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Abstract In this pedagogically structured article, we describe a generalized har-
monic (GH) formulation of the Einstein equations in spherical symmetry which is
regular at the origin. The GH approach has attracted significant attention in numeri-
cal relativity over the past few years, especially as applied to the problem of binary
inspiral and merger. A key issue when using the technique is the choice of the gauge
source functions, and recent work has provided several prescriptions for gauge drivers
designed to evolve these functions in a controlled way. We numerically investigate the
parameter spaces of some of these drivers in the context of fully non-linear collapse
of a real, massless scalar field, and determine nearly optimal parameter settings for
specific situations. Surprisingly, we find that many of the drivers that perform well
in 3+1 calculations that use Cartesian coordinates, are considerably less effective in
spherical symmetry, where some of them are, in fact, unstable.

Keywords Numerical relativity · Hyperbolic formulation · Gravitational collapse

1 Introduction

Solving Einstein equations numerically is a notoriously difficult task. After many
years of research, several well-posed formulations of the Einstein equations have been

E. Sorkin (B)
Max-Planck Institute for Gravitational Physics, Albert Einstein Institute,
Am Muehlenberg 1, 14476 Golm, Germany
e-mail: evgeny@aei.mpg.de

M. W. Choptuik
Department of Physics and Astronomy, CIFAR Cosmology and Gravity Program,
University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
e-mail: choptuik@physics.ubc.ca

123



E. Sorkin, M. W. Choptuik

proposed and tested. These include constrained Arnowitt–Deser–Misner (ADM) [1,2],
hyperbolic Baumgarte–Shapiro–Shibata–Nakamura (BSSN) [3,4] and characteristic
evolution [5], just to name a few: we refer the reader to [6–8] for reviews of these and
other approaches. Among the ingredients that are key to the success of any particular
formulation are (1) an appropriate choice of dynamic variables that results in a well-
posed system, and (2) a choice of coordinates that remain regular during the course
of the evolution. In this paper we focus on a specific well-posed approach known as
the generalized harmonic (GH) formulation. This form of the Einstein equations has
recently attracted significant attention in the numerical relativity community, in large
part because of its use in obtaining the first long-term evolution of binary black-hole
inspiral and merger [9–11].

In essence, the GH approach is a way to write the field equations such that the
resulting system is manifestly hyperbolic, taking the form of a set of quasi-linear
wave equations for the metric components. The basic idea underlying the strategy has
a long and distinguished history: specifically, the use of harmonic coordinates has
been instrumental in establishing many fundamental results in general relativity (GR)
including the characteristic structure of the theory [12], and the well-posedeness of the
Cauchy problem for Einstein’s equations [13,14]. However, from the computational
point of view, harmonic gauge1 can be too restrictive, and numerical implementations
using it may develop coordinate pathologies, as described, for instance, in [15,16].
More recently, it was realized by Friedrich [17], and independently by Garfinkle [18],
that much of the coordinate freedom apparently lost by the specific choice of harmonic
gauge could be regained through the introduction of certain gauge source functions,
while at the same time maintaining the desirable property of strong hyperbolicity
of the field equations. In fact, the source functions can be thought of as representing
the coordinate freedom of the Einstein equations, and when constructing solutions of
the equations, via an initial value approach, for example, they must be completely
specified in some fashion.

Following Garfinkle’s pioneering use of the GH approach in his study of generic
singularity formulation in cosmologies with scalar field matter [18], the technique was
successfully employed by Pretorius [9–11], and subsequently by others [19–21], for
simulations of binary black hole coalescence. However, the total number of physical
scenarios studied so far using the GH approach is limited, and there is an argument to
be made for a more systematic exploration of the method’s potential. This is especially
the case given the relative lack of proven prescriptions for choosing the gauge func-
tions appropriately in instances where the gravitational field is highly nonlinear and
dynamic. Moreover, in order to expedite experimentation with the approach, we feel
that it is useful to start with systems with a high degree of symmetry. Restriction to
highly symmetric spacetimes reduces the effective spatial dimensionality of the partial
differential equations that must be solved, yields algebraically simpler equations, and,
overall, leads to enormous savings in the computational resources required to simulate
a single spacetime. This in turn allows for much more detailed and thorough surveys

1 In this paper “gauge” means “coordinate choice”, and we use both expressions interchangeably.
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of the multi-dimensional parameter spaces that typically arise from a given choice of
gauge functions.

In this paper, then, we focus on the application of the GH approach to the problem
of gravitational collapse in spherically symmetric D-dimensional spacetime. Even
with the restriction to spherical symmetry, we find that the strong-field aspects of
the collapse process present significant challenges regarding the choice of the gauge
functions. Ironically, some of these challenges may in fact be related to the symmetry
restriction itself. As usual, in situations where a black hole forms, care must be taken
to avoid the central singularity. This can be done through the use of singularity-avoid-
ing coordinates, by excising the singularity from the computational domain, or with
a combination of both strategies. Within the context of the GH formulation any such
strategy must also be preserve the strong hyperbolicity of the field equations.

Although we view our study of the GH approach for spherically symmetric col-
lapse as interesting in its own right, a primary goal of this research is to prepare for an
investigation of axially symmetric systems using an analogous formulation. We thus
consider our spherically-symmetric set up as a valuable toy model for the phenome-
nologically richer axisymmetric situation. In both cases it is natural to use coordinates
in which the symmetries of the spacetime are explicit. These coordinates, however,
are formally singular: at the origin in spherical symmetry, and on the axis in axial
symmetry. Thus, in both instances the field equations have to be regularized in numer-
ical implementations, and one of the results of our work is a regularization procedure
that is compatible with the GH approach. Moreover, we expect that the experience
gained from our spherically symmetric calculations concerning how to choose gauge
source functions will also prove useful for the more general case of axisymmetric
computations.

In order to maximize the usefulness of this paper to other researchers interested
in experimenting with the GH approach, we have attempted to make the following
presentation reasonably self-contained and pedagogical in nature. We thus begin in
Sect. 2 with a brief presentation of the basic GH formulae in full generality, along
with a discussion of the constraint equations. Although the constraints are consis-
tently preserved by the GH evolution equations in the continuum limit, in numerical
calculations at finite resolution, deviations from the constraints generically develop. In
order to maintain stability these deviations must be damped and we describe a method
that effectively achieves this damping. Section 3 is devoted to a detailed discussion
of coordinate conditions. One key issue that we consider is the non-trivial problem
of prescribing the GH source functions to mimic some of the more popular and suc-
cessful coordinate conditions that have historically been used in numerical relativity
calculations. Following recent proposals [10,11,19,20] we describe the formulation
of the gauge conditions as hyperbolic evolution equations: is this approach the gauge
functions are evolved, or “driven”, to desired targets in a controlled way, rather than
being fixed instantly.

In Sect. 4 we adapt the GH formulae to the case of asymptotically flat, spherically
symmetric configurations in D spacetime dimensions. We derive the field equations,
cast them into a form suitable for numerical solution, discuss initial and boundary
conditions, and regularize the singular origin by introducing a new variable. Since we
use spherical coordinates adopted to the symmetry, the GH source functions appear to
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diverge at the origin as 1/r . Hence, we regularize these functions as well by subtract-
ing off the singular contribution that appears in the flat spacetime limit. The operators
that appear in the various gauge drivers then act on the regularized source functions.

In order to endow our model with non-trivial dynamics, we introduce a minimally
coupled, real, massless scalar field. The initial distribution of the scalar matter is freely
specified and our results are grouped according to the “strength” of the initial data.
In each case we simulate the time evolution of a single Gaussian pulse of scalar field
that is initially centered at the origin. The weak and the intermediate data correspond
to the dispersion of relatively dilute pulses, while a typical strong data configuration
collapses to form a black hole or nearly does so.

Mathematically, the task of treating the coupled Einstein-scalar system involves the
solution of a set of several quasi-linear wave equations. (Here we note that some of
the gauge drivers involve auxiliary variables that obey first-order-in-time differential
equations.) Our numerical approach to solving this system using finite difference tech-
niques is detailed in Sect. 5. We compactify the spatial (radial) dimension into a finite
region and cover it by a discrete lattice. This allows us to include spatial infinity on the
finite difference mesh, which has the advantage of enabling us to set exact boundary
conditions corresponding to asymptotic flatness. Following [9,10] we directly dis-
cretize the second-order-in time-wave-equations on the mesh, and use a point-wise
Gauss-Seidel relaxation method to update the discrete unknowns at each time step.
In order to damp high-frequency components of the numerical solution—which can
generically lead to instabilities—we incorporate explicit dissipation of the Kreiss–
Oliger type [33] This dissipation is also essential for attenuating spurious reflections
from the outer region of the compactified domain that would otherwise quickly con-
taminate the solution in the interior (i.e. near the origin).

For the case of black hole formation we have investigated both of the approaches
mentioned above for avoiding the central physical singularity. On the one hand, we
have implemented an excision technique, in which an excision surface is chosen so that
all characteristics on it are pointing inwards, obviating the need for explicit boundary
conditions for the evolution equations. On the other hand, we have also experimented
with the use of singularity avoiding slicing conditions, that “freeze” the evolution in
the strong curvature regions. However, we find that in our case the calculations using
singularity-avoiding slicings tend not to run as long as those with excision and appear
to crash prematurely due to numerical errors that build up in the strong curvature
regions.

Section 6 is devoted to a discussion of our detailed investigation of the performance
of several coordinate conditions as applied to calculations involving various strengths
of initial data. As already mentioned, the parameter spaces associated with many of
the gauge drivers that we consider here are multidimensional. Thus, even with the sig-
nificant reduction in needed computational resources that the restriction to spherical
symmetry provides, we have not found it feasible to identify optimal parameters in all
cases. In some instances then, we simply report what appears to be typical behavior
for a particular gauge, while still trying to explore the effects of the variation of key
parameters on the quality of the solutions. Interestingly, we find that several of the
gauge drivers that have been successfully used in the 3 + 1 simulations of black hole
collisions that use Cartesian coordinates [10,11,19,20] are considerably less effective
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for our spherically symmetric calculations. In particular, it is not always possible to
drive the lapse to a certain value as reported in [10,11], nor is it always possible to
enforce a desired gauge for a long time by using one of the drivers described in [19].
Overall, our calculations seem to be more sensitive to the specific choices of parame-
ters for the drivers than the Cartesian computations, and this is an issue which warrants
further investigation.

Nevertheless, our results indicate that with a certain amount of parameter tuning,
several of the gauge conditions that we investigate facilitate the simulation of many
interesting scenarios. We are thus encouraged by this particular application of the GH
approach, and our conclusions and discussion in Sect. 7 includes an outline of some
future extensions of the work.

2 Generalized harmonic formulation

We consider the Einstein equations on a D-dimensional spacetime and written in the
form

Rµν = 8πG N T̄µν ≡ 8πG N

(
Tµν − 1

D − 2
gµνT

)
, (2.1)

where gµν is the metric, Rµν is the Ricci tensor, Tµν is the energy-momentum tensor
of the matter with trace T , and G N is the D-dimensional Newton constant. Hereafter,
we adopt units for which 8πG N = 1.

The Ricci tensor that appears in the left-hand-side of (2.1) contains various second
derivatives of the metric components gµν : these second derivatives collectively con-
stitute the principal part of Rµν , viewed as an operator on gµν . This principal part can
be decomposed into a term gαβ∂αβgµν , plus mixed derivatives of the form gαγ ∂αµgγ ν .
Without the mixed derivatives, (2.1) would represent manifestly (and strongly) hyper-
bolic wave equations for the gµν [22]. Strong hyperbolicity is a highly desirable
property since mathematical theorems then ensure (local) existence and uniqueness
of solutions at the continuum level. This, in turn, means that it should be possible to
construct stable (convergent) numerical discretizations of the field equations.

