temperature of the emergent branch:

δθ

θ
= −δµ

µ
= 2C

AµGL
λ̃2

b ≡ θ1λ̃
2
b. (2.14)

The entropy and the mass of the solutions are S = µ2∂µF and M = ∂µ(µF). We can find
the coefficients of the second-order variations of these quantities relative to the critical phase:

s1 ≡
(
O(λ2) of µ2∂µ

F (µ) − F0(µ)

F (µ)

)
= µGLA

d − 3
, (2.15)

m1 ≡
(
O(λ2) of − ∂µ

µ [F(µ) − F0(µ)]

F(µ)

)
= µGLA

d − 2
. (2.16)

The variation of the dimensionless mass,

η ≡ GdM/Ld−3 = GdMµd−3/βd−3, (2.17)

in a canonical ensemble for given β is comprised of two terms arising from variation of M
and µ

η1 ≡
(
O(λ2) of

δη

η

)
= −(d − 3)θ1 + m1

= −2(d − 3)
C

µGLA
+

1

d − 2
µGLA. (2.18)
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Finally, we can also determine the entropy difference between non-uniform and the
uniform phases with the same mass [2, 3]:

Snon-uniform

Suniform
= 1 + σ1λ

2
b + σ2λ

4
b + · · · ,

σ1 = m1 − d − 3

d − 2
s1, σ2 = − d − 2

2(d − 3)2
m1η1.

(2.19)

Note that vanishing of σ1 is guaranteed by the first law.

Higher-dimensional configuration space. While the discussion above reveals the essential
point, it considers the free energy to be a function of a single configuration variable, while in
our case it should be considered a function over the space of all metrics with fixed boundary
conditions, which is an infinite-dimensional space. More explicitly

−βF [gµν] = IGH[gµν] ≡ 1

16πGN

(∫
M

R + 2
∫

∂M
[K − K0]

)
, (2.20)

where the first integral is the bulk contribution of the Ricci scalar and the second is a boundary
contribution, where K is the trace of the second fundamental form on the boundary and K0

is the same quantity for a reference geometry. The space of metrics considered is that of all
metrics which asymptote to the reference geometry, which in our case is flat R

d−1 × S
1
β × Tp

L

characterized by dimensions d and p and the asymptotic constants β,L.
We denote by zi the coordinates along the compact dimensions and by r the radial

coordinate. The most general metric which is static and spherically symmetric (in the extended
dimensions),

ds2 = e2A dt2 + ds2
(r,zi ) + e2C d�2

d−3, (2.21)

where A and C are the functions of (r, zi), ds2
(r,zi )

, is an arbitrary metric on the (r, zi) space
and since the metrics are static we might as well work with Euclidean signature.

We denote the metric fields collectively by x. We are interested in a background which is
the critical GL string, denoted by x(0), and we decompose the metric fields into the background,
x(0), and fluctuations, denoted by5 X

x = x(0) + X. (2.22)

Since we wish to follow the new branch emanating from the zeroth-order solution, x(0),
we expand in a perturbative parameter λ:

X =
∞∑
i=1

λiX(i) = λX(1) + λ2X(2) + · · · . (2.23)

The first-order contribution must be a zero mode, namely the GL mode XGL,

X(1) = XGL, (2.24)

and it will be sometimes convenient to denote the second-order term by XBR, the back-reaction

X(2) = XBR. (2.25)

We need to expand the free energy F to fourth order in λ. To that purpose, we first expand
F in X

F(X) = F0 + F2(X,X) + F3(X,X,X) + F4(X,X,X,X) + · · · + δµ
∂F

∂µ
+ · · · , (2.26)

5 In general X can be considered to be a vector. While in our case it is infinite dimensional (since the fluctuations, X,
are a set of metric functions, and as such represent infinitely many modes), more generally, if the configuration space
is finite dimensional then X would be a finite-dimensional vector Xi .
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where Fi are multi-linear expressions6. The linear term vanishes since by assumption X = 0
is a solution.

Next, we decompose the fluctuations7 X into the marginal GL mode λ̃, and all the rest, X̃:

X = (λ̃, X̃) X = λ̃XGL + X̃. (2.27)

In terms of the perturbations series (2.23) we have

λ̃ = λ X̃ = λ2XBR + · · · . (2.28)

So, λ and λ̃ are equal along the perturbation path, and the separate notation is intended to
distinguish between the direction in the space of metric fluctuations, λ̃, and the perturbation
parameter, λ.

We now substitute the decomposition of X (2.27) into the X-expansion of F (2.26) keeping
only terms which will end up being up to fourth order in λ. Noting that X̃ receives its first
contribution at the second order8, and taking account of the parity symmetry for λ̃ (which will
be justified for our case shortly) we find

F(λ̃, X̃;µ) = F0(µ) + Aδµλ̃2 + F2(X̃, X̃) + λ̃2G(X̃) + F4 GLλ̃4. (2.29)

This is the expression with which the LG analysis is carried out, and we now proceed to
describe its various ingredients. A is a constant that can be read from ∂F/∂µ. F2 is the same
bi-linear functional as in (2.26),9 F4 GL is a constant given by

F4 GL := F4(XGL, XGL, XGL, XGL)

= (O(λ4) of F(λXGL)), (2.30)

where by O(λ4) we mean the coefficient of O(λ4). Finally, G is a linear functional given by10

G(X̃) := 3F3(XGL, XGL, X̃)

= (
O(λ4) of F3(X,X,X)|X=λXGL+λ2X̃

)
. (2.31)

Substituting the perturbations series (2.23), or more explicitly (2.28), into the expansion
of the free energy (2.29) we may solve for the back-reaction XBR by varying the free energy.
Equivalently, in practice we expand the Einstein equations to second order and obtain a
source quadratic in XGL. The equations of motion for the back-reaction, may be symbolically
written11 as 0 = δF/δX = 2F2XBR + G, and its solution12 can be written symbolically as
XBR = −(1/2)F−1

2 G.
Substituting back the fields into the free energy (2.29), one obtains the quartic coefficient

C as defined above in (2.10) to be

C = F4 GL − F2(BR), (2.32)
6 More explicitly, Fi(X, . . . , X) = ∫

dr dzFi(r, z)X(r, z) · · · X(r, z), where each X could also be carrying
derivatives.
7 More concretely λ̃ is defined by λ̃ := 〈X,XGL〉, the projection of a general perturbation X onto XGL, where 〈·, ·〉
is the appropriate inner product in the space of perturbations. As will become clearer in section 3, the inner product
is given by the coefficient of k2 in the action and makes the eigenvalue equation for the GL mode (3.6) self-adjoint.
In the particular gauge used in this paper, it is given by

〈
X, X̂

〉
:= const

∫
aârd−2 dr (3.21). The definition of X̃

may be further described as follows. The spectrum of (3.6) has a single negative mode −k2
GL and a continuum of

scattering states Xκ(r) labelled by κ := −k2 � 0. We may decompose the general perturbation X(r) according
to the orthonormal basis of eigenfunctions as follows: X(r) = λ̃XGL(r) +

∫ ∞
0 dκX̃(κ)Xκ(r), where X̃(κ) are the

coefficients in this basis.
8 δµ will turn out to be O(λ2) as well, see (2.12).
9 Actually, since XGL is a zero mode F2(X,X) = F2(X̃, X̃) for all X.
10 G(X̃) can be described more concretely in terms of the source for the back-reaction equations Srcx through
G(X̃) = ∫

drSrcx(r)X̃(r).
11 In vector notation, it would read 0 = 2F2,ijX

j

BR + Gi .
12 These back-reaction equations are solvable, namely F2(X̃, X̃) is invertible, since the zero mode XGL was removed
from its domain of definition.
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where F4 GL was defined in (2.30) and F2(BR) is the quadratic action for the back-reaction
defined by

F2(BR) := F2(XBR, XBR)

= (O(λ4) of F(λ2XBR)). (2.33)

Note that the negative sign in front of F2(BR) comes from the equation G = −2F2XBR.
Here, we would like to note another more intuitive but less general interpretation of the

criterion for transition order (2.12), (2.32). In cases where the original phase, before criticality,
was stable, namely it was a local minimum of the free energy, the criterion for a second-order
transition is that the critical solution itself is also a minimum of the action (despite the presence
of the zero mode), since clearly if it is not a minimum then another lower minimum already
exists for a first-order transition to occur. In such a case, we may view the equation for the
back-reaction as an attempt to find the direction of ‘steepest decent’ and C would be the O(λ4)

coefficient of that decent. However, since we work in the canonical ensemble for which the
(fat) uniform string has a negative Gross–Perry–Yaffe (GPY) mode [12], the gravitational
action is unbounded from below and the considerations above do not apply (or apply ‘modulo
this negative mode’).

