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Abstract

We present a modification to the Berger and Oliger adaptive mesh refinement algorithm designed to solve systems of
coupled, non-linear, hyperbolic and elliptic partial differential equations. Such systems typically arise during constrained
evolution of the field equations of general relativity. The novel aspect of this algorithm is a technique of ‘‘extrapolation and
delayed solution’’ used to deal with the non-local nature of the solution of the elliptic equations, driven by dynamical
sources, within the usual Berger and Oliger time-stepping framework. We show empirical results demonstrating the effec-
tiveness of this technique in axisymmetric gravitational collapse simulations, and further demonstrate that the solution
time scales approximately linearly with problem size. We also describe several other details of the code, including trunca-
tion error estimation using a self-shadow hierarchy, and the refinement-boundary interpolation operators that are used to
help suppress spurious high-frequency solution components (‘‘noise’’).
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Adaptive mesh refinement (AMR) will be needed for many grid-based numerical approaches designed to
solve a variety of problems of interest in numerical relativity, including critical gravitational collapse, binary
black hole mergers, and the study of singularity structure in cosmological settings and black hole interiors
[1–3]. The reason is that such problems often exhibit a wide range of relevant spatial and temporal length
scales that are impossible to adequately resolve with a uniform mesh, given resources available on contemporary
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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computers. In certain restricted scenarios, such as the head-on collision of black holes [4], or during the inspi-
ral phase of a circular merger [5,6], it is possible to construct a single, static coordinate grid that can resolve all
of the length scales. However, this requires some a priori knowledge of the structure of the solution that will
not be available in general. To date, in numerical relativity, mesh refinement has been used quite effectively in
1D and 2D critical collapse simulations [7–14], the study of critical phenomena in the non-linear sigma model
in 3D Minkowski space [15], in 2D simulations of cosmological spacetimes [16], 3D simulation of gravitational
waves and single black holes[17–22], to construct initial data for binary black hole mergers [23–25], and the
evolution of binary black hole spacetimes [5,26].1

In the following we only consider Cauchy evolution; in other words, we have a timelike coordinate t that
foliates the spacetime into a set of spacelike slices, and, given initial data at t = 0, we want to evolve to the
future t > 0. In such a coordinate basis the field equations of general relativity consist of a set of 10, second
order, quasi-linear partial differential equations (PDEs) for 10 metric coefficients that describe the structure of
spacetime. Thus, from a Lagrangian perspective, one would expect ten dynamical degrees of freedom per point
in spacetime, where each degree of freedom is specified by a pair of values – a generalized coordinate and its
conjugate momenta (here, for example, a metric element and its first time derivative). However, four of the
field equations do not contain second time derivatives of the metric, and therefore serve as constraints, elim-
inating four dynamical degrees of freedom (these four equations are usually called the constraint equations,
and the six remaining equations the evolution equations). Furthermore, the geometry of spacetime is invariant
under arbitrary coordinate transformations of the 4 spacetime coordinates, and choosing a particular coordi-
nate system (or ‘‘gauge’’) amounts to imposing four additional constraints, leaving only two dynamical
degrees of freedom per spacetime point.

The presence of constraints and coordinate freedom in the Einstein equations permits considerable leeway
in the solution method. One of the more common methods used these days is the so-called free evolution within
the ADM (Arnowitt–Deser–Misner [28]) decomposition (see [29] for a thorough discussion of the various pos-
sibilities and corresponding classification scheme). Here, the 4 dimensional spacetime metric is written as a
three dimensional spatial metric (six independent components), lapse function and a spatial shift vector (three
components).2 A coordinate system is chosen by specifying the lapse and shift, the constraint equations are
solved at the initial time, and the spatial metric is then evolved in time using the evolution equations. In
the continuum limit, the Bianchi identities (see [27], for example) guarantee that such an evolution scheme will
preserve the constraints for all time, given appropriate boundary conditions.

The constraint equations are elliptic in nature, whereas the evolution equations are hyperbolic. Coordinate
conditions can be chosen that give algebraic, elliptic, parabolic or hyperbolic equations for the kinematical
variables (lapse and shift). Thus, even though it is always possible in principle to adopt a free evolution
approach in the numerical solution of Einstein’s equations where elliptic equations are only solved at the ini-
tial time, there are nonetheless two situations where it may be preferable or necessary to solve one or more
elliptic equations at each time step of the evolution. First, as just mentioned, it may be useful to adopt elliptic
coordinate conditions. For example the choice of maximal slicing yields an elliptic equation for the lapse func-
tion, and the minimal distortion condition gives a set of elliptic equations for the shift vector components [39].