One can view the GH formulation of GR as a particular method that eliminates the
mixed second derivatives appearing in (2.1) [9,11,17,18,23]. As the name suggests,
the technique generalizes the harmonic approach in which the spacetime coordinates,
xµ, satisfy the harmonic coordinate condition

�xα = 0. (2.2)

Here we have

�xα = 1√−g
∂ν
(√−ggαν

) = −�α ≡ −gγβ�αγβ, (2.3)

where �αγβ are the usual Christoffel symbols.
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It was realized by Friedrich [17] and also by Garfinkle [18], that it is possible to
eliminate the mixed derivatives in the principal part of the Einstein equations while
largely recovering the coordinate freedom than is lost by choosing the harmonic gauge.
Instead of (2.2), one requires that that the coordinates satisfy

�xα = Hα, (2.4)

where Hα ≡ gαβHβ are arbitrary “gauge source functions”2 which are to be viewed
as specified quantities. One then defines the GH constraint

Cα ≡ Hα − �xα, (2.5)

which clearly must vanish provided (2.3) holds, and then modifies the Einstein equa-
tions as follows:

Rµν − C(µ;ν) = T̄µν. (2.6)

This last equation can be written more explicitly as

− 1

2
gαβgµν,αβ − gαβ(,µgν)β,α − H(µ,ν) + Hβ�

β
µν − �ανβ�

β
µα = T̄µν. (2.7)

Now, provided that the Hα are functions of the coordinates and the metric only, but not
of the metric derivatives—namely Hα = Hα(x, g)—the field equations (2.7) form a
manifestly hyperbolic system. We reemphasize that the source functions Hα are arbi-
trary at this stage and that their specification is equivalent to choosing the coordinate
system for the spacetime under consideration (“fixing the gauge”). Determining an
effective prescription for the source functions is thus crucial for the efficacy of the GH
approach, and several strategies for fixing the Hα are discussed in the next section.

Having prescribed the coordinates we integrate the equations forward in time. Con-
sistency of the scheme requires that the GH constraint (2.5) be preserved in time. The
contracted Binachi identities guarantee that this is indeed the case, since, using those
identities, one can show [9,23] that Cα itself satisfies a wave equation,

�Cα + Rαν Cν = 0. (2.8)

Thus, assuming that the evolution is generated from an initial hypersurface on which
Cα = ∂t Cα = 0, (2.8) guarantees that Cα = 0 for all future (or past) times.

Although the GH constraint is preserved at the continuum level, in numerical cal-
culations, where equations are discretized on a mesh with some characteristic mesh
scale, h, the constraint cannot be expected to hold exactly. More troublingly, experi-
ence shows that numerical solutions of (2.7)—particularly in strong field cases, such as
those involving black holes—can admit “constraint violating modes”, with the result

2 In a slight abuse of notation and terminology we will refer to both Hα and Hα as “the” gauge source
functions.
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that the desired continuum solution is not obtained in the limit h → 0. Fortunately,
an effective way of preventing the development of such modes in numerical calcula-
tions exists: one adds terms to the field equations that are explicitly designed to damp
constraint violations (see e.g. [24]). In our implementation we follow Pretorius [9,11]
by adding constraint damping terms in a fashion inspired by studies of the so-called
γ -systems [25,26]. The modified equations take the form

−1

2
gαβgµν,αβ − gαβ(,µgν)β,α − H(µ,ν) + Hβ�

β
µν − �ανβ�

β
µα

−κ
(

n(µCν) − 1

2
gµν nβ Cβ

)
= T̄µν. (2.9)

Here, nα is the future-directed, unit time-like vector normal to the t = const. hyper-
surfaces, which can be written as

nα ≡ −
(

1/
√−gtt
)
∂αt, (2.10)

and κ is an adjustable parameter that controls the damping timescale. Specifically,
as discussed in [26], small constraint perturbations about a fixed background decay
exponentially with a characteristic timescale of order κ . We note that the constraint
damping term contains only first derivatives of the metric and hence does not affect
the principal (hyperbolic) part of the equations.

3 Coordinate conditions

As we have already mentioned, fixing the coordinates in the GH approach amounts
to specifying the source functions Hα . In this regard, it is instructive to examine the
relationship between the Hα and the lapse function and shift vector that appear in the
ADM, or space-plus-time, formulation of GR. We recall that in the ADM formalism
the line element can be written as

ds2 = −α2dt2 + γi j

(
dxi + β i dt

) (
dx j + β j dt

)
, (3.1)

where α is the lapse function, β i is the shift vector, and γi j is the spatial metric of the
t = const. hypersurfaces. Using this form of the spacetime metric in (2.4) yields

∂tα − βk∂kα = −α (Hn + αK ) ,

∂tβ
i − βk∂kβ

i = αγ i j
[
α
(

Hj + (D−1)� jklγ
kl
)

− ∂ jα
]
,

(3.2)

where Hn ≡ nµHµ = (Ht − β i Hi )/α is the normal component of the source func-
tion Hµ, K is the trace of the extrinsic curvature tensor of the t = const. slices,
and the (D−1)� jkl are Christoffel symbols associated with the spatial γi j . Bearing
in mind that the temporal component of the source function is thus determined by
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Ht = α Hn + β i Hi , these last equations clearly exhibit the connection between the
gauge source functions and the time evolution of the lapse and shift.

In his groundbreaking application of the GH approach [10,11], Pretorius used
insight derived from considering this relationship between the Hα and the ADM kine-
matic variables to devise a methodology that generates effective gauge source functions
for the problem of binary black hole collisions. His strategy elevates the status of the
Hα to independent dynamical variables that satisfy time-dependent partial differential
equations. Crucially, the evolution equations for the Hα are designed so that the lapse
and shift which (implicitly) result from the time development have certain desirable
properties. For example, the equation for Ht is tailored in an attempt to keep the value
of the lapse function of order unity everywhere—including near the surfaces of the
black holes—during the evolution.

One specific prescription for achieving this type of control evolves the gauge source
functions according to

�Ht = −ξ1
α − α0

αq
+ ξ2 Ht,µnµ,

Hi = 0,
(3.3)

where � is the covariant wave operator, and α0, ξ1, ξ2 and q are adjustable constants.3

Thus the temporal source function satisfies a wave equation similar to those that gov-
ern the metric components in the system (2.9). The first term on the right-hand-side
of (3.3) is designed to “drive” Ht to a value that results in a lapse that is approximately
α0. The second, “frictional” term tends to confine Ht to this value. For the case of
the spatial coordinates, Pretorius found that the simplest choice of spatially harmonic
gauge—Hi = 0—was sufficient in simulations of binary black hole collisions. Impor-
tantly, the choice (3.3) ensures that the hyperbolicity of the combined evolution system
is preserved. A slight generalization of this technique was considered in [20] where
instead of using Hi = 0, the spatial components of the source functions are evolved
according to

�Hi = −ξ3
βi

α2 + ξ2 Hi,µnµ (3.4)

where ξ3 is an additional parameter.
One possible problem with the specific driver approach outlined above is that the

coordinates that result do not correspond to those produced by any of the more familiar
coordinate conditions typically used in numerical relativity. Recently, Lindblom et al.
[19] proposed driver conditions that are crafted so that the source functions that result
imply particular conditions on the corresponding lapse and shift. We now proceed to
a review of this interesting and promising approach.

3 Sometimes it is convenient to assume that ξ1 and ξ2 are given functions of space and time rather than mere
constants. For example, one might require that the gauge driver is switched on gradually in time, or that it
be active only in certain regions, e.g. in the vicinity of a black hole, and that its effect vanish asymptotically,
so that pure harmonic coordinates are recovered at large distances.
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We begin by observing that many traditional coordinate conditions of numerical
relativity can be written as Fα = Fα(x, g, ∂g)where the Fα are to be viewed as “effec-
tive” gauge source functions which could be computed, for example, were the entire
spacetime in hand. Within the GH approach, enforcing such a condition algebraically
by simply setting Hα = Fα will generally destroy the hyperbolicity of the system,
since the H(µ;ν) terms in (2.7) will generically give rise to mixed second derivatives
of the metric. Lindblom et al circumvent this difficulty by generalizing (3.3) to

OHα = Qα(x, g, ∂g, H, ∂H), (3.5)

where O is a second order hyperbolic operator and Qα is chosen so that the source
functions evolve towards the concrete Fα = Fα(x, g, ∂g) that define the desired gauge.
The combined system (2.9) and (3.5) will remain hyperbolic provided the Qα depend
on at most first derivatives of the fields. In analogy with (3.3) the authors of [19]
choose

Qα = µ2
1 (Hα − Fα)+ 2µ2 ∂t Hα + ηWα, (3.6)

where µ1, µ2 and η are adjustable parameters, and Wα is assumed to satisfy

∂t Wα + ηWα = ÔHα, (3.7)

where Ô is the part of O that contains only spatial derivatives. When the spacetime is
stationary, time-derivatives vanish and equations (3.5) and (3.6) then imply Hα = Fα .
Notice that without the introduction of the auxiliary fields, Wα , this property could
not be attained for general, position dependent gauges [19].

In order to implement this method for a specific desired gauge choice one must first
compute the corresponding target source functions, Fα . Here we focus on gauges of
the schematic form Gα(x, g, ∂g) = 0 for which one can choose [19]

Fα = −�α − q Gα, (3.8)

where q is a tunable parameter. In the GH formalism, Hα = −�α , and (3.8) then
implies Hα − Fα = q Gα . This demonstrates that when the GH constraint is satisfied,
Hα is driven to Fα if Gα is driven to zero. We next discuss several specific coordinate
choices that are explored in this paper.

3.1 Slicing conditions

For the particular choices of the slicing conditions that we use in this paper, it is
more convenient to calculate the normal component of the target source functions,
Fn ≡ nµFµ = (Ft − β i Fi )/α, than the temporal component, Ft , itself (see (3.2)).
Once this is done, then in conjunction with the shift conditions that fix Fi , the temporal
component can be easily computed via Ft = αFn + β i Fi .
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• Constant curvature slicing, K = K0. Here we assume that the trace, K (g, ∂g), of
the extrinsic curvature of the spatial slices is constant. When K0 = 0, we have the
famous maximal slicing condition [30] whose significant popularity in numerical
calculations is due in large part to the strong singularity-avoiding property exhib-
ited by the resulting constant-time surfaces (see Sect. 6). The constant curvature
foliation can be written as Gn = 0, where

Gn = K0 − K = K0 + ∇αnα (3.9)

• Bona–Masso slicing [32]. This condition can be written as

Gn = (∂tα − β i∂iα)+ α2 f (α) (K − K0) , (3.10)

where f (α) is an arbitrary function of the lapse.4 The choice f (α) = 2/α corre-
sponds to the popular 1 + log slicing.

In terms of implementing these slicing conditions, we note that (3.8) implies

Fn = −α−1
(
�t − β i�i

)
− qn Gn, (3.11)

where qn is a parameter, and that the kinematic quantities such as the lapse and shift
which appear in various formulae above can always be written in terms of the funda-
mental dynamical variables of the scheme (i.e. the metric components and their first
derivatives).

3.2 Shift conditions

An important class of shift conditions which is often used in numerical relativity
employs versions of the so-called �-driver [29]. In this approach, one first introduces
the conformally rescaled spatial metric, γ̃i j = γ σ γi j , with γ ≡ det γi j and σ an
arbitrary parameter, then computes the contracted Christoffel symbols,

(D−1)�̃i = (D−1) �̃i
k j γ̃

k j = −γ−σ
[

1 + σ (D − 3)

2
γ i j∂ j log γ + γ i

j ∂kγ
k j
]
,

(3.12)

and imposes certain conditions on their dynamics. The �-driver strategy is related
to the minimal distortion condition [30,31] which is designed to minimize the time
variation of γ̃i j (see e.g. [29]).

• �-freezing. Here one requires

∂t
(D−1)�̃i = 0, (3.13)

4 Sometimes the geometric derivative ∂nα ≡ (∂tα − βi ∂iα)/α is replaced with the partial time derivative
∂tα.
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which implies that during the evolution (D−1)�̃i is fixed, (D−1)�̃i = (D−1)�̃i |t=0.
Following [19] we attempt to evolve to this choice by choosing

Gi = γ̃i j

(
(D−1)�̃ j (0)− (D−1)�̃ j

)
. (3.14)

• �-driver. Again following [19] we write the driver condition as

∂tβ
i = ν
[
(D−1)�̃i − η2 Bi

]
, (3.15)

∂t Bi + η2 Bi = (D−1)�̃i , (3.16)

where ν and η are adjustable parameters. Then one can choose

Gi = γi j

(
∂tβ

j − ν (D−1)�̃ j + νη2 B j
)
, (3.17)

The auxiliary variable Bi is evolved using (3.16) and it is important to note that add-
ing this equation to the scheme does not destroy the hyperbolicity of the combined
evolution system [19].
We have also experimented with a geometric version of the driver where the partial
time derivative ∂t in (3.16) is replaced with the covariant derivative nµ∇µ ≡
(∂t − βk∂k)/α.