Incorporating invariance under z-translations. The black brane is invariant under the U(1)p

isometry group, originating from torus translations. As a result, we can Fourier decompose
all fields X. We can account for this decomposition in the computation of C thereby making
(2.32) more explicit. Here, we discuss the case p = 1 (higher p will be discussed in
section 4).

The U(1) isometry allows us to perform a Fourier decomposition of all fields as follows:

X(r, z) =
∑

n

Xn(r) exp(inkGLz), (2.34)

where the index n is the harmonic, and in particular X0 is the z-independent mode, X1 is the
GL mode, etc13.

The coefficient of the first-order mode, λ, is properly considered to be complex, as follows:

λX(1) = λ eikGLzXGPY (2.35)

where we used XGL = exp(ikGLz)XGPY [13]. It is seen that the phase of λ yields z-translations.
By translation symmetry all possible phases of λ are equivalent. A natural way to fix the phase
is to require λ to be real. Choosing real λ represents the spontaneous breaking of z-translations
by the mode, but λ → −λ is a residual symmetry corresponding to translation by a half period
and this is the origin of the parity symmetry for λ̃ which is crucial for the expansion of the
free energy as discussed above.

The free energy is real, therefore U(1) invariance implies the following simplification:

F2(X̃, X̃) → F2(X̃0, X̃0) + F2(X̃2, X̃2) + · · ·
λ̃2G(X̃) → |λ̃|2G(X̃0) + [λ̃2G(X̃−2) + c.c.],

(2.36)

where the indices of X̃ denotes the harmonic, and the first equation is a result of the
orthogonality with respect to F2 between different harmonics. Altogether the resulting free
energy is

F(λ̃, X̃;µ) = F0(µ) + Aδµ|λ̃|2 + F2(X̃0, X̃0) + F2(X̃2, X̃2)

+ |λ̃|2G(X̃0) + [λ̃2G(X̃−2) + c.c.] + F4 GL|λ̃|4, (2.37)

where ‘c.c.’ stands for ‘complex conjugate’. This form adds detail to (2.29).

13 In the actual calculation we shall use a slightly different normalization, expanding into cosines and sines rather
than exponentials, in order to account for X being real.
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Since first-order GL mode is (by definition) in the first harmonic, its square which sources
the back-reaction has harmonics 0 and 2, and therefore the back-reaction decomposes into 0
and 2 harmonics. Symbolically,

BR = (BR0, BR2). (2.38)

Finally,

C = F4 GL − F2(BR0) − F2(BR2) (2.39)

is a more detailed version of (2.32), where we made use of the orthogonality of different
harmonics.

3. A single compact dimension, T1

In this section, we consider backgrounds with single compact dimension, p = 1 and D = d + 1.
The most general metric in this case can be written as

ds2 = e2Af (r) dt2 + e2Bf (r)−1 dr2 + 2K dr dz + e2H dz2 + e2Cr2 d�2
d−2, (3.1)

where the functions A,B,K,H and C depend only on r and z. If they vanish and
f (r) = 1−(r0/r)d−3 then the uniform black string solution is reproduced, where r0 designates
the horizon location. (Below we set r0 = 1.)

We are interested in constructing static perturbations about the uniform black string, hence
the above metric functions will be considered as small corrections to the background metric.

We must eliminate first the unphysical degrees of freedom by fixing a gauge. In our case,
there are two degrees of freedom (related to diffeomorphisms of the (r, z) plane) that can be
used to eliminate two of the five metric functions in (3.1). It is not clear what is the ‘optimal’
gauge choice and naturally we attempt here to simplify the equations as much as possible. We
choose the gauge partially by requiring K = 0. The motivations and fixing of the remaining
freedom is described shortly.

3.1. First order—marginally tachyonic mode

The small parameter of the perturbation theory, λ, is the amplitude of the negative mode. To
simplify the derivation of the equations of motions and the expansion of the free energy in this
section we use real λ. This together with the U(1) symmetry along z suggests that the linear
order perturbations are of the form

X(1)(r, z) = λx1(r) cos(kz), (3.2)

for X = A,B,C and H (see also (2.35) ). After plugging these expressions into the Einstein
equations, Rµν = 0, we obtain a set of ordinary linear differential equations (ODEs) for
a1(r), b1(r), c1(r) and h1(r). These equations will determine the first-order perturbations and
the critical wavelength kGL.

At this stage, we fix the gauge and our objective is to get the simplest equations (desirably
uncoupled and without singular points between the horizon and infinity)14.

14 One however should not be too over diligent here: any gauge can be taken at the linear order but at higher orders
of the perturbation theory the equations might become degenerate, indicating that the gauge is too restrictive. For
instance, in our case one could choose H = 0. Then a GPY-sort equation [9, 12, 14] is reproduced at the linear order;
it is easily solved in various dimensions, yielding kGL. Continuing with this gauge to higher orders of the perturbations
theory leads to a contradiction as the back-reaction equations appear to put constraints on the first-order perturbations.
Physically, this is not surprising at all. Taking constant H is simply inconsistent with allowing non-uniform solutions,
since when the non-uniformity develops the scalar charge defined by H must vary [18, 19].
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Examining the Rrz = 0 constraint,

2(d − 2)f c1 + rf ′a1 − (2(d − 2)f + rf ′)b1 + r(a′
1 + (d − 2)c′

1) = 0, (3.3)

we are led to choose

B = 2(d − 2)f C + rf ′A
2(d − 2)f + rf ′ . (3.4)

In particular, this is our choice at the linear order. From (3.3), we get then a′
1 = −(d − 2)c′

1
and hence

c1 = −a1/(d − 2), (3.5)

as an integration constant, which could in principle arise, vanishes by boundary conditions at
infinity. Consequently, the linear order equations are

f a′′
1 +

(d − 2)f + rf ′

r
a′

1 +

[
−k2 +

2(d − 1)(d − 3)f ′2

[2 (d − 2) f + rf ′]2

]
a1 = 0, (3.6)

1

rd−2
(rd−2f h′

1)
′ +

2f − rf ′

2 (d − 2) f + rf ′ k
2a1 = 0. (3.7)

Besides, there is the constraint

h′
1 +

2f − rf ′

2 (d − 2) f + rf ′ a
′
1 − 2(d − 1)(d − 3)f ′

[2 (d − 2) f + rf ′]2 a1 = 0. (3.8)

We do not solve it but we check that it is indeed satisfied by the solution of (3.6), (3.7).
The equations are subject to boundary conditions: regularity at the horizon, that gives

a′
1

a1
= k2

d − 3
− 2(d − 2), h′

1 = k2

d − 3
a1 at r = r0, (3.9)

and regularity at infinity, r → ∞, which eliminates any growing solutions.
We begin by solving (3.6). Because of linearity and homogeneity of (3.6) the value a1(1)

can be chosen freely. A particular value of a1(1) defines the normalization of the negative
mode. We adopt

a1(1) = −(d − 2). (3.10)

Then (3.5) gives c1(1) = 1, the normalization used in earlier works [2–4].
Having fixed a1(1) we are left with a one-parameter shooting problem: only for a particular

value of the parameter kGL—the critical GL wavelength—an integration outward the horizon
converges. Adjustment of k and integration are iterated until k is found with desired accuracy.
Our current implementation reproduces exactly the kGL-values cited in the literature, see
table 1.

Next, we solve for h1 by integrating (3.7) from the horizon outwards. A finite solution
that asymptotes to a constant at large r exists for any choice of h1(1). Picking some h1(1)

we integrate, find the asymptotic value of h1, take minus this value for h1(1) and reintegrate
the equation to have h1 vanishing at infinity. Namely, the shooting procedure for h1 reduces
to what we dub ‘second shot hits’. Clearly, the described procedure succeeds because (3.7)
contains only derivatives of h1 so shifting the solution by a constant is still a solution of (3.7).
This completes the first-order computation.

In conclusion, we wish to stress the advantage of the gauge choice (3.4) by comparing
our master equation (3.6) for the negative mode with those considered in the literature. For
example, in Gubser’s gauge [2, 3], which eliminates b1 from (3.3), two coupled equations
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Figure 4. The potential (solid line) and the wavefunction (dashed line) for the negative mode,
obeying the equation −d2ψ/dρ2 + V ψ = −k2ψ , for d = 5.

for a1 and c1 must be solved simultaneously in order to find kc (the equations in an arbitrary
dimension are listed in the appendix of [9]). Alternatively, in the GPY approach where one
considers perturbations of the d-dimensional Schwarzschild solution in the transverse-traceless
gauge (which is exactly equivalent to setting H = 0), one obtains a single master equation
for the negative mode [9, 12, 14, 15]. The equation, however, has an additional singular point
apart from the horizon and infinity, whose presence complicates the shooting15 (see [9] for an
analytical solution of this equation in a large d limit.) Recently, the Harmark–Obers gauge
[5] was considered in [4] which obtained a single equation free of additional singular points.
This is similar to what we got here.