Second, in a numerical evolution, since the Bianchi identities will only be satisfied to within truncation
error, the constraints can only be preserved to within truncation error [30]. This is not necessarily problematic,
as the violation of the constraints should converge away in any consistent, stable numerical code. However,
studies have indicated that with some formulations of the field equations, and using free evolution, certain
constraint-violating modes grow exponentially with time, requiring prohibitively high accuracy (hence resolu-
tion) of the initial data and subsequent evolution to obtain a solution that is sufficiently close to the continuum
one for the desired length of time integration [33,34,1]. One possible method to circumvent this problem is to
use constrained evolution rather than free evolution; in this case one uses some number, m, m 6 4, of the
1 The notation 1D refers to problems with dependence on 1 spatial dimension, in addition to the implicit dependence on time; similarly
for 2D and 3D.

2 We emphasize that our counting is of second-order-in-space-and-time equations. A common approach is to recast the six second-order
equations into a system of first-order equations, which result in additional auxiliary quantities that must be evolved, and additional
constraints among the new quantities.
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constraint equations to fix m of the dynamical variables, in lieu of the m second-order in time equations that
would otherwise be used to update those quantities.3 Again, the expectation is that a stable numerical code
will, in the continuum limit, provide a solution that is consistent with all of the field equations, including,
in this case, those evolution equations that are not explicitly used in the overall update scheme. (Additionally,
one hopes that violations in the evolution equations will not grow exponentially in time). To date, a significant
majority of numerical codes use free evolution [1], and with the exception of [38] all constrained evolution sim-
ulations have been carried out in 1D or 2D.4

At this point, it is worth noting that there apparently is still an impression in the relativity community as a
whole that elliptic equations are computationally expensive, and are thus to be avoided in numerical evolution
if at all possible. However, provided that appropriate algorithms – such as the multigrid method – are
adopted, this view is not consistent with at least some experience (see also [40] for fast elliptic solvers using
spectral methods). In particular, as we will show below, the solution of the elliptic equations in our adaptive
code requires roughly twice the CPU time required to solve the hyperbolic equations; furthermore, the solu-
tion cost of the elliptics scale linearly with the size of the computational domain. Thus, if one considers that in
a free evolution an equivalent number of hyperbolic equations would need to be solved in lieu of the elliptic
equations, the difference in cost is not a significant issue in deciding whether to tackle a particular problem
using constrained versus free evolution.

We are thus lead to consider AMR algorithms for mixed elliptic/hyperbolic type, where our use of the term
‘‘hyperbolic’’ does not denote any formal definition of hyperbolicity, but instead is used to refer to an equation
that is characterized by locality of influence. Now, a very well known AMR algorithm for hyperbolic equa-
tions is due to Berger and Oliger (B&O) [42]. This algorithm has several important properties that make it
quite useful and efficient in solving certain classes of problems. These properties include dynamical regridding
via local truncation error (TE) estimates, a grid-hierarchy composed of unigrid (single mesh) building blocks,
and a recursive time-stepping algorithm that provides ‘‘optimal’’ efficiency in solving discretized evolution
equations that are subject to a CFL-type stability condition. However, this algorithm, implemented verbatim
for a mixed elliptic/hyperbolic system cannot be expected to work in general, due in part to the non-local nat-
ure of elliptic equations, and in part to the non-linear nature of the elliptic equations that tend to arise in
numerical relativity. The reasons for this are as follows (a more detailed discussion is given in Section 3
and 4). In the B&O time-stepping procedure, a single, large time step is taken on a coarser level before several
smaller time steps are taken on the interior, fine level. This is done so that the solution obtained on the coarse
level can be used to set boundary conditions (via interpolation in time) for the subsequent fine level evolution.
As the hierarchy is generated via local truncation error estimates, the solution obtained on the coarse level in
the vicinity of the fine level boundaries will presumably be sufficiently accurate to allow one to use the coarse
level solution to set fine level boundary conditions without adversely affecting the global solution. If the equa-
tions are hyperbolic, then a poorly resolved solution in the interior region of the coarse level will not have time
to ‘‘pollute’’ the coarse/fine boundary region in only a single coarse level evolution step (and the coarse level
solution is refreshed every time step with the fine level solution in the injection phase of the algorithm). This
last statement is not true for elliptic equations in general, for then poorly resolved source functions in the
interior of the coarse level could globally affect the accuracy of the solution obtained during the coarse level
evolution step. For certain kinds of linear elliptic equations, such as the Poisson equation in Newtonian
gravity, or that arising in the incompressible Navier–Stokes equations, one can circumvent this problem by
taking advantage of conservation laws satisfied by source fields that couple to the elliptic equations (for
example, with the Poisson equation in Newtonian gravity one can use a fine to coarse level injection function
that preserves the matter energy density, and see for example [31] for a method for solving the Navier–Stokes
equations with B&O style time sub-cycling). In general relativity the equations are non-linear, and furthermore
3 An alternative approach that has recently begun to receive some attention is constraint-projection (also called chopped evolution in [29]),
where periodically during a free evolution the constraints are re-solved using a subset of the evolved solution supplied as free data for the
constraint solve, and afterward the evolution is continued with this new ‘‘initial data’’ [35–37].