Implementation of the above shift conditions is effected by setting the correspond-
ing spatial target source function defined by (3.8) according to

Fi = −�i − qi Gi , (3.18)

where qi is an adjustable parameter.

4 Spherically-symmetric reduction

Having described the basics of the GH formalism, we now specialize to spherically
symmetric spacetimes. We consider a D-dimensional spacetime with SO(D − 2)
rotational symmetry, and write the D-dimensional line element in the form

ds2 = g(D)µν dxµdxν = g(D)ab dxadxb + e2 Ŝd�2
n . (4.1)

Here d�2
n is the metric on a unit n-sphere, n ≡ D − 2, a, b = {t, r}, and the metric

g(D)ab and scalar Ŝ are functions of t and the radial coordinate, r , alone.
Although we will later specialize to the case of a real, massless scalar field, for

generality we first adopt as a matter source minimally coupled complex scalar field,

, with a potential V (|
|). The action that describes the system can be written as

S =
∫ √

−g(D)
(

R(D) − ∂a
∂
a
∗ − 2 V (|
|)

)
dx D . (4.2)
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By varying the action with respect to the fields one gets the Einstein equations (2.1) with
the energy-momentum tensor T̄µν = 1

2

(
∂µ
 ∂µ


∗ + ∂µ

∗ ∂µ

)+2/(D−2)g(D)µν V ,

as well as the general relativistic Klein–Gordon equation for the scalar field. Specifi-
cally, the GH transformation of the Einstein equations as given by (2.6) reads

R(D)ab − C(a;b) = 1

2

(
∂a
∂b


∗ + ∂a

∗ ∂b

)+ 2

D − 2
g(D)ab V, (4.3)

R(D)θi θi
− C(θi ;θi ) = 2

D − 2
g(D)θi θi

V, (4.4)

�
 = ∂V/∂
∗, (4.5)

where R(D)µν is the D-dimensional Ricci tensor and θi are the angular coordinates.
In spherical symmetry it suffices to use any specific angular component of the Ricci
tensor, and for convenience we use R(D)θ1θ1

where θ1 is defined by d�2
n = dθ2

1 +
sin2 θ1d�2

n−1.
The form of the metric (4.1) is not yet optimal for use in numerical computations.

In this paper we are mostly interested in asymptotically flat solutions and thus the
following section describes a more natural ansatz for use in that instance.

4.1 Spatial asymptotics

In spherical coordinates, flat spacetime can be written as

ds2 = −dt2 + dr2 + r2 d�2
n . (4.6)

It follows from (4.1) that asymptotically gab → ηab, where ηab is a Minkowski
metric, and Ŝ → log r , (i.e. Ŝ diverges at spatial infinity). Since this divergence com-
plicates the numerical implementation of boundary conditions, we introduce a new
function, S, defined by S = Ŝ − log r , which is regular everywhere. We then adopt
the following, more regular form for the line element in the asymptotically flat case:

ds2 = gabdxadxb + r2 e2 Sd�2
n . (4.7)

In spherical coordinates, the source function derived from (2.4) does not vanish even
in flat spacetime where it becomes

HMink
µ = −�Mink

µ = (0, n/r, (n − 1) cot θ1, (n − 2) cot θ2, . . . , cot θn−1, 0).

(4.8)

Since near the origin spacetime is locally flat, the radial component of the source
function is generically singular at r = 0, diverging as n/r . To regularize this radial
component, we thus subtract the singular background contribution by transforming
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Hα → Hα + δr
αHMink

r , and use the functions Ht and Hr defined by

Hα = (Ht (t, r), Hr (t, r)+ n/r, (n − 1) cot θ1, (n − 2) cot θ2, . . . , cot θn−1, 0) .

(4.9)

in our formulae.
With the line-element (4.7) and the source functions (4.9), the asymptotic behavior

of the fields is simply

gab → ηab, S → 0, φ → 0, Ht → 0, Hr → 0 (4.10)

In Appendix A we also analyze the asymptotically AdS spacetime, which is described
in our model (4.2) for the case that the scalar field potential satisfies V (0) → � < 0.

4.2 Center of symmetry, r = 0

Invariance of the line element (4.7) under the reflection r → −r in spherical sym-
metry implies that gtr is an odd function of r , while gtt , grr , S and 
 are even in r .
Additionally, the GH constraint (2.4) implies that the source functions Hr , regularized
via (4.9), and Ht are odd and even in r , respectively.

Moreover, the requirement that the surface area of an n-sphere must vanish at the
origin5 implies grr (t, 0) = e2 S(t,0). We note that this is an extra condition on S, which
thus has to satisfy both this relation, as well as the constraint that it have vanishing
radial derivative at r = 0—specifically that grr − e2 S = O(r2). Therefore, at r = 0
we essentially have three conditions on the two fields S and grr . In the continuum,
and given regular initial data, the evolution equations will preserve regularity: how-
ever, in a numerical code that solves the equations discretized on a lattice, this will
be true only up to discretization errors. As a general rule-of-thumb, the number of
boundary conditions should be equal to the number of evolved variables in order to
avoid regularity problems and divergences of a numerical implementation.

An elegant way to deal with this regularity issue involves definition of a new vari-
able, λ: 6

λ ≡ grr − e2 S

r
. (4.11)

At the origin one then has λ ∼ O(r). Therefore, after changing variables from S
to λ by using S = (1/2) log(grr − r λ) in all equations, and imposing λ(t, 0) = 0 at
the origin, one ends up with a system where there is no over-constraining due to the
demand of regularity at r = 0. In addition, we note that at spatial infinity we have
λ = 0, and that the hyperbolicity of the GH system is not affected by the change of
variables.

5 that is, that the radial and areal coordinates coincide at the origin, to avoid a conical singularity there.
6 We note that a similar variable was introduced in [27,28], also for the purpose of regularization.

123



E. Sorkin, M. W. Choptuik

However, as described in detail in Sect. 5.2, we were able to implement a more
straightforward regularization method that maintains S as a fundamental dynamical
variable, and thus opted to use that approach in our current calculations.

4.3 The equations

With the metric ansatz (4.7) and the regularized source function (4.9), Eqs. (4.3)–(4.5)
become 5 equations for the 5 variables, gtt , gtr , grr , S and 
, that schematically can
be written as7

− 1

2
gcd gab,cd + . . . = 1

2

(
∂a
∂b


∗ + ∂a

∗ ∂b

)+ 2

D − 2
gabV, (4.12)

gcd S,cd + · · · = − 2

D − 2
V, (4.13)

gcd
,cd + · · · = ∂V/∂
∗. (4.14)

Here ellipses denote terms that may contain the metric and/or the source func-
tions, as well as their first derivatives in various combinations (see Appendix B for
the explicit set of equations in the four-dimensional case). These equations are to be
evolved forward in time starting from the initial (t = 0) time slice, where values for
the fields and their first time derivatives must be prescribed.

4.4 Coordinate choices

Here we adapt the prescriptions for choosing the gauge functions (Ht and Hr ) that
were described in Sect. 3, to the case of spherical symmetry. We again note that the
radial source function is singular at the origin in spherical symmetry, and that we thus
regularize it via (4.9). Since this regularization involves subtracting the flat-space-
time singular part from Hr , any specific coordinate conditions discussed here are thus
defined relative to spherical Minkowski spacetime.

For the case of the gauge condition (3.3) inspired by Pretorius’ original work, we
have

�Ht = −ξ1
α − α0

αq
+ ξ2 (∂t Ht − β ∂r Ht ) /α,

Hr = 0.
(4.15)

Similarly for the modification of the above proposed in [20], we have (using (3.4))

�Ht = −ξ1
α − α0

αq
+ ξ2 (∂t Ht − β ∂r Ht ) /α,

�Hr = −ξ3
β

α2 + ξ2 (∂t Hr − β ∂r Hr ) /α.

(4.16)

7 Usingλ instead of S does not change this structure since the equation that governsλ is a linear combination
of the equations that govern S and grr .
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In the above equations � is the regularized scalar wave operator in spherical sym-
metry, given by

� Hα = gµν∂µ∂νHα −
(
�ν + grr n

r
δνr δ

α
r

)
∂ν Hα. (4.17)

Turning now to the case of the gauge drivers introduced by Lindblom et al. we note
that the operator in (4.9) is essentially the vector d’Alambertian8 [19]

O Hα = gµν∂µ∂νHα − �ν∂νHα − 2 gµν�βνα∂µHβ + (Rβα − ∂α�
β
)
Hβ. (4.18)

In order to avoid having second-derivatives of the metric, the Ricci tensor in the last
term should be thought of as being determined by matter sources and replaced with
T̄ βα , in accordance with the Einstein equations. In addition, using the GH constraint
Hα = −�α , the term −∂α�β Hβ is replaced with −∂αHβ �β . Finally, we regularize
the operator by subtracting the irregular contributions that appear in the flat spacetime
limit. After these manipulations we arrive at

O Hα = gµν∂µ∂νHα −
(
�ν + grr n

r
δνr δ

α
r

)
∂ν Hα − 2 gµν�βνα∂µHβ

− (T̄ βα + ∂αHβ
) (
�β + n

r
δαr

)
, (4.19)

where δνµ is a Kronecker delta, and there is no summation over the index α.
The target source function, Fn , is determined by (3.9) or (3.10), and by (3.11). The

lapse and shift are given in terms of the metric components,

α =
√

−gtt + g2
tr/grr ,

β = gtr/grr ,
(4.20)

as is the trace of the extrinsic curvature (see (B.2) for the explicit form).
Our shift conditions involve the contracted conformal Christoffel symbols, �̃i ,

defined by (3.12), and in spherical symmetry the only non-trivial component is (D−1)�̃r

given by

(D−1)�̃r = −n (1 + (n − 1) σ ) S′ + 1 − σ (n − 1)

2

g′
rr

grr
. (4.21)

Here ()′ ≡ ∂r , and we have used the fact that γrr = grr . Once again, in order to
obtain a regular expression we have subtracted the flat-spacetime term, (D−1)�̃Mink

r =
−n(1 + (n − 1)σ )/r , which is singular at the origin.

8 Ha does not transform as a vector under gauge transformations, so the equation should be understood as
written in particular global coordinates [19]; in the current case, these are our spherical coordinates.
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The target function for the �-freezing condition (3.14) takes the form

Fr = −�̂r − qs

[
(D−1)�̃r (0, r)

(
grr

grr (0, r)

)σ+1

e2 n σ [S−S(0,r)] − (D−1)�̃r

]
,

(4.22)

where �̂r ≡ �r + n/r is the D-dimensional connection which has also been regular-
ized via subtraction of an irregular flat-spacetime term. The explicit expression for �r

is given in (B.1).
For the case of the�-driver condition (3.18) in spherical symmetry, the target source

function is

Fr = −�̂r − qs

[
grr β̇

r − (D−1)�̃r ν (grr e2 n S)−σ + ν η2 grr B
]
, (4.23)

where an over-dot denotes partial differentiation with respect to t . The auxiliary field
B is evolved using

Ḃ + η2 B = (D−1)�̃r

(
e2 n S grr

)−σ
/grr . (4.24)

4.5 Initial data

We now consider specification of initial data, which as stated previously, are values
for the fields and their first time derivatives at t = 0. For simplicity (and without much
loss of generality), we restrict attention to time-symmetric initial conditions.

Given the assumption of time symmetry at t = 0, initial data for the scalar field
reduces to the specification of
(0, r), which we take to have the form of a Gaussian,


(0, r) = 
0 e−(r−r0)
2/�2

, (4.25)

where 
0, r0 and � are adjustable parameters.
The momentum constraint is trivially satisfied for time-symmetric initial data, and

writing the initial metric as

ds2 = −α2dt2 + ψ4(dr2 + r2d�2
n), (4.26)

the Hamiltonian constraint becomes a non-linear ordinary differential equation for
ψ(0, r),

ψ ′′ + n

r
ψ ′ + (n − 2)

ψ ′2

ψ
+ 1

2n

(
1

2

′
∗′ + ψ4 V

)
ψ = 0. (4.27)

This equation is solved using the boundary conditions ψ ′(0, r)|r=0 = 0 and
ψ(0, r)|r→∞ = 1, and then once ψ has been determined, the metric components
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are initialized via

grr = ψ4,

S = 2 logψ, (4.28)

gtr = βr = λ = 0.

For time-symmetric initial data we require that all first time derivatives of the metric
components vanish.