Having a single regular (aside from the boundaries) equation (3.6) we may arrive at the
canonical form −d2ψ/dρ2 + V ψ = −k2ψ by changing the coordinate to ρ, related to r by
dρ/dr = f −1/2, and redefining a1 to get rid of the first derivative. The equation mimics a
Schrödinger-like problem of a particle with energy −k2 moving in the influence of potential
V . Figure 4 depicts the potential and the wavefunction of the negative mode in the case d = 5.

3.2. Back-reaction

The back-reaction is comprised of the zero modes and of the second harmonic modes which
we denote as

X(2)(r, z) = λ2x0(r) + λ2x2(r) cos(2kz), (3.11)

where X = A,B,C and H (see also (2.38) ).
As usual, in the presence of compact space the modes having dependence along the

internal dimensions decay exponentially with r and they are massive in the Kaluza–Klein
sense. The modes without z-dependence decay as inverse powers of r and they are massless.

At any given order the gauge is given by (3.4). However, the gauge choice in higher
orders can be modified by adding terms from the lower orders with the aim of simplifying the
source terms.

Massless modes

Our method to simplify the equations is to choose the gauge such that the constraint Rrz = 0
allows algebraic elimination of one of the fields. For the massless modes, this constraint is
trivially satisfied since these modes do not depend on z (actually Rrz is proportional to k times
the LHS of (3.3) after replacing the subscripts 1 → 0). In this case, for simplicity we adopt

15 Basically, doing series expansion and matching from both sides about this point in a manner described in [15]
allows solving the equation quite effectively. We have done this, verifying that the eigenvalues kGL found applying
this method are identical to those in table 1.
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the same gauge as in (3.4):

b0 = 2(d − 2)f c0 + rf ′a0

2(d − 2)f + rf ′ . (3.12)

Note that the variation of temperature at the horizon, which is proportional to exp(A − B),
vanishes automatically in this gauge.

The equations governing the massless mode can be schematically written as

r−(d−2)(rd−2f h′
0)

′ = Src(a1, a
′
1, h1, h

′
1)

Ea(a
′′
0 , a′

0, c
′
0, a0, c0) = Src(a1, a

′
1, h1, h

′
1;h0, h

′
0)

Ec(c
′′
0, a

′
0, c

′
0, a0, c0) = Src(a1, a

′
1, h1, h

′
1;h0, h

′
0)

Q(a′
0, c

′
0, a0, c0) = Src(a1, a

′
1, h1, h

′
1;h0, h

′
0),

(3.13)

where the sources contain squared first-order perturbations, the exact form of the operators
Ea, Ec,Q and of the sources is found in appendix A. The last equation is a constraint—it is not
solved but we verify that it is satisfied by the solution of other equations in (3.13).

Equations (3.13) are subject to regularity boundary conditions at the horizon (A.5). These
conditions determine the derivatives of the functions in terms of a0(1), c0(1) and h0(1) which
are three free parameters. At infinity we demand the length of the compact circle and the period
of the Euclidean time to reach their unperturbed values, namely we demand that A = H = 0 as
r → ∞. Besides, an obvious requirement is that C approaches a constant at large r. However,
it turns out that any choice of that constant yields regular solution to (3.13). In addition, the
constraint is satisfied for any asymptotic value of C and it does not contain any additional
information beyond that already known from the second-order equations. Therefore, we end
up with five out of six conditions/parameters which are necessary to specify a unique solution
to the three second-order ODEs in (3.13).

The situation is puzzling only until one realizes that the choice (3.12) does not fix the gauge
completely. By analysing the residual gauge, we find that fixing the residual reparameterization
of r is equivalent to choosing the asymptotic of c0. To examine the effect consider a shift,

r → r + ξ(r), (3.14)

that induces the variation in the metric functions:

δa0 = f ′

2f
ξ, δc0 = ξ

r
, δb0 = − f ′

2f
ξ + ξ ′, δh0 = 0. (3.15)

Substituting this into (3.12) and demanding invariance of the gauge one gets a first-order ODE
for ξ . The equation has a solution such that ξ(1) = 0 and that asymptotically ξ = ξ∞r , with
some constant ξ∞. It follows from (3.15) that ξ∞ is the asymptotic value of c0. Altogether we
fix this remaining freedom by requiring C = 0 at infinity16.

To solve (3.13) we first treat h0, which is decoupled from other metric functions. The
solution is achieved in the ‘second shot hits’ fashion since the equation contains only derivatives
of h0, similarly to what occurred at the first order. Then, we solve two coupled equations
for a0 and c0 where h0 as well as squared first-order perturbations act as sources. This is a
two-parameter shooting problem: the values c0(1) and a0(1) are adjusted and the equations are

16 A similar phenomenon was encountered by Gubser [2] who fixed the residual gauge, remaining after making the
conformal ansatz, by assigning c0(1) some arbitrary value. Different choices of this value set different ‘schemes’ in
Gubser’s language.
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integrated from the horizon outwards iteratively until a solution with asymptotically vanishing
a0 and c0 is found. This completes the massless-modes computation.

Massive modes

The equations for these modes are similar to those we had at the linear order (3.6)–(3.8) but
this time there are sources. To see if we need to modify the gauge (3.4) by adding some lower
order terms squared we again examine the Rrz = 0 equation:

2(d − 2)f c2 + rf ′a2 + 2(a′
2 + (d − 2)c′

2) +
d − 1

2(d − 2)
rf a1a

′
1 − (2(d − 2)f + rf ′)b2 = 0.

(3.16)

From here the obvious choice is

b2 = 2(d − 2)f c2 + rf ′a2

2(d − 2)f + rf ′ +
d − 1

2(d − 2)

rf a1a
′
1

2(d − 2)f + rf ′ , (3.17)

since it allows algebraically to eliminate one of the fields, precisely in the same manner as at the
linear order. Consequently, c2 = −a2/(d − 2) and so we are left with only two second-order
ODEs to be solved.

Schematically, the equations read

Ea(a
′′
2 , a′

2, a2) = Src(a′
1, a1, h

′
1, h1), Eh(h

′′
2, h

′
2) = Src(a′

1, a1, h
′
1, h1; a2) (3.18)

and their exact form is listed in (A.7). These equations are subject to regularity boundary
conditions: both at the horizon, (A.9), and at infinity.

The a2 equation is independent of h2 and it is solved first. To this end, we shoot with
a2(1) as the shooting parameter. It is adjusted until the regular (decaying at large r) solution is
found. The equation for h2 contains a2 as a source, see (3.18) or (A.7), and once a2 is known
h2 is found by the ‘second shot hits’ method. Finally, we verify that the constraint (A.10) is
indeed satisfied by the solution.

3.3. Free energy and comparison with previous results

As soon as the negative mode and the resulting back-reaction are found we are ready to
compute the coefficients of the free energy expansion about the critical point up to the fourth
order in λ.

The quadratic term in the expansion (2.29), F2(X,X), is obtained by expanding the
York–Gibbons–Hawking [16, 17] action integral (2.20) in our gauge. We find

I (2) = − β�d−2

16πGD

∫ L

0
dz

∫ ∞

r0

dr rd−2 d − 1

(d − 2)

×
[
f (∂ra(r, z))2 + (∂za(r, z))2 − 2(d − 1)(d − 3)f ′2

(2(d − 2)f + rf ′)2 a(r, z)2

]
. (3.19)

Note that h(r, z) does not appear here. To get I (2) in terms of harmonics an(r), such
as (3.2), (2.38), one needs only to substitute in the harmonic decomposition17 a(r, z) =∑∞

n=0 an(r) cos(nkz).
The quadratic part of the action (3.19) allows us to compute A (2.29). By definition

the integrand vanishes for k = kGL and a1(r) being GL mode (found in subsection 3.1); the
leading term appearing as one moves away from kGL reads

I (2) = − β�d−2

16πGD

∫ L

0
dz

∫ ∞

r0

[
2kGLδk

d − 1

2(d − 2)
rd−2a1(r)

2

]
dr λ2, (3.20)

17 Actually, we checked this formula only for n �= 0. The zero-mode sector may contain additional terms.



4578 B Kol and E Sorkin

Table 2. Coefficients of the free energy expansions. We note that C changes sign between d = 11
and 12. This indicates that in the canonical ensemble a second-order phase transition occurs in
dimensions d � 12.