4 We should also mention here that there are alternative methods for evolving the field equation other than those based on a 3 + 1
decomposition (see [1]); in particular, characteristic or null evolution has proven useful in many situations, and recently an AMR scheme
for characteristic evolution has been proposed [41].
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are coupled in such a manner that it is impossible to isolate such source functions in general. Therefore, to use
B&O AMR in a constrained evolution, in particular its time-stepping algorithm, requires some modifications
to deal with the elliptic equations; these modifications are the prime focus of this paper.

In Section 2, we first review the axisymmetric gravitational collapse code introduced in [32] that was used to
develop the AMR approach described in this paper. This code solves a discretized version of the Einstein–
Klein Gordon system of equations. We then review the original Berger and Oliger algorithm in Section 3,
and then proceed to a description of the modifications we have made to handle elliptic equations in Section
4. Our primary modification involves a split of the solution of the elliptic equations into two phases. During
the first phase, when hyperbolic equations are solved, functions satisfying elliptic equations are extrapolated to
the advanced time level. The second phase is delayed until all finer levels have been evolved in the same fashion
via recursion, and hence all levels at the same or finer resolution as the given one are in sync (i.e., have been
evolved to the same physical time). Then, the elliptic equations are solved over the entire sub-hierarchy from
the given level to the finest, using extrapolated boundary conditions from the parent (coarser) level at interior
coarse-grid boundaries. In Section 5 we present several simulation results, including convergence tests and
comparison with unigrid simulations. Concluding remarks are given in Section 6. All equations and finite-
difference operators are listed in Appendix A, and some additional details of the AMR algorithm are given
in Appendix B.
2. An axisymmetric gravitational collapse code

In this section we briefly review the physical system we are modeling (general relativity with a scalar field
matter source), the PDEs governing the model, and the unigrid numerical code that computes an approximate
finite-difference solution of the PDEs; additional details can be found in [32,43].
2.1. Equations, coordinate system and variables

The Einstein field equations can be written as
Rlm �
1

2
Rglm ¼ 8pT lm; ð1Þ
where Rlm is the Ricci tensor, R � Rl
l is the Ricci scalar (using the Einstein summation convention where

repeated indices are summed over), and we use geometric units where Newton’s constant, G, and the speed
of light, c, are set to 1 [27]. With a massless scalar field U as the matter source, the stress-energy tensor Tlm

is given by
T lm ¼ 2U;lU;m � glmU;cU
;c; ð2Þ
and the evolution of U is governed by the wave equation
�U � Ul
;l ¼ 0. ð3Þ
In these expressions a comma (,) is used to denote a partial derivative, and a semicolon (;) a covariant
derivative.

Restricting attention to axisymmetric spacetimes without angular momentum, and choosing cylindrical
coordinates, (t,q,z,/), adapted to the symmetry, we can write the spacetime metric as
ds2 ¼ �a2dt2 þ w4½ðdqþ bqdtÞ2 þ ðdzþ bzdtÞ2 þ q2e2q�rd/2�. ð4Þ

The axial Killing vector is (o/o/)l and hence all the metric functions a, bq, bz, w and �r, and the scalar field U
depend only on q, z and t. Almost all coordinate freedom has been eliminated by choosing this form for the
metric. What remains to be specified is a time-slicing, and for this we use maximal slicing, defined by
K ¼ 0;
oK
ot
¼ 0; ð5Þ
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where K � Ka
a is the trace of the extrinsic curvature tensor Kb

a of t = const. slices [39]. This gives an elliptic
equation for a (A.2). The constraint equation subset of (1) gives three additional elliptic equations: the Ham-

iltonian constraint, which is viewed as an equation for w (A.3), and the q and z components of the momentum

constraint, which are treated as equations for bq (A.4) and bz (A.5), respectively. One member of the evolution
subset of (1) yields a second-order evolution equation for �r, and the wave equation (3) provides a second-order
hyperbolic equation for U. We convert both of these evolution equations to first-order-in time-form (A.7) and
(A.9) by defining conjugate variables X (geometry) and P (matter) as follows:
5 Th
gravita
aX ¼ ��r;t þ 2bqðq�rÞ;q2 þ bz�r;z �
bq

q

� �
;q

; ð6Þ

P � w2

a
ðU;t � bqU;q þ bzU;zÞ. ð7Þ
Thus we end up with a system of eight equations for eight variables – a, w, bq and bz satisfy elliptic equations,
and �r;X;U and P satisfy hyperbolic equations.
2.2. Boundary conditions