We next determine the initial conditions for the lapse and the variables used in the
gauge drivers. We begin by setting Ht (0, r) = Hr (0, r) = 0. Using

Hr (0, r) = −�̂r (0, r) = α′

α
+ 2(n − 1)

ψ ′

ψ
, (4.29)

we obtain an equation relating α(0, r) to the initial value of Hr . With our choice,
Hr (0, r) = 0, this equation can be integrated to yield

α(0, r) = ψ(0, r)−2(n−1). (4.30)

Next we require that the target coordinate conditions are initially satisfied, namely
that Fα(0, r) = Gα(0, r) = Hα(0, r) = 0. We note that since time-symmetry implies
K (0, r) = K0 = 0, the normal component of the gauge function for the constant
curvature foliation vanishes, Gn(0, r) = qn K0 = 0, as it does for the Bona–Masso
slicing, Gn(0, r) = −qn α(0, r)2 f (α(0, r)) K0 = 0. The �-freezing condition (4.22)
obviously satisfies Gi (0, r) = 0, while requiring this for the �-driver condition (4.23)
will set the initial value of the auxiliary field B,9

B(0, r)= (D−1)�̃r e−2 n S σ g−σ
rr /η2|t=0. (4.31)

Here the initial value for the radial component of the contracted conformal
Christoffel symbol �̃r (0, r), defined by (4.21), is found using the relations (4.28):

(D−1)�̃r (0, r) = −2 (n − 1) (1 + (n + 1) σ )
ψ ′

ψ
. (4.32)

The conditions for the auxiliary variables Wα used in the Lindblom et al drivers
are found from (3.7) to be Wt (0, r) = Wr (0, r) = 0.

5 Numerical approach

Here we describe our strategy for the numerical solution of the GH system (with a
scalar matter source) in spherical symmetry.

9 Note that for time-symmetric initial conditions this consistently coincides with the values of B(0, r)
found from (4.24).
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Fig. 1 The compactified domain of integration, and the numerical lattice. Our finite difference scheme
uses three levels in the time direction

5.1 The numerical grid and the algorithm

We cover the t–r plane by a discrete lattice denoted by (tn, ri ) = (n�t, i �r), where
n and i are integers and �t and �r define the grid spacings in the temporal and
spatial directions, respectively. We note that when we perform convergence studies,
we keep the ratio �t/�r constant so that our numerical scheme is generally charac-
terized by a single discretization scale, h, which we can conveniently identify with
�r . As described in the next section, the spatial domain is compactified, and hence a
grid of finite size Nr extends from the origin to spatial infinity. As depicted in Fig. 1,
approximations to the dynamical fields, collectively denoted here by Y , are evaluated
at each grid point, yielding the discrete unknowns Y n

i ≡ Y (tn, ri ) = Y (n�t, i �r).
In the interior of the domain, the GH equations and the gauge-driver equations are
almost always discretized using O(h2)finite difference approximations (FDAs), which
replace continuous derivatives with the discrete counterparts given in (C.1) and (C.2).
As in [9,10] our scheme directly integrates the second-order-in-time equations (i.e. we
do not rewrite the equations as a system which is first order in time).

Following discretization, we thus obtain finite difference equations at every mesh
point for each dynamical variable. Denoting any single such equation as

LY |ni = 0. (5.1)

we then iteratively solve the entire system of algebraic equations as follows.
First, we note that for those variables that are governed by equations of motion that

are second order in time, our O(h2) discretization of the equations of motion results
in a three level scheme which couples advanced-time unknowns at tn+1 to known
values at retarded times tn and tn−1. In order to determine the advanced-time values
for such variables, we employ a point-wise Newton–Gauss–Seidel scheme: starting
with a guess for Y n+1

i (typically, we take Y n+1
i = Y n

i ) we update the unknown using

Y n+1
i → Y n+1

i − RY |ni
JY |ni

. (5.2)
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Here, RY is the residual of the finite-difference equation (5.1), evaluated using the
current approximation to Y n+1

i , and the diagonal Jacobian element is defined by

JY |ni ≡ ∂LY |ni
∂Y n+1

i

. (5.3)

In the cases where we used gauge drivers that involve B and Wα , we found that an iter-
ation based on an implicit Euler discretization scheme of the corresponding first order
equations performed well.10 Specifically, writing any such equation schematically as
Ẏ = fY (Y, ∂Y, . . . ), we update using

Y n+1
i → Y n−1

i + 2�t fY |n+1
i . (5.4)

We iterate (5.2) and (5.4) over all equations until the overall residual norm11 falls
below some specified convergence threshold.

In order to inhibit high-frequency12 instabilities which often plague finite difference
equations such as ours, we add explicit numerical dissipation of the Kreiss–Oliger type
[33] to our scheme. Following [9], at every grid point and for each dynamical variable
we make the replacement

Yi → Yi − εKO di (5.5)

at both the tn−1 and tn time-levels before updating the tn+1 unknowns.
Here, di is defined by

di ≡ 1

16
(Yi−2 − 4 Yi−1 + 6 Yi − 4 Yi+1 + Yi+2) . (5.6)

and εKO is a positive parameter satisfying 0 ≤ εKO ≤ 1 that controls the amount of
dissipation. An extension of the dissipation to the boundaries [9], as well as to the
black hole excision surface (see Sect. 5.3 ), was also tried, but was not found to have
any positive effect. In fact, using dissipation at the outer boundary usually resulted in
late-time instabilities in the code.

5.2 Coordinates and boundary conditions

While the physical, asymptotically flat spacetime extends to spatial infinity, in a numer-
ical code one can only use grids of finite size. A standard strategy to deal with this
issue involves truncating the solution domain by introducing an outer boundary at

10 The advantage of the implicit Euler method is that it is unconditionally stable and easy to implement.
Although it is only first-order accurate—which does impact the overall convergence of the scheme when the
Lindblom et al. drivers are used—we have found it useful to achieve our chief current goal of constructing
stable numerical implementations for our GH system.
11 Defined, e.g. as a sum of absolute values of the individual residuals of the equations, R =∑Y |RY |.
12 “High-frequency” refers to modes having a wavelength of order of the mesh spacing, h.
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some finite radius where approximate boundary conditions are imposed. When such
an approach is adopted, it is then important to ensure that the computed solutions do
not depend sensitively on the truncation radius. However, another technique which
has been successfully used in previous work in numerical relativity, see e.g. [10,37],
involves compactification of the spatial domain. Paralleling the experience of these
earlier studies, we have found that compactifying the radial direction and imposing
the (exact) Dirichlet conditions (4.10) at the edge of the domain works well, provided
that we use sufficient dissipation. In particular, it is known that due to the loss of res-
olution near the compactified outer boundary (assuming a fixed mesh spacing in the
compactified coordinate), outgoing waves generated by the dynamics in the interior
will be partially reflected as they propagate towards the edge of the computational
domain, and these reflections will then to tend to corrupt the interior solution. By
adding sufficient dissipation one can damp the waves in the outer region, attenuating
any unphysical influx of radiation, and thus enabling a meaningful use of compactif-
ication.

For the general case where we have more than one spatial dimension, Xi , requiring
compactification, we consider a transformation that maps Xi ∈ [0,∞) onto xi ∈
[0, 1],

Xi = ζi (x
i ), (5.7)

where the ζi are monotonic functions, such that ζ ′
i (0) = 1, and which will have

essential singularities at xi = 1. The field equations (4.12–4.14) are discretized in the
compactified coordinates after we analytically remove the Jacobian of the transforma-
tion (5.7) in all the differential operators. The general replacement rule for first and
second spatial derivatives is ∂X = e1∂x and ∂2

X = e2
1∂

2
x + e2∂x , where e1 ≡ 1/ζ ′ and

e2 ≡ −ζ ′′/(ζ ′)3, so, for example, a typical term in (4.12–4.14), ∂gti/∂X j , would be
replaced with (ζ ′

j )
−1∂gti/∂x j .

In the spherically-symmetric calculations considered in this paper we use a specific
compactification

r̃ = r

1 + r
, (5.8)

where the compactified r̃ ranges from 0 to 1 for values of the original radial coor-
dinate r ∈ [0,∞). The boundary conditions at r̃ = 1 are then imposed exactly:
gtt = −1, gtr = 0, grr = 1, λ = S = 0, and φ = 0. For the gauge source functions
we set Hα = 0, as well as Wα = B = 0.

We have previously described the boundary (regularity) conditions at r̃ = r = 0
in Sect. 4.2. Denoting by Y n+1

1 the advanced-time value at the origin for any of the
variables, gtt , grr and Ht that have vanishing derivative at r = 0, we use the update
Y n+1

1 = (4 Y n+1
2 −Y n+1

3 )/3, which is based on an O(h2) backwards difference approx-
imation (see (C.3)) of ∂r Y = ∂r̃ Y = 0. For the quantities gtr and Hr , which are odd
in r as r → 0, we simply use Y n+1

1 = 0.
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As discussed in Sect. 4.2, we considered the introduction of a new variable, λ (4.11),
to expedite implementation of the regularity conditions involving grr and S. However,
in the calculations described below we have adopted a simple method that does not
involve λ and that works well in spherical symmetry.13 In this approach, we retain the
original variables S and grr , and impose g′

rr = 0 and S = (1/2) log(grr ) at the origin.
Then instead of determining Sn+1

2 (i.e. the advanced value of S at the next-to-extremal
grid point) from the corresponding discrete evolution equation, we perform the update
using the O(h2) backwards FDA to the regularity condition, S′(t, 0) = 0, namely
Sn+1

2 = (3 Sn+1
1 + Sn+1

3 )/4.
We must also maintain regularity at the origin for the auxiliary functions Wα and B

that are used with some of the gauge driver conditions. We expand the metric functions
in analytic Taylor series around r = 0 and substitute the expansions into the equations
(3.7, 4.24) to arrive at

Ḃ + η2 B = 0,

Ẇt + gtt
(
ηWt grr − (n + 1)H ′′

t

) = 0, (5.9)

Ẇr + gtt
(
ηWr grr − H ′′

r

) = 0,

which we use to advance B(t, 0) and Wα(t, 0) forward in time. Operationally, the time-
derivatives in the equations are replaced with the FDA expressions (C.1) evaluated at
tn , and the spatial derivatives are replaced with one-sided versions (C.3) evaluated at
tn+1. The values of the functions B(tn+1, 0) and Wα(tn+1, 0) are then algebraically
found.

5.3 Apparent horizon and excision

As is well known from many theoretical studies (both closed-form and numerical), a
gravitational collapse process that concentrates sufficient mass-energy within a small
enough volume can lead to the formation of a black hole. In numerical calculations
based on a space-plus-time split, black hole formation is often inferred by the appear-
ance of apparent horizons. We recall that an apparent horizon is defined as the out-
ermost marginally trapped surface, and that a marginally trapped surface is one on
which future-directed null geodesics have zero divergence. Specifically, given a sur-
face with outward-pointing spacelike unit normal, sα , embedded in a hypersurface
with future-directed timelike unit normal, nα , the vanishing of the divergence, θ , of
the outgoing null rays defined by lα = sα + nα can be expressed as

θ = (γ αβ − sαsβ)∇αlβ = 0. (5.10)

13 However, we have checked that the scheme that uses λ performs remarkably well in our 2 +1 numerical
implementation [34] that generalizes the present 1 + 1 work.
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In spherical symmetry we have sα = g−1/2
rr ∂r , and the above equation can be written

as14

θ = r ∂t S + (1 + r ∂r S)

⎛
⎝− gtr

grr
+
√

g2
tr

g2
rr

− gtt

grr

⎞
⎠ = 0, (5.11)

In numerical calculations, one can thus easily locate an apparent horizon by simply
searching for zeros of θ : the position of the outermost such zero then coincides with
the location, rAH, of the apparent horizon.

In our code we use excision to (dynamically) exclude from the computational
domain a region interior to the apparent horizon that would eventually contain the
black hole singularity. The success of this approach hinges on the observation that
in spacetimes that satisfy the null energy condition (such as those that we construct)
and assuming cosmic censorship, the apparent horizon is contained within the event
horizon, which ensures that the excluded region is causally disconnected from the
non-excised portion of the domain (see [35] and the references therein for further dis-
cussion). Operationally, once an apparent horizon is found, we introduce an excision
radius, rEX, that satisfies rEX < rAH, and such that all radial characteristics at r = rEX
are pointing inwards. (We typically find rEX ≈ 0.4 rAH, where we again emphasize
that r is the coordinate radius.) This specific characteristic structure eliminates the
need for boundary conditions at rEX: rather, advanced-time unknowns located on the
excision surface are computed using finite difference approximations to the interior
evolution equations, but where centered difference formulae are replaced with the
appropriate one-sided expressions given by (C.3).