d 4 5 6 7 8 9 10 11 12 13 14

A 0.465 2.05 5.11 9.98 16.9 26.2 37.5 51.7 68.7 88.6 112
C −0.403 −1.39 −2.99 −5.03 −7.07 −8.47 −8.30 −5.27 1.97 15.0 35.7
F4 GL 0.0976 0.7883 3.035 8.417 19.27 38.85 71.42 122.48 198.8 308.8 462.2
F2(BR0) 0.3918 1.287 2.239 1.932 −2.112 −13.82 −38.86 −85.06 −162.4 −283.4 −463.3
F2(BR2) 0.1076 0.8912 3.791 11.52 28.46 61.14 118.6 212.8 359.2 577.2 889.9

Table 3. Coefficients of the dimensionless mass and of the entropy variation as defined in (2.18),
(2.19) computed in both the LG method and the previous method. The match is within 5%. The
sign change (in both quantities) between d = 12 and d = 13 indicates a change in the order of the
transition in the micro-canonical ensemble.

d 4 5 6 7 8 9 10 11 12 13 14

Landau–Ginzburg method, derived from A, C
η1 1.40 3.00 4.68 6.21 7.36 7.93 7.68 6.29 3.56 −0.695 −6.76
σ2 −0.569 −0.976 −1.40 −1.79 −2.08 −2.21 −2.09 −1.70 −0.969 0.197 1.85

Previous method, direct computation
η1 1.45 3.03 4.69 6.21 7.34 7.89 7.66 6.25 3.57 −0.724 −6.84
σ2 −0.595 −0.989 −1.42 −1.80 −2.02 −2.14 −2.08 −1.66 −0.966 0.198 1.82

Using the relations (2.1), (2.7) and (2.8) we connect the dimensionless wavenumber with µ

as δk = 2/(d − 3)δµ. It follows then

A ≡ F (2)/λ2 ∝ 4π(d − 1)

(d − 2)(d − 3)

∫ ∞

1
a2

1r
d−2 dr. (3.21)

The factor of proportionality, �d−2/(16πGD), appears in all action integrals such as (3.20).
So in concrete calculations we shall get rid of it simply by suitably redefining the coefficients
of the free energy expansion.

The quartic contribution to F is (2.39). We omit the explicit expressions for the integrand
of F4 GL since it is far more cumbersome than (3.19), (3.21), though it is straightforward to
obtain. We note that in our gauge (3.4) F4 GL includes pieces which originated in the metric
function B before the gauge was fixed18.

The numerical values of A and of the specific terms forming C are listed in table 2. It
is evident from this table that a critical dimension, D∗

can = 12.5, for the canonical ensemble
appears, above which C changes sign marking a change in the phase transition’s order.

There is a subtlety involved in the calculation of C. According to (2.32), it is defined
as a difference between two numbers, F4 GL and F2(BR). As the dimension increases these
numbers grow and they become comparable around D∗

can, see table 2. Hence, it is imperative
to compute each term in (2.32) accurately enough in order to obtain reliable C.

Having computed the coefficients in the free energy expansion we may obtain the micro-
canonical thermodynamic coefficients η1 and σ2. These are defined in (2.14), (2.18), (2.19)
and their numerical values are summarized in table 3. We include for comparison the same

18 It is also possible to carry the expansion of the action before gauge fixing, which was the way our computation
actually happened to be performed and only later it was translated into a decomposition of the gauge-fixed action.
The bottom-line result for C is of course the same in both ways.
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quantities computed in [3] (see also [4]) in Gubser’s method. We do not know which method
is more accurate, but obviously both yield comparable results (with less than 5% discrepancy.)

Note that for each dimension both methods produce exactly two numbers that encode the
entire thermodynamics at leading order: η1 and σ2 in the micro-canonical ensemble or A and
C in the canonical ensemble, and we have demonstrated the relation between the two pairs of
quantities. We also note that while in the canonical ensemble σ1 = 0 automatically, in the
micro-canonical ensemble this is a derived result. In fact, in that case the smallness of σ1 can
be used as an estimator of numerical error [2].

4. Several compact dimensions

After having demonstrated the LG-inspired method, we would like to apply it to the
computation of the order of the transition in the presence of a more general compactification—
by a torus.

Square torii. We choose to restrict our study to square torii, namely zi ∼ zi + L with the
same L for all zi and with right angles between the axes. We motivate this restriction by the
following. We view the space of torii as having two boundaries—on the one hand highly
asymmetrical torii, where one (or more) dimensions are much larger than the rest, and on the
other hand highly symmetrical torii such as the square torus.

For example, for p = 2 the space of torii is the well-known modular domain parametrized
by τ . The highly asymmetrical 2-torus boundary is to be found at τ → i∞. The most
symmetrical torii, the square and hexagonal ones, are to be found on the boundary at
τ = i, exp(iπ/3), respectively. The boundary of the modular domain also includes other,
less symmetrical torii. Actually, we could have chosen to study the hexagonal torus—it also
enjoys a large symmetry that would simplify the calculations, and our choice is simply one of
convenience.

The limit of highly asymmetrical torii is easy to understand. Suppose one of the edges
of the torus is much longer than the rest (or equivalently, one of the vectors in the reciprocal
torus is much shorter than others). In this case as the mass of the brane is reduced, the first
GL instability to occur will be associated with this long direction. Since this mode is invariant
under translations in all other directions, and as long as that symmetry is not spontaneously
broken (actually it may very well break to some extent during the collapse when the highest
curvatures develop), then we find that we can completely ignore all directions except for the
largest one. So, effectively that case is reduced to that of a T1 compactification. A similar
reduction applies if there are several directions which are much larger than the rest—in such
a case we may reduce the problem to one with a smaller p.

Therefore, by studying the limit of the symmetrical, square torus, we hope to achieve an
understanding of both limits and thereby also some understanding of the intermediate region
of general torii.

GL instability. In a Tp compactification (this discussion appeared already in [9]), we have
a GL instability for each vector in the reciprocal lattice. This replaces the single instability
and its harmonics in the T1 case. Therefore, as the mass of the black brane is reduced these
instabilities appear in order of smallness of the vectors in the reciprocal lattice. Of course,
once the smallest one is encountered the system will start collapsing and we will not have a
chance to observe the other instabilities separately.

For symmetrical torii, including the square, a non-generic phenomenon happens: as the
first instability is reached (say by lowering the mass) several modes turn marginally tachyonic
simultaneously. More precisely, for Tp there are p such modes. One may be concerned
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that this degeneracy occurs only for exactly square torii, but we would like to argue that this
degeneracy is also relevant for torii which are nearly square. Indeed, if the torus is not a precise
square one of the GL instability modes will be triggered first. However, as the other ‘would
be’ tachyons have a very shallow potential at this moment, once the instability starts ‘rolling’
and energy becomes available there is nothing to stop these modes from getting spontaneously
excited, thereby allowing motion of the system in all the p ‘tachyonic’ directions just as for
an exactly square torus.

Generalizing the perturbation method. We would now want to generalize the perturbation
method and find a generalization for the coefficient C (2.32) which determines the order of
the transition. The first-order perturbation is an arbitrary linear combination of the p GL
modes, with coefficients denoted by λi , namely the generalization from p = 1 to arbitrary p is
given by

X(1) = λXGL → X(1) = λiX
i
GL, (4.1)

where indices i, j are to be summed in the range 1 � i, j � p and Xi
GL is the GL mode

associated with zi (more explicitly, the mode computed in subsection 3.1 after substituting
z → zi).

Proceeding to the second order the sources have the following schematic form: Src ∼
λiλjX

i
GLX

j

GL. Accordingly, the back-reaction becomes

XBR = λiλjX
ij

BR. (4.2)

To see the implications of the symmetries of the square on X
ij

BR, let us consider an arbitrary
abstract tensor T ij . Since the symmetries of the square allow us to exchange zi ↔ zj for any i
and j it is clear that there are only two independent components to T ij depending on whether
i = j or i �= j , which we denote as T = and T �=, respectively. In summary,

T ij =
{
T = i = j

T �= i �= j.
(4.3)

We shall also make use of another definition, ‘T-average’

T̄ := pT = + p(p − 1)T �=

p2
= T = + (p − 1)T �=

p
. (4.4)

Thus there are two kinds of back-reaction. BR= is the one that was computed already
for19 p = 1, while BR �= is novel and will be determined in the following section.

Now we must substitute the perturbation series,

X = λiX
i
GL + λiλjX

ij

BR, (4.5)

into the action and compute the term of O(λ4). Concentrating on the quartic contribution of
the GL modes we find the following generalization:

F4 GL|λ|4 → F
ij

4 GL|λi |2|λj |2 (4.6)

(U(1)p invariance requires the terms to have equal amounts of λi and λ̄i). Similarly, the other
factor in the C formula (2.32), F2(BR) gets generalized as

F2(BR)|λ|4 → F2(BRii , BRjj )|λi |2|λj |2 + F2(BRij , BRij )|λi |2|λj |2 (4.7)

(note that due to orthogonality of harmonics only the 0-harmonic contributes to F2(BRii , BRjj )

with i �= j ).

19 More precisely, for each i, BRii is the mode computed in subsection 3.2 after substituting z → zi .
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Altogether we find that C is replaced by a tensor

C → C(λi) = Cij |λi |2|λj |2

Cij =
{
C= i = j

C �= i �= j.

(4.8)

Determination of the order. Consider C(λi) as it varies over all possible directions in tachyon
space λi . It is enough to consider unit vectors

∑ |λi |2 = 1, and thus the vector |λi |2 varies
over the simplex given by this normalization condition together the inequalities 0 � |λi |2 (and
�1). We shall now show that the range of C(λi) is precisely

C(λi) ∈ [C=, C̄(p)] ⊆ [C=, C �=] (4.9)

C̄(p) := C= + (p − 1)C �=

p
(4.10)

where [a, b] denotes here the interval between a and b irrespective of which one of a, b is
bigger. To see that we compute

C(λi) = Cij |λi |2|λj |2

= C= ∑
|λi |4 + C �=

((∑
|λi |2

)2
−

∑
|λi |4

)
= C �= + (C= − C �=)

∑
|λi |4. (4.11)

Since
∑ |λi |4 ranges precisely over [1/p, 1] (4.9) follows.

The transition is second order if and only if C(λi) is positive for all directions in tachyon
space λi , for otherwise, if there exists a vector λi such that C(λi) < 0 the system will
spontaneously settle on that direction and a first-order transition will ensue. We conclude that
the transition is second order if and only if both

C=, C̄(p) � 0. (4.12)

p-dependence from p = 2. From their definition it is evident that C=, C �= are p-independent.
Actually C= is already known from p = 1

C= = C. (4.13)

Moreover, it suffices to compute C �= for p = 2 where the mixed ij terms appear—the
computation does not change for higher p.

Thus, it remains to determine C �=. Rather than determine it directly we take a somewhat
more physical approach and pick the diagonal direction in λ space, namely

λi = 1√
p

λ (4.14)

independently of i. C(λi) computed along this direction is precisely C̄ defined in (4.10).
Therefore, by computing C̄|p=2 we obtain

C �= = 2C̄|p=2 − C=. (4.15)

The A term in the free energy may be easily generalized as follows:

Aδµ|λ|2 → Aδµλiλ̄i , (4.16)

and on the diagonal direction (4.14) Ā = A.
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The actual computation (at p = 2), which is fully described in the following section,
requires obtaining the mixed term F

�=
4 GL|λ1|2|λ2|2 from substitution into the action, a new

mixed term in F2(BR0), computing the mixed back-reaction term BR �= ≡ BR11, which is in
the (±1,±1) harmonics, and finally substituting it into the quadratic action to obtain F2(BR11).
All the other ingredients were essentially computed already for the p = 1 case.

Micro-canonical ensemble. Having obtained the ‘diagonal’ coefficients C̄ and Ā we can
compute the variation in dimensionless mass η̄ (2.17) along this direction by using (2.18)

η̄1 := −2(d − 3)
C̄

µGLA
+

1

d − 2
µGLA. (4.17)

In fact, we can define a tensor of mass variation η1, as in (4.4). Then, in analogy with what
we had for the tensor C, we have η=

1 ≡ η1|p=1, and recalling (4.15), η
�=
1 = 2η̄1|p=2 − η=

1 . By
analogy with (4.12), the transition will be second order in the canonical ensemble for a given
p exactly when both

η=
1 , η̄1(p) < 0, (4.18)

where as before (4.10) we define η̄1(p) := η=
1

/
p + (p − 1)η

�=
1

/
p.

5. Computation for T2

In this section, we perform the computation for the square 2-torus, so D = d + p with p = 2.
The most general metric consistent with the U(1)t × SO(d − 1)� isometries is

ds2 = f (r) e2A dt2 + f (r)−1 e2B dr2 + Ki dzi dr + Hi dzi dzi + W dz1 dz2 + r2 e2C d�2
d−2

(5.1)

where i = 1, 2. The metric in the (r, �z) space has three gauge degrees of freedom. We fix two
of them by choosing Ki = 0. The remaining degree of freedom will be fixed by considerations
similar to the T1 case.

The square torus has also the following three discrete isometries, which will also be
preserved by our perturbation:

z1 ↔ z2 z1 → −z1 z2 → −z2. (5.2)

First order—marginally tachyonic modes

In the square torus background two GL modes turn marginally tachyonic simultaneously,
resulting in a two-dimensional ‘tachyon space’. In this section, we focus on the diagonal
direction in the ‘tachyon space’, given schematically by λiX

i
GL where

λi = λ. (5.3)

Here, it is convenient for us to use this normalization to compute the back-reaction and turn
to the normalization (4.14), which differs by a

√
2 factor, later when we substitute into the

free energy (which amounts to dividing the quadratic and the quartic coefficients of the free
energy by p = 2 and by p2 = 4, respectively).

As in T1 case we use real λ. The diagonal instability is given explicitly in terms of the
functions a1(r), b1(r), c1(r), h1(r) and the critical constant k ≡ kGL which were found in
subsection 3.1 as follows:

X(r, z) = λx1(r)

2∑
i=1

cos(kzi), (5.4)
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for X = A,B,C and

Hi(r, �z) = λh1(r) cos(kzi), W = 0. (5.5)

Clearly, because of the symmetry between the tachyons along the torus edges only a single
function h1(r) is used for both i, and actually the relation z1 ↔ z2 ⇒ H1 ↔ H2 will hold
throughout the perturbation, so essentially the H reduce to a single function. Note that the
discrete square symmetries (5.2) are indeed preserved by the perturbation.

As expected, after plugging the expansions into the Einstein equations, the equations for
different i completely decouple. Besides, the gauge conditions and the equations are identical
for every i and they coincide with those derived in the T1 case, see (3.6)–(3.8). The upshot is
that the first-order computation in the T2 (Tp in fact) case is essentially identical with T1.

Back-reaction

The form of the back-reaction sources can be roughly obtained by squaring the linear order
expansions (5.4) and (5.5). In addition, a mixed W term, which was absent in the T1 case,
becomes possible.

Massless zero modes

The expansion here is essentially the same as for T1.

X(r, �z) = 2λ2x0(r), H1 = H2 = λ2h0(r), W = 0, (5.6)

where X = A,B,C and the p = 2 factor comes from summing over the back-reaction zero
modes for all i. The vanishing of W is dictated by the square symmetries (5.2).

To confirm this form we proceed as follows. We use the gauge (3.12). The ODEs obtained
after substituting the above expansion into the Einstein equations are given by (A.1), (A.2).
The equations differ from the T1 case only by the appearance of the factor p = 2 that multiplies
the sources in (A.2). As a result, h0(r) is unchanged while a0 and c0 are modified—multiplied
by p = 2 relative to T1 solutions. Indeed, that was the reason that we introduced the factor of
2 in (5.6).

Massive second harmonic modes

The treatment of these modes replicates the one we had for p = 1. The obvious expansions,

X(r, �z) = λ2x2(r)

2∑
i=1

cos(2kzi), (5.7)

for X = A,B,C, and

Hi(r, �z) = λ2h2(r) cos(2kzi), W = 0, (5.8)

yield exactly the same equations as for the 1-torus (A.7). So nothing new needs to be solved.

Massive mixed modes

This is the longest section here, for these modes are the only new ones that were not discussed
in the T1 section.

The only mixed modes expansions allowed by the symmetries (5.2) are

X(r, �z) = λ2x11(r) cos(kz1) cos(kz2), (5.9)

for X = A,B,C,H , and

W(r, �z) = λ2w11(r) sin(kz1) sin(kz2). (5.10)
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Plugging this into the Einstein equations we examine the constraints Rrzi
= 0 which take the

form

b11 − 2(d − 2)c11f + ra11f
′

2(d − 2)f + rf ′ − 2(d − 1)

d − 2

rf a1a
′
1

[2(d − 2)f + rf ′]

− 2rf (2f − rf ′)a1h
′
1

[2(d − 2)f + rf ′]2 − f r[2h′
11 + w′

11 + 2a′
11 + 2(d − 2)c′

11]

2(d − 2)f + rf ′ = 0. (5.11)

As usual, this equation instructs us how to choose the gauge and we take

b11 = 2 (d − 2) c11f + ra11f
′

2(d − 2)f + rf ′ +
2 (d − 1) rf a1a

′
1

(d − 2) [2(d − 2)f + rf ′]
+

2rf
(
2f − rf ′) a1h

′
1

[2 (d − 2) f + rf ′]2 . (5.12)

This gauge is consistent with our basic choice (3.4) which at this order only gets modified by
adding sources from lower orders.