5.4 Spacetime diagnostics

We employ several diagnostics in order to characterize the geometries of the space-
times we construct.

Mass Far away from an isolated system a natural radial coordinate is defined by the
asymptotic flatness of the spacetime, and the ADM mass of the solution can be found
from the asymptotic radial behavior of the metric functions. In spherical symmetry
there is only one asymptotic constant, r0, that can be determined, for instance, from
the fall-off of gtt : gtt ∼ 1 + rn−1

0 /rn−1. This constant is related to the mass [38] by
M = n�n/(16π)rn−1

0 , where �n = 2π((n+1)/2)/�[(n + 1)/2] is the surface area of
a unit n-sphere.

14 An alternative way to derive this result relies on the fact that the apparent horizon in spherical symmetry
can be defined as a null surface located at constant radius. Equating the time-derivative of the areal radius

along null rays to zero, d(r eS)/dt |lα = r eS∂t S+r eS (1/r +∂r S)

(
−gtr /grr +

√
g2

tr /g2
rr − gtt/grr

)
=

0, where the expression in the second brackets is dr/dt |lα , we recover the result in (5.11).
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Fig. 2 Outgoing null rays in the t − R̃ plane emitted from the origin at different times (R̃ is the compactified
areal radius). The left panel shows the geometry generated by an initially origin-centered pulse of matter
with 
0 = 1.6 that disperses infinity. The presence of the matter deflects the outgoing null rays towards
the origin, but the rays eventually escape to infinity. The motion of the pulse can clearly be traced. The
right panel shows the geometry generated by stronger initial data having 
0 = 3.0. In this case the matter
collapses to form a black hole of mass, MBH � 0.3: rays emitted before t � 1.25MBH escape to infinity but
the rays emitted after that time fall back to the origin. The null ray that separates the two regimes designates
the event horizon and the thick dashed line is the asymptotic apparent horizon. The thin dashed lines are
obtained by integrating (5.13) backward in time, and are attracted to the event horizon

In addition, in spherical symmetry one can define a local mass function, m(t, r),
sometimes called the mass aspect

m(r, t) = n�nrn−1

16π

(
1 − R,αR,βgαβ

)
, (5.12)

where R = r eS is the areal radius. The mass aspect is negative inside a trapped
(or anti-trapped) region, vanishes at its boundaries and is positive outside in regular
region. It grows monotonically and asymptotically coincides with the ADM mass.

Null geodesics A convenient way to visualize the causal structure of a spherically
symmetric spacetime is to plot a family of outgoing null rays, lα . When plotted in
the t–R plane, the slope, d R/dt |lα , of an outgoing null geodesic is positive outside
the apparent horizon, and asymptotes to the flat-space value of unity for large values
of R. Additionally, the slope vanishes at the apparent horizon, concomitant with the
vanishing of the outgoing null divergence, and becomes negative inside the horizon.
All of these features can be seen in Fig. 2, where the displayed lines are integral curves,
R̃(t; t0). Here R̃ is the compactified areal radius, and the corresponding uncompactified
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trajectory, R(t; t0), is defined by

R(t; t0) =
t∫

t0

⎡
⎣
⎛
⎝− gtr

grr
+
√

g2
tr

g2
rr

− gtt

grr

⎞
⎠ ∂R

∂r
+ ∂R

∂t

⎤
⎦ dt ′. (5.13)

Each curve thus represents the path of an outgoing null ray that is emitted from the
origin at a specific time, t = t0.

Event horizon In contrast to the local definition (5.11) of the apparent horizon, the
event horizon is a global concept: it is defined by outgoing null rays that neither escape
to future null infinity, nor fall into the black-hole singularity. Clearly, this definition
requires knowledge of the complete time evolution of the system, and hence, assuming
a calculation that is carried out for a finite amount of coordinate (or proper) time, one
cannot even in principle locate event horizons in numerically-generated spacetimes.
However, when a spacetime approaches a stationary state, an approximate event hori-
zon can be found. We employ the method of Libson et al. [36] which is based on
the observation that if one integrates the geodesic equation (5.13) backward in time,
the event horizon becomes an attractor for geodesics that either escape to future null
infinity or fall into the singularity at arbitrarily late times. We have found that in our
simulations the event horizon is traced fairly well by the time development of the
apparent horizon. Again this can be seen in Fig. 2, where the thin dashed lines show
the trajectories obtained by integrating (5.13) backwards in time, and starting with
several initial radii.

6 Results

For concreteness, we restrict our numerical experiments to the case of four-dimen-
sional spacetimes, and take our matter source to be a real, massless scalar field. All
of the results discussed here were generated using an initial scalar field profile of the
Gaussian form (4.25), with fixed values r0 = 0 and� = 0.6, so that the scalar pulse is
always initially centered at the origin. The overall amplitude,
0, of the profile (4.25)
is then used as a control parameter: variations of 
0 produce varying “strengths” of
initial data, and varying degrees of non-linearity in the ensuing evolution. In practice,
the maximum value of 2m(t, r)/R(t, r) (where R is the uncompactified areal radius)
that is achieved in a given calculation is a useful indication of how strong-field the
evolution becomes.

We use the above notion of initial data strength to loosely define three classes
of solutions—within a given class we observe that the overall dynamics of each of
the scalar and gravitational fields are similar. Specifically, we consider the following
cases: (i) weak data, defined by 
0 � 0.5, yielding maxt,r 2m/R � 0.08; (ii) inter-
mediate data, having 0.5 � 
0 � 1.6, and maxt,r 2m/R � 0.25, and (iii) strong data,
with 
0 � 1.6 and maxt,r 2m/R > 0.25. While the first two cases describe weakly
and mildly gravitating scalar pulses, respectively, which completely disperse in all
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instances, the strong data generates spacetimes in which black holes form, or almost
form (i.e. near-critical evolution, see ([39])).

We have also found it useful to use the total ADM mass, MADM, of the space-
time—which can be computed at t = 0—to normalize certain numerical parameters.
In particular, we set the parameters of the gauge driver (3.3, 3.4) using ξ1 = ξ10/M2

ADM,
ξ2 = ξ20/MADM and ξ3 = ξ30/M2

ADM, where the “bare” values, κ0, ξ10, ξ20 and ξ30
are generally held fixed as 
0 is varied. Moreover, and as discussed in more detail
below, we find that the accuracy of our results is improved if the constraint damp-
ing term asymptotically vanishes at large spatial distances. Accordingly, we typically
multiplied κ by the factor 2MADM/R.

Because we use, at least in large part, a time-explicit finite difference scheme, we
expect restrictions on the ratio λC ≡ �t/�r (the Courant factor) that can be used
while maintaining numerical stability. For the case of harmonic gauge, we found that
values of λC satisfying 0.01 � λC � 0.8 generated stable solutions with roughly
constant accuracy, although somewhat stronger numerical dissipation was required to
stabilize runs that used larger values of λC in that interval. In the results discussed
below we have typically taken 0.3 � λC � 0.6 for weak and intermediate data, and
0.1 � λC � 0.2 for the evolution of strong data. We further found that when any
of the other gauge drivers were adopted, smaller Courant factors (relative to the har-
monic case) were required. In those cases our results were generally computed using
0.05 � λC � 0.1. Typically, in cases where λC was taken too large, we observed
amplification and dominance of numerical errors near the origin: this lead to high
frequency oscillations and, eventually, to divergence of the numerical solution.

Another crucial numerical parameter is the Kreiss–Oliver dissipation factor, εKO,
which we generally set according to 0.1 � εKO � 0.7. Finally, it is important to note
that we found that optimal values of both λC and εKO were dependent on the spatial
resolution: specifically, as �r → 0 somewhat smaller values of λC , as well as larger
values of εKO were usually required. The lowest and highest resolution runs reported
in this paper typically had �r = 1/64 and �r = 1/8, 192, respectively: runs with
�r = 1/8, 192 generally required λC = 0.05 and εK O = 0.7 for stability.

Many of the coordinate conditions discussed and employed in this paper are char-
acterized by several adjustable parameters, and we have by no means carried out
exhaustive parameter space surveys in all cases in an attempt to optimize parameter
settings. Rather, our more limited numerical experimentation indicates that with a cer-
tain amount of tuning of the parameters, it does seem possible, at least in principle, to
simulate various interesting situations. Our intent here is chiefly to document the over-
all behavior of several gauge conditions as well as to explore some of the effects that
specific parameters of the gauge drivers have on the evolution. Given this primary goal,
we also defer most of our discussion of code convergence and accuracy to Sect. 6.4.

6.1 Weak data

In this section we consider the evolution of weak initial data for which
0 � 0.5, yield-
ing MADM � 0.01 and maxt,r 2m/R � 0.08. In this case there is little interaction
between the scalar and gravitational fields, the scalar pulse entirely disperses to infinity,
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and we find that essentially any of the gauge conditions described above can be used
to produce long-term stable evolution. For this type of data we use εKO � 0.1 for the
Kreiss–Oliger dissipation parameter, finding that larger values have detrimental conse-
quences for stability. However, even with dissipation and constraint damping, we find
that numerical errors eventually do grow—on a time scale of order t > 104 MADM—
and cause the code to crash.

We find that the effect of the constraint damping term depends on whether κ is
fixed or allowed to vary over the integration domain. For fixed κ , it is essential to take
κ0 > 0.01, otherwise high-frequency oscillations quickly ruin convergence. How-
ever, if the damping is too strong, instabilities are also triggered. In fact, we find that
the optimal damping parameter is related to the typical scale over which the scalar
field varies. For the Gaussian initial data that we consider, this scale is �, so we take
κ � �−1. (This observation holds for intermediate strength data as well, as can be
seen in Fig. 4.) On the other hand, when we take κ = κ(r), and specifically for the
choice κ = κ0(2MADM/R) mentioned previously, we find that the results are rela-
tively insensitive to the value of κ0, provided κ0 � 100�−1. For larger values of κ0
instability is again usually observed.

Our experiments with the gauge drivers proposed by Lindblom et al, have focused
on the specific Bona–Masso slicing condition for which f (α) = 2/α, corresponding
to 1 + log slicing. However, for weak data, we find that other choices of f (such
as f (α) = 2α, α2 and 10/α2, to list a few that we have tried) produce qualitatively
similar results.

Considering the conditions that determine the shift, we find that the �-driver condi-
tion performs somewhat better than�-freezing, with the former allowing the evolution
to be controlled for a longer amount of time. There was only mild dependence on the
gauge-driver parameters, µ1,2, η1,2, qs, gn, σ and ν, provided they are all taken in the
range 0.01–10 in units of MADM.

In order to assess the performance of the coordinate conditions in driving the source
functions to the target functions, we first follow [19] and define the weighted L2-norm,
|Y |, of a function Y as follows,15

|Y | =
(∫

e2SY 2r2√grr dr∫
e2Sr2√grr dr

)1/2

. (6.1)

A similar, if somewhat less smooth norm, which we also use here, can be defined
as

|Y |L2 = 1

Nr

√√√√ Nr∑
i=1

Y 2. (6.2)

Figure 3 shows the weighted norms of the differences between the actual and target
source functions from a typical weak-field simulation. It is evident from these plots

15 The integrals are evaluated on our fixed mesh using the trapezoidal rule.
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Fig. 3 The behavior of gauge drivers for the case of Bona-Masso slicing with f (α) = 2/α (left) and the
�-driver shift condition (right) in the weak field regime, 
0 � 0.1

that the drivers successfully drive the source functions Hα towards the target functions
Fα as the evolution proceeds.

We now continue to discussions of the evolution of intermediate- and strong-field
data, where the results are more sensitive to the specific driver used, as well as to the
parameter settings for any given driver.

6.2 Intermediate data

Here we consider evolutions characterized by 0.5 � 
0 � 1.6, where MADM � 0.1
and maxt,r 2m/R � 0.25. First, for this strength of data, we have found that the pure
harmonic and GH gauges (4.15–4.16) perform comparably. With both choices, we
are typically able to accurately trace the evolution of the initial data for times of the
order of 100–600 MADM, with increasing resolution resulting in increased maximum
evolution time.