Now (5.11) reduces to

2h′
11 + w′

11 + 2a′
11 + 2(d − 2)c′

11 = 0

which we solve for h11

h11 = − 1
2 [w11 + 2a11 + 2(d − 2)c11] , (5.13)

where the asymptotic boundary conditions are used to eliminate the integration constant.
The rest of the equations are given by (A.11). Their schematic form is

Ea(a
′′
11, a

′
11, c

′
11, a11, c11) = Src(a1, a

′
1, h1, h

′
1)

Ec(c
′′
11, c

′
11, a

′
11, c11, a11) = Src(a1, a

′
1, h1, h

′
1) (5.14)

r−(d−2)(rd−2f w′
11)

′ = Src(a1, a
′
1, h

′
1; a11, c11).

These equations are only partially coupled and can be further separated. The first two do not
involve w11 and moreover one gets a decoupled equation for a11 − c11. Having solved it, we
proceed to solve first for a11 + c11 and then for w11 where at each step earlier solutions appear
as sources.

The equations are subject to the horizon boundary conditions (A.13) and asymptotically
they must vanish. We shoot to solve the equations, and the values of the shooting parameters
are given in table 7. Finally, the constraint (A.14) is verified to be satisfied.

Free energy and thermodynamics

In the rest of this section we change the normalization from (5.3) to (4.14).
The quadratic term in the free energy expansion remains unchanged relative to the T1

case: Ap=2 = Ā = Ap=1.
We turn to the quartic term

C̄ = F4 GL − [F2(BR0) + F2(BR2) + F2(BR11)]. (5.15)

We can figure out which additional terms appear in the zero-mode contribution for T2 relative
to T1:

F2(BR0)|p=2 = F2(BR0)|p=1 − 1

2

∫ ∞

1
rd−2h′

0
2 dr. (5.16)

The second harmonic contribution requires only a p-dependent factor (division by p = 2)

F2(BR2)
∣∣
p=2 = 1

2F2(BR2)
∣∣
p=1. (5.17)

The mixed modes term, F2(BR11), is new, and likewise there is a new contribution to F4 GL. It is
straightforward to substitute the expansions (5.9), ( 5.10) into the action integral (remembering
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Table 4. The non-trivial coefficients of the free energy expansions for T2. The rest of the
coefficients are found using the fact that A is unchanged relative to T1 case, equation (5.17) and
table 2.

d 4 5 6 7 8 9 10 11 12 13 14

C̄ −0.441 −1.27 −2.28 −3.24 −3.76 −3.30 −1.23 3.17 10.9 23.2 40.6
F4 GL 0.2869 2.403 9.864 28.97 69.59 145.9 277.5 489.4 813.9 1290 1967
F2(BR0) 0.2775 0.8456 1.130 −0.2807 −5.992 −19.99 −48.14 −98.35 −180.7 −307.8 −495.4
F2(BR11) 0.4023 2.377 9.121 26.76 65.24 30.57 59.29 478.2 804.0 1287 1977

Table 5. Components of the tensor C (4.8) that determines the order of the phase transition in the
canonical ensemble.

d 4 5 6 7 8 9 10 11 12 13 14

C̄p=2 −0.441 −1.27 −2.28 −3.24 −3.76 −3.30 −1.23 3.17 10.9 23.2 40.6
C= −0.403 −1.39 −2.99 −5.03 −7.07 −8.47 −8.30 −5.27 1.97 15.0 35.7
C �= −0.481 −1.14 −1.57 −1.44 −0.453 1.87 5.83 11.6 19.9 31.3 45.5

Table 6. Components of the tensor η1 (2.17) that defines the dimensionless mass variation (see
definition at the end of section 4) which determines the order of the phase transition in the micro-
canonical ensemble.

d 4 5 6 7 8 9 10 11 12 13 14

η̄1,p=2 1.49 2.81 3.89 4.65 5.02 4.84 3.99 2.40 −0.125 −3.73 −8.42
η=

1 1.40 3.00 4.68 6.21 7.36 7.93 7.68 6.29 3.56 −0.695 −6.76

η
�=
1 1.58 2.62 3.09 3.10 2.68 1.76 0.299 −1.48 −3.81 −6.77 −10.1

to divide by 4 due to change of normalization). The resulting expressions are cumbersome
and not particularly illuminating; we omit their explicit form.

The numerical values of the various terms in (5.15) are recorded in table 4.

p-dependence

Table 5 summarizes our results for the C tensor. For the various values of d, the number of
extended dimensions, we give C ≡ C= which is the p = 1 value, together with C̄|p=2. From
these we determine C �= using (4.15). C �= allows us to extend the results to any p by computing
C̄(p) from (4.10), which in turn determines the order of the transition in the canonical ensemble
through (4.12).

For the micro-canonical ensemble C is replaced by the η1 tensor, and table 6 summarizes
the results, which were obtained through the use of (2.18), ( 4.17). The condition for a
second-order transition is given in (4.18).

6. Discussion of implications

We demonstrated that the Landau–Ginzburg-inspired method to compute the order is somewhat
simpler than the previous one and gives the same results (tables 2 and 3). In addition, we
analysed the order of the Gregory–Laflamme transition for (square) torii compactifications.
The main results are summarized in tables 4–6 and we now proceed to discuss their
implications.
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Transition order is independent of p. A necessary condition for a second-order phase transition
is 0 < C= ≡ C (4.12). Therefore, for all D < D∗

can ≡ 12.5, where the transition is first order
for p = 1 (namely C < 0), it is first order for all p.

From table 5 we find that the converse it true as well. For d > D∗
can − 1 = 11.5 where

C > 0 then also C �= > 0 and therefore from (4.10) also C̄(p) > 0 for all p, and hence the
transition is second order in this range of d for all p.

Altogether we conclude that the transition order depends only on d, the number of extended
dimensions, and not on p, the dimension of Tp. It would be interesting to know whether this
property holds for a general compactification manifold, Yp.

Failure of the ‘equal-entropy for the equal-mass estimators’. Our original motivation for
exploring the phase transition order in torus compactification arose after observing in [9]
that the ‘equal-entropy for equal-mass’ estimator indicates lower critical dimension for some
higher-dimensional torii (lower than the p = 1 value of D∗ = ‘13.5′). In fact, this argument
gave an encouraging value of ‘10’ for Tp with 3 � p � 6. However, as just noted the critical
dimension cannot be lowered, and here we explain why the estimator failed.

We shall now show that the estimator is strongly sensitive to the approximation error
which is inherently built into it. In fact, an approximation error in the per cent and sub
per cent level will even cancel the prediction of a critical dimension altogether. In other
words, it turns out that the estimates of [9] carry unusually large error bars, which resolve the
puzzle.

The estimator is constructed by comparing entropies of a uniform black brane and of
a localized black hole with the same mass. The idea is that if entropy equality is achieved
below the critical mass this may indicate that the phase transition between these objects is
second order since a new non-uniform branch emerging from the GL point is likely to exist
and to connect between the branches. The dimension (not necessarily integer) for which
the ‘equal-entropy mass’ coincides with the instability mass estimates the critical dimension.
This is only an estimate because the entropy of a localized solution is approximated in this
approach by a naive Schwarzschild value. This reasoning worked remarkably well in the T1

compactification [3], producing a fairly precise estimate of D∗.
However, the Schwarzschild formula is only an approximation to the localized black

hole entropy, hence we use Sbh(η) = SSchw(η)(1 + ε), to model the modified expression.
Perturbation theory [20, 21] and numerical results [22, 23] indicate that the entropy of a
localized black hole is higher than that of a Schwarzschild black hole and hence we must
take ε > 0.

Solving for η we get

ηS(ε) = 1

16π

[
�D−3

d−2

�d−3
D−2

(d − 2)(D−3)(d−2)

(D − 2)(D−2)(d−3)

]1/p

(1 + ε)(D−3)(d−3)/p. (6.1)

To find the estimate for the critical dimension, D̃∗, we compare this with the critical mass,
which is well approximated by the formula [3], ηc(D, p) = ηc(D −p) = 0.47 × 0.686D−p+1.
Exploring the resulting dependence of this estimate on ε shows that D̃∗ increases fast as it
grows. For example, in a p = 1 case, while for ε = 0 one has D̃∗ � 12.5, taking ε = 0.002
results in D̃∗ � 16, and ε > 0.003 does not have a critical dimension at all. The situation is
similar for other p’s and for p = 6, ε � 0.08 suffices20 to send D̃∗ → ∞.

20 We see that ε grows as p increases. This can be attributed to the fact [24] that for a given d the corrections to
Schwarzschild entropy is larger for larger p. We thank Dan Gorbonos for sharing his unpublished results regarding
small mass corrections for caged black holes in Tp compactifications.
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In conclusion, there is no contradiction between our present results and the estimate due
to the sensitivity of the latter to the actual value of the entropy of the localized phase.