The causal structure of the spacetime from a typical intermediate strength compu-
tation is displayed in the left panel of Fig. 2. We recall that in this figure the curves
represent trajectories of outgoing null rays that are emitted at regular intervals (in
coordinate time) from r = 0. As the evolution proceeds, the pulse, which is initially
centered at the origin, disperses to infinity. The outgoing null rays are bent towards
the origin by the presence of the matter and asymptotically become straight lines with
unit slope in the r − t plane. The position of the scattered pulse of scalar field can be
traced through the location of the “ripple” in each curve, i.e. at the positions where
the outgoing null geodesics suffer the most deflection.

We will discuss issues of code convergence and accuracy in more detail in Sect. 6.4.
However, we note here that constraint norms, |Mα |L2 , defined by (B.11) and computed,
for example, using either (6.1) or (6.2) provide a basic indication of the accuracy of
our numerical method. For the calculation depicted in Fig. 2 that uses a medium res-
olution, �r = 1/1, 024, we find the initial norms |Mα|L2 of order 10−4, which for
roughly the first half of the evolution then decrease to values of 10−5–10−6. Thereaf-
ter we observe a slow increase in the size of the constraints although—except for the
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Fig. 4 Illustration that the characteristic behavior of the L2 residuals of the evolution equations depends
on the value of the damping parameter. Excessive or insufficient damping degrades convergence, or leads
to divergence. The optimal range for the damping parameter is κ0 ∼ O(1)/�, where� is the typical length
scale in the problem

last few time steps before the code fails— |Mα|L2 remain well below the 10−3 level.
Moreover, we generally observe the expected quadratic convergence of |Mα|L2 as the
finite difference mesh is refined.

Another basic indication of numerical accuracy is provided by the the sum of the
norms defined by (6.2) of the residuals of the dynamical equations, |R|L1 =∑Y |RY |,
where RY is the FDA residual of the equation that governs the field Y . Figure 4 shows
the behavior of |R|L2 as a function of the damping parameter, κ0, for calculations
with Nr = 513 (moderate resolution), 
0 = 1.6, and where κ = κ0(2MADM/R). As
already noted in the discussion of the weak field results, the sizes of the constraint and
equation residuals tend to be minimized when κ0 is comparable to the inverse of the
typical length scale of the problem, i.e. to�−1 for our initially Gaussian data. This is
apparent in the figure, which shows that for κ0 = 0.5/�, the residuals remain on the
order of 10−5.

We next experiment with the Lindblom et al drivers, and find that while for
0 < 0.7
the dynamics of Hα and Fα is qualitatively similar to that in the weak field regime
(shown in Fig. 3) and essentially independent of the parameters of the gauge drivers,
for
0 > 0.7 the convergence of the source functions, Hα , towards the target sources,
Fα , has stronger dependence on the parameter settings. The most pronounced feature
in this regime is that the drivers succeed in forcing Hα → Fα only on the length-scale
set by the parameterµ1. In particular, when we start with initial data that has Hα = Fα ,
we find that for large values ofµ1 the source functions remain close to their targets for
a a few tens of MADM, after which high-frequency oscillations destroy the matching.
Conversely, starting from the same initial set up, but taking µ1 very small, we observe
that the source functions quickly deviate from the targets and never approach them in
the subsequent evolution.
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Fig. 5 The source functions Hα , the target functions Fα , and their Fourier transforms at two instants.
We begin with initial data satisfying Hα = Fα . Within a few dynamical times the functions deviate, but
subsequently are driven towards each other. After a time of 30–50MADM they match on length-scales of
order 1/µ1. This is illustrated by the spatial spectral decomposition shown in the right panels: while the
lower frequencies of the functions match closely, the higher-frequency components do not

Given this observation, and given that our Gaussian initial data generates an evo-
lution characterized by a length scale, �, it is thus reasonable to take µ1 � 1/� in
an attempt to enforce the desired gauge conditions on that scale. Results from such
a computation are shown in Fig. 5, which displays the source and target functions,
as well as their Fourier transforms, from the evolution of initial data with 
0 = 0.9.
The calculations were performed using target slicing of the Bona–Masso type with
f (α) = 2/α, and target �-driver shift conditions with µ1 = 1.3 (recall that � = 0.6
for all of the computations described here). In addition, here, and for all of the results
discussed in this section, we used µ2 = η = η2 = 1, qn = qs = 0.5, σ = −1/3
and ν = 0.7. In contrast to the case of µ1, we find that the calculations are not too
sensitive to the settings of these parameters, so long as their values are all of order
unity. In this simulation we begin with initial data satisfying Hα = Fα . Within a few
dynamical times the functions deviate, but as Fig. 5 demonstrates the functions are
subsequently driven towards each other, when the source functions start resembling
the targets on the spatial scales 1/µ1. Notice that the high-frequency spatial variations
of the target Fα’s are not replicated by the source functions. Similar behavior was
originally observed in [19] for perturbations on a given background.
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The manner in which the coordinate conditions evolve in time for this calculation is
shown in Fig. 6, which depicts the norms of the functions Gt and Gr , defined by (3.9)
or (3.10), and (3.14) or (3.17). As described in Sect. 3, enforcing a particular gauge
is equivalent to driving these functions to zero. Since we begin with initial conditions
in which the gauge is exactly fixed, the norms of Gt and Gr are initially zero. Then
on a timescale of order several tens of MADM, the norms grow to some maximum
value, after which they decrease slowly. The details depend on the particular coor-
dinate choices, as well as on the settings of the driver parameters, but usually it is
possible to drive the L2-norms of Gt and Gr to the level of about 0.01.

Although for smaller initial pulse amplitudes (
0 � 1.0) we managed to find
parameters for the Lindblom et al. drivers that asymptotically fix the desired gauges,
we find that for larger amplitudes the effectiveness of the drivers degrades, and for

0 � 1.0 we could not find parameter settings that enforce any of the specific gauges.
This does not necessarily mean that the code diverges: indeed, the evolution often
proceeds, but the behavior of the source function is rather arbitrary. In this regime we
find that the evolution systems based on the Lindblom et al. drivers tend to be more
dynamical and less stable than one that uses simple drivers such as (4.15).

6.3 Strong data and black hole formation

Increasing the initial amplitude, 
0, of the scalar pulse leads to increasingly strong
curvature in the development of the initial data. As expected, above a critical value—
in the current case, 
0 ∼ 2.15—black holes form, as signaled by the appearance of
apparent horizons. We recall that we have already used the trajectories of outgoing
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Fig. 7 Proper time (6.3) at the origin in harmonic evolution as a function of coordinate time for several
initial data strengths. The evolution slows down for stronger data and it effectively freezes for near critical
data

null geodesics to schematically display the causal structure of a typical black hole
geometry in the right panel of Fig. 2.

Our first set of numerical experiments in the strong-field regime compares subcriti-
cal evolution (
0 � 2.15) in pure harmonic coordinates to that in the GH gauge given
by (4.15). A generic feature of purely harmonic evolution in this case is a fairly quick
collapse of the lapse function towards zero values near and at r = 0. As a result the
evolution in the central region (where the pulse is concentrated) effectively freezes,
and the scalar field remains present near r = 0 even at late (coordinate) times. This is
demonstrated in Fig. 7, which shows the evolution of central proper time

τ(t) ≡
t∫

0

α(t ′, 0)dt ′, (6.3)

as a function of the strength of the initial data.
On the other hand, and in accordance with the previous experience of Pretorius [10],

we are able to use the GH gauge condition (4.15) to inhibit the collapsing of the lapse.
Specifically, we use α0 = 1 and q = 3 in (4.15), and experiment with various values
for ξ1 and ξ2. In addition, motivated by an observation that we can more stably evolve
subcritical data by gradually “turning-off” the gauge driving at late times, we actually
replace ξ1 and ξ2 in (4.15) by (ξ10/M2

ADM )/(1 + s t p) and (ξ20/MADM )/(1 + s t p),
respectively, where p and s are additional positive parameters. In practice, we have
usually taken p = 1, leaving s free to control the rate at which the gauge driving is
disengaged.

Results from calculations with 
0 = 1.8 (MADM � 0.125) and using several sets
of values for ξ10, ξ20 and s are shown in Fig. 8. The plots clearly show how judicious
choice of the parameters can prevent the collapse of the lapse. Through experiments
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Fig. 8 Left panel: the proper time (6.3) at r = 0 from an evolution that uses gauge conditions (4.15) with

0 = 1.8, Hr = 0, q = 3, and ξ1 and ξ2 additionally divided by 1 + s t . Right panel: the amplitude of the
scalar field at the origin from the same simulations. While in harmonic gauge the evolution freezes near
r = 0, in the dynamical gauge (4.15) it continues

with various subcritical initial data sets we find that parameter values 1 � ξ10 � 5
and 0.5 � ξ20 � 2 produce good results. However, in order to keep the lapse from
collapsing for initial data very close to criticality, we generally needed to increase both
ξ10 and ξ20 by factors of up to 10, while simultaneously increasing s (to values of order
50) and taking p = 2 or 3. For instance, simulations that use 2, 049 spatial grid points
and the driver (4.15) with the parameters tuned to ξ10 = 50,ξ20 = 30, s = 36 and
p = 2 allowed us to explore the dynamics of solutions with 
0 = 2.1465 ± 0.0005
without encountering a collapsing lapse. Unfortunately this is not close enough to the
threshold amplitude for us to be able to observe in detail the distinctive features of
scaling and echoing known to appear in the near-critical regime of this model [39].

We end our discussion of subcritical strong-field evolution with two observations.
First, we note that while we have investigated the use of dynamical conditions such
as (4.16) for Hr , the spatially harmonic choice, Hr = 0, is simpler to implement,
and apparently more stable in this regime. Secondly, although we have experimented
extensively with the Lindblom et al. drivers in this context, we have not been able to
find parameter settings that prevent coordinate pathologies (premature collapse of the
lapse) from quickly developing for near-critical evolutions.

We now turn to the case of supercritical evolutions, which are characterized by
the formation of black holes. As described in Sect. 5.3, we have implemented black
hole excision techniques in our code: however, due to the strong singularity avoidance
property of pure harmonic gauge, as well as the Generalized harmonic modifica-
tions (4.15–4.16), we can also perform computations in which black holes form and
are evolved for some amount of time, but where excision is not used.
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Fig. 9 Illustration of the geometry of black hole formation without excision. The metric functions remain
regular all the way to the origin, where the functions tend to zero. The black hole which forms has a mass
MBH � 0.335 with a horizon at R̃ � 0.4 in the compactified areal radial coordinate. Note that the lapse
collapses at the origin, freezing the evolution there

For example, Fig. 9 shows metric functions from a calculation with 
0 = 3.0 that
uses pure harmonic gauge with no excision. We infer the formation of a black hole by
the appearance of an apparent horizon, which at the end of the simulation is located
at a compactified areal radius R̃AH � 0.4. We can then estimate the mass of the
black hole at that time from the apparent horizon location: MBH = 0.5 RAH � 0.34,
and note that the total ADM mass in this case is MADM � 0.41. An apparent hori-
zon is first detected at t � 1.25MBH and Fig. 9 displays the metric functions at
two instants: (i) t � 5MBH (dashed lines), and (ii) t � 20MBH, which is shortly
before the simulation crashes (solid lines). For this specific calculation we used 4, 097
spatial grid points, and, at the time of the code crash, the values of the temporal
component of the metric, gtt , near the origin are of order 10−15 (corresponding to
lapse values of order ∼ 10−7). Despite the fact that all of the metric components
displayed in Fig. 9 are tending towards zero at the origin at late times, the func-
tions remain smooth and regular throughout the evolution. Figure 10 plots central
values for the Kretschmann scalar, Rαβγ δRαβγ δ , as a function of time. The appar-
ent divergence of this geometric quantity indicates the development of a curvature
singularity.

We have found that the use of excision can somewhat extend the duration of our
simulations of black hole spacetimes. For comparison, a run with the same parameters
enumerated above, but employing excision, lasted for as long as ∼ 60MBH. We recall
that our simple approach to excision has been described in Sect. 5.3, and note that in
practice we have typically chosen the excision radius, rEX, to satisfy rEX ≤ 0.4rAH.
The rest of the results described in this section were obtained in simulations with
excision.
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Fig. 10 Time plot of the central value of the Kretschmann scalar, showing indefinite growth which signals
the development of a curvature singularity

Although we are able to avoid the central singularity using excision, it is clear from
our calculations that the harmonic coordinate system continues to evolve in a highly
non-trivial manner after excision is initiated. This dynamics in the coordinates causes,
or is at least associated with, two main problems. First, the resulting coordinate sys-
tem does not approach a stationary state: in particular, the coordinate position of the
apparent horizon evolves with time. Specifically, after formation, the horizon expands
outwards and consumes most of the numerical grid. Eventually then, the portion of the
spacetime outside the horizon—which we recall extends to spatial infinity due to our
use of a compactified coordinate system—is represented by only a small portion of the
initial lattice. Consequently, numerical errors that arise near the outer boundary dom-
inate the late stages of the evolution. The second problem is that the lapse continues
to decrease in the vicinity of rEX, and becomes very small. In this situation truncation
errors in quantities near rEX occasionally cause the computation of non-positive values
for the lapse, which immediately leads to code failure. Both of these problems can be
somewhat mitigated by increasing the numerical resolution. In harmonic gauge, we
were able to simulate the formation of a black hole and resolve it for about t � 70MBH
using our finest resolution, Nr = 8,193. However, given these difficulties induced by
the late-time dynamics when using harmonic coordinates, it is quite natural to try to
use the coordinate freedom provided by the various gauge drivers discussed above to
(a) attempt to minimize the time development of the lapse following the formation of
an apparent horizon, and/or (b) implement a non-trivial shift vector with an aim to
minimize the outward expansion of rAH at late times when there is very little matter
falling into the black hole. We thus now summarize our experimentation with several
driver conditions that was focused on realizing these ideas.

As we have already mentioned, one of the main motivations for Pretorius’ develop-
ment of the driver condition (4.15) was to keep the lapse from collapsing in the vicinity
of horizons [10]. Following that work then, we first used (4.15) to fix the time slicing,
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while maintaining harmonic spatial coordinates (Hr = 0). However, in contrast to the
results reported in [10] (which we note were performed in three spatial dimensions
using Cartesian coordinates), we found the evolution in this case to be significantly
less stable than purely harmonic evolution. For example, even a small value of ξ1 of
order 0.01M2

BH resulted in a code crash at a time about a factor of two earlier than for
the harmonic case, irrespective of the value of the friction parameter, ξ2.

We next used harmonic slicing, Ht = 0, while evolving Hr using the driver (4.16).
Here, we found a modest amount of improvement over the purely harmonic case, in
that the “grid-sucking” phenomenon described above was slowed, with an accom-
panying reduction in the development of numerical error in the outer, low-resolu-
tion region. For example, the duration of the evolution of 
0 = 3 initial data with
ξ20, ξ30 ∼ O(10)MBH × (1 + 5t2)−1, increases by approximately 20% compared to
the corresponding harmonic evolution.

Interestingly, we obtained even better results using certain versions of the Lindblom
et al gauge drivers. For the strong-field, supercritical calculations described here, we
found that versions of the drivers that use the simple scalar operator (4.19) performed
better than those that used (4.18). Moreover, we found that drivers based on the Bona–
Masso slicing and �-driver shift conditions (with suitably tuned parameters) gave the
best results, and for convenience will hereafter refer to this specific choice as BMGD.
In particular, relative to other driver choices, this combination minimized—but unfor-
tunately did not completely eliminate—the outward drift of rAH. Our best configu-
ration allowed for accurate simulation of black hole spacetimes for about 100MBH
following the formation of an apparent horizon. After that time, code accuracy typi-
cally degraded, numerical errors near the excision became dominant, and a late-time
instability ensued. Based on our experiments, it remains unclear whether specific
parameter choices for the drivers exist that would totally eliminate the drift of the
coordinate position of the apparent horizon and, even more importantly, the disastrous
collapse of the lapse inside the horizon.

We now proceed to some details concerning our experience with the BMGD ver-
sion of the Lindblom et al coordinate conditions. The parameters qn and qs that appear
in the driver definitions—see Eqs. (3.11, 3.18)—control the relative weight that the
gauge functions, Gα , have in forming the target sources, Fα . We also recall that the
Gα vanish when the specific gauge to which they correspond is attained. We found
it crucial not to choose qn too large: usually values in the range 0.01 − 0.1 resulted
in the most stable evolutions, and would eventually lead to the desired behavior,
Hα → Fα and G → 0. Our implementation was less sensitive to the value of qs ,
with results of comparable accuracy and stability being attained for gs in the range
0.01 − 10.

Having determined good values for qn and qs , we found through further experimen-
tation that stability is improved when the parameters µ1, µ2 and η are multiplied by a
decay factor 2MADM/R in the region external to the horizon. This localizes the effect
of the coordinate drivers to the near-horizon region, while producing a smooth blend
to harmonic coordinates at spatial infinity. In addition, and in analogy to what we did
for the subcritical calculations in GH coordinates described earlier in this section, we
further scaleµ1,µ2 and η, as well as qn by 1/(1+st p). Here, s and p are again positive
tunable quantities—we typically used p = 2 and s = 5—that result in a late-time
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Fig. 11 A strong data simulation,
0 = 3. Shown are L2-norms (6.1) of the normalized deviations between
the target and source functions (top), and the gauge functions, Gα , which vanish when the desired gauge is
achieved (bottom). The source functions, Hα , approach the targets, Fα , uniformly soon after the horizon
forms at t � 3 MBH and follow them closely until low frequency variations in Fα , induced by the matter
outside the black hole, develop and destroy the uniform match. The sources replicate the targets (not shown)
on the scale defined by µ−1

1 which we take to be of order of RAH

decay of the scaled driver parameters. We note that the values quoted below generally
refer to “bare” values for parameters, with the additional scaling factors being implied.

Figure 11 shows the time development of the deviation between the target and actual
source functions, Fα and Hα , respectively, as well as the gauge functions, Gα , for a
typical BMGD calculation. The computation was performed with µ1 = 4 � 1/MBH,
µ2 = η = η2 = 10 ν = 1, σ = −1/3, qn = 0.1 and qs = 1. The behavior of the two
upper plots in the figure reflect the fact that the Hα tend to the target source functions
soon after an apparent horizon forms. Detailed examination of the data reveals that
the match between the target and actual source functions is good throughout the entire
domain for a certain amount of time following horizon formation. At late times the
level of global agreement degrades, due to large scale variations in the Fα induced by
the portion of the scalar field that is scattered to infinity. Despite this, we still find that
actual sources accurately match the targets on the scale defined by µ−1

1 � RAH (not
shown). The plots of the L2 norms of the gauge functions, Gα , shown in the bottom
half of the figure, reveal a steady decrease in time, signaling that the desired gauge is
being approached asymptotically.

Our investigations of versions of the drivers using target functions correspond-
ing to “static” gauges, such as maximal slicing and �-freezing, were unsuccessful in
the sense that we were not able to find parameter settings that resulted in Gα → 0
as t → ∞. Interestingly, however, we found that black holes could nonetheless be
simulated using these conditions, with observed stability properties similar to those
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Fig. 12 Illustration that the level of constraint preservation is dependent on the choice of κ0, and that
the optimal value is in the range κ0 � M−1

BH. Excessive damping leads to rapid and violent growth of the
constraints and divergence of the solution

obtained using “dynamic” gauge conditions such as BMGD. This indicates that, at
least for the type of initial data considered here, the stability of the drivers (3.5, 3.6)
does not strongly depend on the target gauge.

Finally we note that the use of an appropriate amount of constraint damping is
important for computations in which black holes form. Figure 12 shows the behavior
of the sum of the L2-norms of the constraints, (6.2), in a sample run with Nr = 4,097
and using various values for the damping parameter, κ0. The plots provide clear evi-
dence that the level of constraint maintenance (as well as the maximum simulation
time) is optimized for κ0 � M−1

BH. Values of κ0 significantly larger than the optimal
value produce rapid code crashes, while those that are significantly smaller lead to
poorer preservation of the constraints.

6.4 Code accuracy, convergence and constraints

In this section, we briefly discuss some of the technical issues relating to the basic
performance of our numerical code, including resolution requirements and checks of
convergence.

Not surprisingly, we find that the minimum discretization scale required to produce
an acceptable evolution (for fixed choice of coordinate conditions) depends on the
strength of the initial data. For example, in the case of weak and intermediate initial
data, as defined previously, even a modest lattice size of Nr = 65 is enough to allow for
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long-time evolution. However, for stronger data, meshes sizes of at least Nr = 257 are
required. Additionally, our code cannot evolve strong-field data for arbitrary amounts
of coordinate time: generically, numerical problems develop that lead to a code crash
on the order of 10–100 MADM, and the precise lifetime of the simulation is dependent
on the strength of the initial data, the resolution, and the details of the coordinate
conditions.

Much of the build-up of error that eventually leads to code failure, especially in
subcritical simulations, can be traced to the use of spatial compactification. In all of
our calculations, there is outflux of scalar field to spatial infinity, and as the scalar
radiation propagates to large distances it becomes more poorly resolved on the mesh,
which has uniform spacing in the compactified radial coordinate. Untreated, this will
lead to spurious reflection of the waves which will corrupt the interior solution, so we
add Kreiss–Oliger dissipation to explicitly damp the radiation when its wavelength
becomes of order the mesh scale. Although this damping is imperfect, we find that
increasing the resolution is effective in extending the lifetime of our evolutions. As a
specific example, for a calculation which forms a black hole of size R̃BH � 0.6, and
that uses BMGD coordinate conditions and excision, a grid with Nr = 4,097 is suffi-
cient to keep the reflections small during all stages of the evolution until t � 100 MBH.
Thereafter, an instability appears near rEX and leads to a code crash.

A crucial test of any finite difference code for the solution of a system of partial
differential equations involves the investigation of the convergence of the generated
numerical solutions as a function of resolution. We perform straightforward conver-
gence tests based on the assumption (originally due to Richardson [41]) that for any
of the unknown functions, Y (t, r), appearing in our differential system, the corre-
sponding finite difference quantity, Yh(t, r) in the limit h → 0 admits an asymptotic
expansion of the form

Yh(t, r) = Y (t, r)+ h pep(t, r)+ · · · (6.4)

where h is the discretization scale, ep(t, r) is an h-independent error function with
smoothness comparable to Y (t, r), and p is an integer which defines the order of con-
vergence of the scheme. Following standard practice, we consider sequences of three
calculations performed with identical initial conditions, but with varying resolutions,
h, h/2 and h/4. We then form the differences, c1 = Yh − Yh/2 and c2 = Yh/2 − Yh/4,
and compute

log2

(
c1

c2

)
≈ p. (6.5)

Figure 13 shows the results of such a convergence test for the scalar field, 
(t, r),
from computations in pure harmonic coordinates, and with initial data defined by

0 � 0.55. The plot provides evidence for the expected second order convergence
(p = 2) of
h , and similar results are observed for the other dynamical variables. We
note, however, that there is an obvious degradation of convergence at the highest reso-
lutions used: this issue has not been resolved, but may be related to the time-stepping
iteration.
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Fig. 13 Plot showing that the
convergence of the scalar field is
second order over most of the
domain, with some irregularities
occurring near the outer
boundary and at the location of
the scalar pulse. In this
simulation, 
0 = 0.55
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As discussed in Sect. 5.1, in the cases where the Lindblom et al. drivers were used
to evolve the source functions, we used an implicit Euler method to integrate the cor-
responding finite difference equations. Since that method is only first-order accurate
in time, the convergence of the overall scheme in only expected to be first order, and
this was in fact observed.

Finally, since we have implemented a free evolution scheme [40], we can also
assess the convergence of our numerical solutions by monitoring discrete versions
of the Hamiltonian and momentum constraints, Mt and Mr , respectively. As usual,
these constraints are defined by contracting the Einstein equations with the unit nor-
mal vector to the t = const. hypersurfaces, i.e. Mα ≡ nα(Gαβ − Tαβ), where Gαβ

is the Einstein tensor. In order to estimate how well the constraints are satisfied, we
discretize them to second order, and then compute their L2-norms, as defined by (6.2),
at each time step. Figure 14 shows a typical plot of the results for weak initial data
(MADM � 0.01) evolved with harmonic coordinates. It is clear from the figure that
the constraint violations remain quite small during the evolution, and that—modulo
the previous remark concerning an apparent problem at higher resolutions—the con-
straints are increasingly well satisfied as h → 0 (Fig. 15).