Subtle spontaneous symmetry breaking. Examination of table 5 reveals that for all21

d > 4C̄|p=2 > C therefore the diagonal direction in tachyon space is disfavoured relative
to turning on a ‘single tachyon’, namely a tachyon which depends only on a single zi . We
interpret that to mean that the discrete symmetries of the torus are spontaneously broken: for
a first-order decay the time evolution will proceed (at least initially) through a single tachyon,
while for a second-order transition the system will re-settle into a slightly non-uniform string
where mostly a single tachyon is turned on. This makes sense if we recall that the square torus
is a special torus, and for all nearly square torii the degeneracy of the GL modes is removed
anyway (see section 4).

Micro-canonical ensemble. From table 6 we find that the behaviour in the micro-canonical
ensemble is similar to the case of the canonical ensemble (except for the known change in
the critical dimension). Since η

�=
1 < η=

1 for all d > 4 in our table, then η=
1 alone determines

the order of the phase transition, and the order is independent of p (for all d). Moreover, as
discussed in the previous paragraph we conclude that a single tachyon is preferred over the
diagonal direction through spontaneous symmetry breaking (for all d > 4).
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Appendix A. Second-order perturbation equations

Here we give the full back-reaction equations for each harmonic, including the full expressions
for the sources.

Zero modes

First, we solve the equation for h0

1

rd−2
(rd−2f h′

0)
′ =

(
k2h1

2f
+

2(d − 1)(d − 3)f ′a′
1

[2(d − 2)f + rf ′]2

)
2f − rf ′

2(d − 2)f + rf ′ a1

− 4(d − 1)2(d − 3)2f ′

[2(d − 2)f + rf ′]4 a2
1 − k2[4(d − 2)f [(d2 − 3d + 1)f + drf ′] + r2f ′2]

2(d − 2)f [2(d − 2)f + rf ′]2 a2
1 .

(A.1)

Then, the equations for a0 and c0 are solved

a′′
0 +

2(d − 2)2f 2 + 4(d − 2)rff ′ + r2f ′2

rf [2(d − 2)f + rf ′]
a′

0 +
(d − 2)f ′[2(d − 3)f + rf ′]

2f [2(d − 2)f + rf ′]
c′

0

+
(d − 2)(d − 3)f ′2

f [2(d − 2)f + rf ′]2 (a0 − c0) = Srca0 ,

21 The case d = 4 is marginal. The numerical values of C̄|p=2, C are close enough, such that if both of them had a
5% numerical error (see discussion in section 5.3) the inequality would hold for d = 4 as well.
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c′′
0 +

2(d − 2)(2d − 5)f 2 + 4(d − 2)rff ′ + r2f ′2

rf [2(d − 2)f + rf ′]
c′

0 +
2(d − 2)

r[2(d − 2)f + rf ′]
a′

0

− 2f ′[(d − 2)(d − 3)f 2 + (2d − 5)rff ′ + r2f ′2]

rf [2(d − 2)f + rf ′]2 (a0 − c0) = Srcc0 , (A.2)

where the sources are given by

Srca0 = k2(rf ′ − 2f )a2
1

2f [2(d − 2)f + rf ′]
−

[
k2h1

2f
+

2 (d − 1) (d − 3) f ′a1
′

[2(d − 2)f + rf ′]2

]
a1 − f ′h′

0

2f
, (A.3)

Srcc0 =
[

k2h1

2(d − 2)f
+

2(d − 1)(d − 3)f ′a1
′

(d − 2)[2(d − 2)f + rf ′]2

]
a1 − h′

0

r

+
2(d − 1)2(d − 3)f ′2 + (d − 2)(2f − rf ′)

[
2 (d − 2) f + rf ′] k2

2(d − 2)2f [2(d − 2)f + rf ′]2 a2
1 . (A.4)

The above equations are subject to regularity boundary conditions at the horizon

h′
0 = −k2a1(a1 + (d − 2)h1)

2(d − 2)(d − 3)
,

a′
0 = −2(d − 2)(a0 − c0) +

3k2a1(a1 − h1)

4(d − 3)
− (d − 1)2a2

1 + (d − 2)h′
0

2(d − 2)
,

c′
0 = 2(a0 − c0) − k2a1(a1 − h1)

2(d − 2)(d − 3)
+

(d − 1)2a2
1

(d − 2)2
,

(A.5)

where both the functions and their derivatives are evaluated at r = r0. In addition, there is a
constraint

2(d − 2)f a0
′ + (d − 2)c0

′[2(d − 3)f + rf ′]

− 2(d − 3)(d − 2)(a0 − c0)f
′

2(d − 2)f + rf ′ + (2(d − 2)f + rf ′)h0
′

+

(
(d − 1)k2r

2(d − 2)
− (d − 3)(d − 1)2rf ′2

(d − 2)(2(d − 2)f + rf ′)2

)
a1

2 − (d − 1) rf a′
1

2

2 (d − 2)
= 0.

(A.6)

Second harmonic

The relevant equations are

f a′′
2 +

(d − 2)f + rf ′

r
a′

2 +

[
−4k2 +

2(d − 1)(d − 3)f ′2

[2 (d − 2) f + rf ′]2

]
a2 = Srca2 ,

1

rd−2
(rd−2f h′

2)
′ = Srch2 . (A.7)

The sources read

Srca2 = −3

[
(d − 1)(d − 3)ff ′a′

1

[2(d − 2)f + rf ′]2 +
1

2
h1k

2

]
a1

−
[

(d − 1)2(d − 3)rf ′3

(d − 2) [2 (d − 2) f + rf ′]3 +
3k2(2f − rf ′)

2 [2 (d − 2) f + rf ′]

]
a2

1,
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Srch2 = 2(d − 1)(d − 3)ff ′(2f − rf ′)a′
1a1

[2 (d − 2) f + rf ′]3 − 3(d − 2)k2h1a1

+
4k2(d − 1)rf a′

1

[2(d − 2)f + rf ′]
a1 +

4(d − 3)2(d − 1)2ff ′2

[2(d − 2)f + rf ′]4 a2
1

−
[
k2(4(d − 2)f [(d2 − 3d + 5)f + (d − 4)rf ′] + (4d − 7)r2f ′2)

[2(d − 2)f + rf ′]2

]
a2

1

+ 4k2 2f − rf ′

2(d − 2)f + rf ′ a2. (A.8)

These equations are subject to regularity boundary conditions at the horizon

a′
2 = −2

(
d − 1 − 2k2

d − 3

)
a2 +

[
(d − 1)2

d − 2
− 3k2

2(d − 3)

]
a2

1 +
3k2a1h1

2(d − 3)
,

h′
2 = 8(d − 2)a2 + a1 [(4d − 7)a1 − 3(d − 2)h1]

2(d − 2)(d − 3)
k2,

(A.9)

where both the functions and their derivatives are computed at r = r0.
The constraint is

h′
2 +

a′
2(2f − rf ′)

2(d − 2)f + rf ′ +
2(d − 3)(d − 1)f ′a2

(2(d − 2)f + rf ′)2

− (d − 1)(d − 3)f a1a
′
1

(2(d − 2)f + rf ′)2 − (d − 1)rf a′
1

2

2(d − 2)(2(d − 2)f + rf ′)

−
[

(d − 3) (d − 1)2rf ′2

(d − 2) (2(d − 2)f + rf ′)3 +
(d − 1) k2r

2(d − 2) (2(d − 2)f + rf ′)

]
a2

1 = 0.

(A.10)

Mixed modes

The mixed modes back-reaction appears in the Tp calculation starting from p = 2. The
perturbations are governed by the equations

f a′′
11 +

(d − 2)f + rf ′

r
a′

11 − 2k2a11 +
2(d − 2)(d − 3)f ′2

[2(d − 2)f + rf ′]2 (a11 − c11) + Srca11 = 0,

f c′′
11 +

(d − 2)f + rf ′

r
c′

11 − 2k2c11 − 2(d − 3)f ′2

[2(d − 2)f + rf ′]2 (a11 − c11) + Srcc11 = 0,

f w′′
11 +

(d − 2)f + rf ′

r
w′

11 + Srcw11 = 0,

(A.11)

where

Srca11 = 4(d − 1)2f ′2(−2(d − 3)(d − 2)f 2 − (d − 1)rf ′f + r2f ′2)
(d − 2)(2(d − 2)f + rf ′)3

a2
1

+
k2(4(d − 2)f (8(d − 2)2f 2 − (5d2 − 27d + 33)rf ′f − 5(d − 2)r2f ′2))