7 Conclusions

We have presented a GH formulation of the Einstein equations for spherically sym-
metric D-dimensional spacetimes. Since it is natural to choose coordinates in which
the symmetries of the geometry are explicit, we have adopted the usual spherical
coordinates. This results in a coordinate singularity at the origin, r = 0. While at
the continuum level the equations of motion maintain regularity of a solution which
is initially smooth at the origin, extra care must be exercised so that this property is
reflected in discrete numerical calculations. We have thus described a procedure to
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Fig. 14 A log–log plot of the L2-norms of the Hamiltonian constraint, Mt , and the momentum constraint,
Mr for five different grid resolutions, and with 
0 = 0.55. The constraints remain small during most of
the time-evolution, except for the last moments of the simulation, when instabilities set in and eventually
lead to code failure. For the most part, the constraints converge as the resolution is increased, but there is a
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Fig. 15 Linear plot of the
L2-norm of the Hamiltonian
constraint for five different
resolutions (the same as those
used in Fig. 14), and again with

0 = 0.55. Modulo the
comment in the caption of
Fig. 14, second order
convergence is observed
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ensure that the origin remains regular in numerical calculations, while preserving the
hyperbolicity of the evolution system.

We have investigated the resulting GH system in the context of fully non-linear
gravitational collapse. To this end we introduced a real, massless scalar field, and have
used the specification of the initial scalar field profile to control the ensuing strength
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of the gravitational interaction. The dynamics that we have considered range from the
dispersion of weak pulses to the collapse of strong pulses that lead to black hole for-
mation. A key aspect of our numerical approach was the use of radial compactification
which, in conjunction with sufficient dissipation, provided a viable alternative to the
truncation of the spatial domain and the use of approximate outer boundary conditions.
Another ingredient of our methodology that was vital for long-term stability of the
numerical calculations was the addition of constraint-damping terms to the evolution
equations.

Our studies of evolutions using several coordinate drivers lead us to conclude that,
in spherical geometries, the gauge drivers discussed in [10,11,19,20] are less effec-
tive relative to the 3 + 1 simulations that use Cartesian coordinates, and it would
be very interesting to understand this issue in more detail. Nevertheless, we found
that with a certain amount of parameter tuning many interesting situations could be
successfully simulated with drivers that have been proposed in the literature. Perhaps
not surprisingly, depending on the situation certain drivers performed better than oth-
ers, leading to longer and/or more accurate simulations. Specifically, the dynamics of
weakly gravitating dispersing pulses could be simulated using any of the considered
coordinate choices; however the pure harmonic gauge arguably provided the cleanest
and the simplest choice. For strong-field data, variations in the performance of the
various drivers were more apparent. In particular, for strong but subcritical pulses,
the harmonic gauge quickly lead to coordinate pathologies, signaled by a collapsing
lapse, but this behavior could be partially ameliorated by using one the drivers given by
(3.3) and (3.4). The driver (3.5) could also be used to evolve strong-field data in some
regimes, but the target coordinates which it is designed to asymptotically enforce, were
not achieved, at least not for the range of the parameters that we explored in this work.

For the case of strong-field, supercritical calculations (i.e. those for which black
holes form), we found that pure harmonic coordinates could still be of use. In the simu-
lations that used excision, it was possible to evolve black holes for as long as a few tens
of dynamical times. However, the coordinate system remained fairly dynamic even
at late times, leading to collapse of the lapse near the excision surface on one hand,
and to the outwards expansion of the coordinate position of the horizon on the other.
We were able to use driver conditions to moderate the time-dependence, with the best
results being obtained through the use of the drivers (3.5) with the Bona–Masso target
slicing and the �-driven target shift. It would be very interesting to find out whether or
not parameters and target gauges exist that not only slow down the time-dependence
of the coordinates at late times, but completely eliminate it.

One of the main goals of this work was to achieve a better understanding of the
GH approach as applied to highly symmetric spacetimes, and to prepare ground for an
exploration of various gravitational phenomena in axisymmetry using an analogous
formalism. We expect that the insights gained from our experiments in spherical sym-
metry will also prove useful in the axially symmetric case. In particular, coordinates
that are adapted to the axial symmetry are again formally singular on the axis, and the
equations of motion will need to be regularized there. However, the same regulariza-
tion described above for spherical symmetry can be readily extended to that case. This
allows for a regular hyperbolic formulation in axial symmetry, which will be discussed
in a subsequent publication [34].
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Appendix A: Asymptotically AdS spacetime

Here we analyze the asymptotics of AdS spacetime, and discuss a convenient metric
ansatz as well as a normalization of the source functions.

The AdSD background can be written in the form,

ds2 = −(1 + ρ2/�2)dτ 2 + dρ2/(1 + ρ2/�2)+ ρ2 d�2
n, (A.1)

where � is the AdS curvature scale. In our model (4.2) we reproduce asymptotically
AdS spacetime by letting V (0) = � < 0 that defines �2 = −(D − 1)(D − 2)/�.

One of the properties of the AdS space is that its asymptotic boundary is time-like:
in fact, it takes only a finite time for a light signal to propagate to the boundary. Hence,
in numerical implementations, correct treatment of boundary conditions at spatial
infinity is crucial. To this end it is useful to transform to conformal coordinates,

ρ = � tan(r/�), τ = t, (A.2)

in which the AdS metric becomes

ds2 = − cos−2 (r/�)
(

dt2 − dr2
)

+ �2 tan2(r/�) d�2
n . (A.3)

We note that the entire space has finite extent r ∈ [0, π�/2] in these coordinates, but
that the metric is singular at spatial infinity, r = π�/2.

A convenient metric ansatz for evolution using the GH approach explicitly factors
out the background and is given by

ds2 = −cos−2 (r/�) gtt

(
dt2 − dr2

)
+ 2gtr dtdr + �2 tan2(r/�) e2 Sd�2

n . (A.4)

In this case the asymptotic behavior of the fields gab is regular, gab → ηab and S → 0.
The source function obtained from (2.4) does not vanish in spherical coordinates

even in pure AdS where it becomes

HAdS
µ =

(
0, (n/ρ)[1 + ((n + 2)/n)(ρ2/�2)]/[1 + ρ2/�2],
(n − 1) cot θ1, . . . , cot θn−1, 0

)
, (A.5)

and where ρ is given in (A.2). In analogy with the asymptotically flat case, we subtract
a background contribution, which is singular at ρ = 0, by writing Hα = Hα + HAdS

α ,
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and then use the regular source functions

Hα =
⎛
⎝Ht (t, r), Hr (t, r)+ n

ρ

1 + n+2
n

ρ2

�2

1 + ρ2

�2

, (n − 1) cot θ1,

(n − 2) cot θ2, . . . , cot θn−1, 0

⎞
⎠ . (A.6)

Appendix B: Explicit form of the equations

We define g2 ≡ gtt grr − g2
tr , to be the determinant of the 2-metric gab, in (4.7). The

complex scalar field is decomposed as 
 = φr + i φi .
The Christoffel symbols and the trace of the extrinsic curvature are given by

�t =
(

gtt g′
tr − gtr g′

t t − 1

2
gtt ġtr + 1

2
grr ġtt − n g2 Ṡ

)
/g2

(B.1)
�r = −n

r
+
(

1

2
gtt g′

rr − 1

2
grr g′

t t − gtr ġrr + grr ġtr − n g2 S′
)
/g2

K = α

(
−n gtr

r
+ gtr

ngrr
g′

rr − g′
tr − 2gtr S′ + 1

2
ġrr + n grr Ṡ

)
/g2, (B.2)

The generalized harmonic equations (4.12, 4.13) in 4D become

Rtt − C(t;t) − T̄t t

= −1

4
( ˙grr )

2 (grr )2 + g′
tr ˙grr (g

rr )2 + gtt (ġtr )
2 grr − 1

2
g′′

t t g
rr + gtr g′

t t ˙grr grr

+ 4gtr g′
tr ġtr grr +

(
g′

t t

)2
2g2

+ 3

4
(gtt )2 (ġt t )

2 − (φ̇i
)2 − (φ̇r

)2 − 2
(
Ṡ
)2

+
(

gtr Ht − gtt Hr

2g2
− gtt

g2r

)
g′

t t +
(

2gtt

g2r
+ gtt Hr − gtr Ht

g2

)
ġtr

+
(

grr Ht −gtr Hr

2g2
− gtr

g2r

)
ġt t + (gtr )2g′

tr ġt t + 2gtr gtt g′
t t ġt t + 1

2
(gtr )2 ˙grr ġtt

+2gtr gtt ġtr ġt t − Ḣt − gtr ġtt
′ − 1

2
gtt g̈t t − gtt V + 2(gtr )2g′

t t ġtr , (B.3)

Rtr − C(t;r) − T̄tr

= 1

2
g′

rr g′
tr (g

rr )2 + 1

2
g′

rr ˙grr (g
rr )2 + gtr (g′

tr

)2
grr + 1

2
gtr ( ˙grr )

2 grr

+1

2
gtr g′

rr g′
t t g

rr − 1

2
g′′

tr grr + gtr g′
rr ġtr grr + 1

2
gtr gtt (g′

t t

)2 + gtr gtt (ġtr )
2

− gtr V +
(

grr Ht − gtr Hr

2g2
− gtr

g2r

)
g′

t t +
(
(gtr )2

2
+ grr gtt

)
g′

tr g′
t t − 1

2
H ′

t
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+
(

gtt

g2r
+ gtt Hr − gtr Ht

2g2

)
˙grr + 1

4

(
(gtr )2 − 2grr gtt

)
g′
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2
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tr ġtr gtr − ˙grr
′gtr + 3

4
(grr )2
(
g′

rr

)2 + grr gtt (g′
tr

)2

− (φ′
i

)2 − (φ′
r

)2 − 2
(
S′)2 + ( ˙grr )

2

2g2
− grr V +

(
gtt

g2r
+ gtt Hr − gtr Ht

2g2

)
g′

rr

+
(

grr Ht − gtr Hr

g2
− 2gtr

g2r

)
g′

tr − H ′
r − 4S′

r
+
(

gtr

g2r
+ gtr Hr − grr Ht

2g2

)
˙grr

+(gtt )2g′
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Rθθ − C(θ;θ) − T̄θθ

= −2S′gtt

g2r
− gtt

g2r2 + e−2S
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Written in full, the constraint damping terms, Zµν = κ
(
n(µCν) − 1

2 gµν nβ Cβ
)
, that

we subtract from the above equations to form (2.9), are

Ztt = ακ
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Ṡ
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, (B.7)

Ztr = ακ
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2

2 g2
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(B.8)
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Zrr = ακ

g2

[
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2
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2
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, (B.9)

Zθθ = ακ
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(B.10)

Finally, the Hamiltonian and momentum constraints, Mα ≡ nα(Gαβ − Tαβ), take
the form

Mt = −1
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2 + gtt

2

r

)

+ S′
(

−6g2gtt

r
− 8
(

gtr
3 + g2

2grr grr gtr
)

Ṡ
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r
+ 2g2grr Ṡ′
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Appendix C: Discretization

The second order accurate finite difference approximations (FDAs) for the time deriv-
atives on a uniform grid with spacings �r,�t at a point (n, i) (see Fig. 1) are

∂t Y
n
i = Y n+1

i − Y n−1
i

2�t
,

∂2
t Y n

i = Y n+1
i − 2 Y n

i + Y n−1
i

(�t)2
.

(C.1)

Here “second order” means that the continuum expression is approached by the FDA
counterpart at a rate O(�t2). For the spatial and mixed derivatives the stencil is modi-
fied depending on the position of the mesh point relative to the extremities of the grid.
We use second order accurate expressions of the form

• Centered derivative.

∂r Y n
i = Y n

i+1 − Y n
i−1

2�r
,

∂2
r Y n

i = Y n
i+1 − 2 Y n

i + Y n
i−1

(�r)2
, (C.2)

∂2
r t Y

n
i = Y n+1

i+1 − Y n−1
i+1 − Y n+1

i−1 + Y n−1
i−1

4�r �t

• One-sided (backward) derivative.

∂r Y n
i = 4 Y n

i+1 − 3 Y n
i − Y n

i+2

2�r
,

∂2
r Y n

i = 2 Y n
i − 5 Y n

i+1 + 4 Y n
i+2 − Y n

i+3

(�r)2
, (C.3)

∂2
r t Y

n
i = 4 Y n+1

i+1 − 3 Y n+1
i − Y n+1

i+2 − 4 Y n−1
i+1 + 3 Y n−1

i + Y n−1
i+2
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,
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