(d − 2)(2(d − 2)f + rf ′)3
a2

1

− (4d − 7)r3f ′3

(d − 2)(2(d − 2)f + rf ′)3
a2

1 +
4(d − 1)ff ′

2(d − 2)f + rf ′ a
′
1a1 +

2f (2f − rf ′)
2(d − 2)f + rf ′ a

′2
1

+
2f (4(d − 2)(2d2 − 5d + 1)f 2 + (5d2 − 6d − 7)rf ′f − (d − 3)r2f ′2)f ′

(2(d − 2)f + rf ′)3
h′

1a1
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− rff ′

2(d − 2)f + rf ′ h
′2
1 +

f (3r2f ′2 + 2f (4f (d − 2)2 + (4d − 9)rf ′))
(2(d − 2)f + rf ′)2

a′
1h

′
1,

Srcc11 = 4(d − 1)2f ′2(2(d − 3)(d − 2)f 2 + (d − 1)rf ′f − r2f ′2)
(d − 2)2(2(d − 2)f + rf ′)3

a2
1

+
2k2(2(d − 2)r3f ′3 + (2 − d)(4(d − 2)f 2((d2 + d − 7)f + (8 − d)rf ′)))

(d − 2)2(2(d − 2)f + rf ′)3
a2

1

− (8d − 21)r2ff ′2

(d − 2)2(2(d − 2)f + rf ′)3
a2

1 − 4(d − 1)ff ′

(d − 2)(2(d − 2)f + rf ′)
a′

1a1

− 4f ((d − 2)(5d2 − 14d + 5)f 2 + 4(d − 2)drf ′f + r2f ′2)f ′

(d − 2)(2(d − 2)f + rf ′)3
h′

1a1

− 2f 2

2(d − 2)f + rf ′ h
′2
1 − 2f (r2f ′2 + (d − 2)f (2(2d − 3)f + 3rf ′))

(d − 2)(2(d − 2)f + rf ′)2
a′

1h
′
1

+
2f (rf ′ − 2f )

(d − 2)(2(d − 2)f + rf ′)
a′2

1 ,

Srcw11 = 2(d − 2)c11

(
1 +

2f

2(d − 2)f + rf ′

)
k2 + 4a11

(
1 − (d − 2)f

2(d − 2)f + rf ′

)
k2

+
2[(2d − 3)r2f ′2 + 4(d − 2)f ([d2 − 3d + 3]f + (d − 2)rf ′)]k2

(d − 2) (2(d − 2)f + rf ′)2 a2
1

+ 4

[
(d − 1)rf

(d − 2) (2(d − 2)f + rf ′)
a′

1a1 − rf
(
rf ′ − 2f

)
[2(d − 2)f + rf ′]2 h′

1a1

]
k2. (A.12)

The horizon boundary conditions for these equations are given by

a′
11 = [(4d − 7)k2 − 4(d − 3)(d − 1)2]a2

1 + 2(d − 2)[(k2 − (d − 5)d − 6)a11]

(d − 3)(d − 2)
+ c11,

c′
11 = 2

d − 3

(
2[(d − 3)(d − 1)2 − (d − 2)k2]a2

1

(d − 2)2
+ (k2 − d + 3)c11

)
+ a11,

w′
11 = −2k2

[
(2d − 3)a2

1 + (d − 2)(2a11 + (d − 2)c11)
]

(d − 3)(d − 2)
,

(A.13)

where the functions and the derivatives are evaluated at r = r0.
Finally, the constraint for the mixed modes reads

w′
11 +

2[(d − 2)f + rf ′]a′
11

2(d − 2)f + rf ′ +
(d − 2)[2(d − 1)f + rf ′]c′

11

2(d − 2)f + rf ′ +
2(d − 3)(d − 2)f ′(a11 − c11)

(2(d − 2)f + rf ′)2

+
2(d − 1)rf a′

1
2

(d − 2)(2(d − 2)f + rf ′)
+

4(d − 3)(d − 1)f a1a
′
1

(2(d − 2)f + rf ′)2
− 2rf h′

1
2

2(d − 2)f + rf ′

− 4(d − 2)f (−2(d − 3)f 2 + (d − 5)rf ′f + r2f ′2)a1h
′
1

(2(d − 2)f + rf ′)3

+
4(d − 3)(d − 1)2rf ′2a2

1

(d − 2)(2(d − 2)f + rf ′)3
= 0. (A.14)
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Table 7. The shooting parameters in various dimensions. We assume here that the normalization
for any p is same as for T1. The last three lines appear only for torii Tp with p � 2.

d 4 5 6 7 8 9 10 11 12 13 14

h1(1) 0.434 0.496 0.532 0.560 0.576 0.595 0.604 0.613 0.620 0.627 0.631
h0(1) 0.796 1.01 1.24 1.48 1.73 1.96 2.21 2.46 2.71 2.95 3.21
a0(1) −0.232 0.015 0.506 1.24 2.23 3.46 4.95 6.68 8.68 10.9 13.4
c0(1) −0.730 −0.921 −1.14 −1.38 −1.62 −1.86 −2.11 −2.36 −2.60 −2.85 −3.10
a2(1) −0.40 0.690 1.11 1.66 2.37 3.22 4.22 5.43 6.76 8.26 9.93
h2(1) −0.812 −1.22 −1.65 −2.09 −2.54 −2.99 −3.46 −3.89 −4.38 −4.84 −5.47
a11(1) 5.28 7.74 10.2 12.5 14.8 17.1 19.8 22.2 24.7 27.1 29.6
c11(1) −2.96 −2.92 −2.90 −2.88 −2.86 −2.84 −2.88 −2.89 −2.89 −2.90 −2.90
w11(1) 2.96 4.01 5.04 6.04 7.03 8.01 9.08 10.1 11.0 12.1 13.1

Appendix B. Numerical issues and shooting parameters

In this appendix, we give some details regarding our numerical implementation and describe
several tests that demonstrate its robustness. In addition, we summarize the numerical values
of the shooting parameters in table 7.

The ODEs encountered in this paper must be solved between the horizon and infinity,
r ∈ [r0,∞). However, in practice we solve the equations only for r ∈ [r0 + ε, rmax], where
ε � r0 and rmax is some finite number. The first boundary is taken slightly outside r0 because
the equations become singular at the horizon. To get the correct boundary conditions at
this point, we Taylor expand our functions to the third order about the horizon and find the
expansion coefficients analytically by plugging the expansion into the equations. This enables
us to compute the functions and their derivatives at rmin = r0 + ε. We checked that the
meaningful numbers cited in this paper are independent of ε (with better than 0.1% precision)
provided ε � 10−4. As for the outer boundary, its location is determined by the ‘empirical
formula’, rmax(d) � 18 − d in the range 4 � d � 14. Here too the meaningful numbers
undergo less than 0.1% variations when we tried larger rmax.

In our shooting routines, we integrate the equations from rmin, where one of the boundary
conditions (b.c.) is used, towards rmax where we attempt to satisfy the asymptotic b.c. For
k �= 0, this integration will in general diverge when rmax → ∞ since both the decaying and
the growing solutions are present22. Only for a specific value of the shooting parameter the
growing solution is eliminated, the integration converges and asymptotic b.c. is satisfied. Our
method to filter out this growing solution follows that of Gubser [2]: we use the integral of
|x(r)|2 near the outer boundary, where x(r) is the mode we are solving for, as an indicator for
how well the asymptotic b.c. is satisfied (for the true solution this integral must be negligible).
The shooting and matching procedure is thus reduces to a minimization of that integral.

The situation is different for the zero modes, as for them a finite solution exists regardless
of the value of the shooting parameters. In this case, we demand that the solution vanishes
asymptotically. This is easily accomplished for h0, for which ‘the second shot hits’. However,
as described in section 3.2, the procedure should be iterated to make a0 and c0 vanish
asymptotically. Moreover, because of the relatively slow power-law decay the location of
the outer boundary at rmax, given by the above empirical formula, is insufficient to ensure this
asymptotic vanishing accurately enough. So, in practice, after integrating equations (A.2) to
rmax we set the sources to zero (since they decay exponentially and are already very small)

22 For a finite rmax, the result of this integration is a finite number that grows roughly exponentially with rmax.
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and continue to integrate to some large rasymp (taken to be an order of magnitude larger than
rmax.) In the vicinity of rasymp, we fit the solutions by expressions of the form a∞ +α/rd−2 and
c∞ + γ /rd−2, which is the correct analytic behaviour in the asymptotic region [18]. Then we
compute � = |c∞|+ |a∞|, which is an effective measure for how well the boundary conditions
are satisfied. To minimize �, we iterate until � decreases below a certain tolerance.

The numerical values of all shooting parameters appearing in this paper are listed in
table 7.

As soon as the solutions are obtained, one must ensure that the constraints (3.8), (A.6),
(A.10) and (A.14) are satisfied by these solutions. In our case, we verified that the constraints
are satisfied with better than 0.1% precision. This together with other tests described above
gives an idea of the numerical accuracy of our method.
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