On the axis at q = 0, the following regularity conditions must be enforced in order that spacetime remain
locally flat in the vicinity of the axis:
a;q ¼ 0;

w;q ¼ 0;

bz
;q ¼ 0;

bq ¼ 0;

�r ¼ 0;

X ¼ 0;

U;q ¼ 0;

P;q ¼ 0. ð8Þ
At the outer boundaries q = qmax, z = zmax and z = zmin, for the hyperbolic variables approximate outgoing
radiation (Sommerfeld) conditions are imposed,5 while for the elliptic equations, conditions based on asymp-
totic flatness conditions are used
a ¼ 1;

w� 1þ qw;q þ zw;z ¼ 0;

bz ¼ 0;

bq ¼ 0;

r�r;t þ q�r;q þ z�r;z þ �r ¼ 0;

rX;t þ qX;q þ zX;z þ X ¼ 0;

rU;t þ qU;q þ zU;z þ U ¼ 0;

rP;t þ qP;q þ zP;z þP ¼ 0. ð9Þ
ese conditions assume that spacetime is nearly flat at the outer boundary, and that disturbances (radiation) in both the scalar and
tional fields are propagating purely radially, and have 1/r falloff.



Fig. 1. A pseudo-code description of the iteration we use to solve the system of coupled hyperbolic/elliptic equations on a single mesh.
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2.3. Unigrid numerical scheme

The set of eight PDEs are solved using second-order accurate finite difference (FD) techniques. The elliptic
equations are solved using an FAS (full approximation storage) multigrid algorithm with V-cycling [46,47]. At
t = 0, �r;X;U and P are freely specified, after which the remaining variables a, bq, bz and w are obtained by
solving the corresponding elliptic equations. To evolve the variables with time, the hyperbolic equations are
discretized using an iterative Crank–Nicholson scheme, with Kreiss–Oliger [44] dissipation added to reduce
unwanted (and un-physical) high-frequency solution components (‘‘noise’’) of the FD equations. This itera-
tion involves variables at two time levels: the known solution at t = t0, and the unknowns, solved for using
Newton–Gauss–Seidel relaxation implemented in RNPL [45], at t = t1 = t0 + Dt. After each iteration, the
elliptic variables are updated at t = t1 by applying a single V-cycle. This process is repeated until the infinity
norm of the residual of all equations is below some specified tolerance. The pseudo-code in Fig. 1 summarizes
this iteration sequence.

Specific difference operators used to discretize the equations are summarized in Appendix A.3.

3. The Berger and Oliger AMR algorithm

Here we briefly review some aspects of the B&O AMR algorithm for hyperbolic PDEs that are of relevance
to this paper, in particular the grid hierarchy and time-stepping procedure.

3.1. AMR grid hierarchy

In the Berger and Oliger AMR algorithm, the computational domain is decomposed into a hierarchy of
uniform meshes (see Fig. 2) with the following properties:

� The hierarchy contains ‘f levels. Each level ‘ contains grids of the same resolution – the coarsest grids are in
level 1 (the base grid), the next-coarsest in level 2, and so on until level ‘f, which contains the finest grids in
the hierarchy.
� The ratio of discretization scales h‘/h‘+1 between levels ‘ and ‘ + 1 is called the spatial refinement ratio qs,‘.

qs,‘ is typically an integer greater than or equal to 2. For simplicity, we will also assume that qs,‘ is the same
for all levels, and therefore use the symbol qs to denote the spatial refinement ratio.
� All grids at level ‘ + 1 (child grids) are entirely contained within grids at level ‘ (parent grids). Grids at the

same level may overlap.
� In the simplified variant of the B&O algorithm described here, we require that all grids within the hierarchy

share the same coordinate system. In particular, this implies that all grid boundaries run parallel to the cor-
responding boundaries of the computational domain. In addition, a child grid must be aligned relative to its
parent grid such that all points on the parent grid, within the common overlap region, are coincident with a
point on the child level. The original B&O algorithm allowed for a child grid to be rotated relative to its
parent.



Computational domain, 
covered by a hierarchy 
of uniform grids

Level 1 grid Level 2 grids Level 3 grids

Fig. 2. An example of a Berger and Oliger mesh hierarchy. The hierarchy consists of a number of levels, where each level contains a set of
uniform meshes of the same spatial resolution. Our convention is to let higher level numbers denote levels consisting of grids with higher
resolution (smaller mesh spacing, h), beginning with level 1 for the coarsest mesh. The upper diagram shows the computational domain,
covered by a three-level-deep hierarchy. The plots below this demonstrate how the hierarchy is stored in memory, namely as a collection of
individual grids. Thus a given point,~x in the computational domain can be contained/represented in multiple grids in the Berger and Oliger
scheme.
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The particular grid structure that exists at any given time is calculated by computing local truncation error
estimates, so that at any point~x � ðq; zÞ within the computational domain the finest grid covering that point
has sufficient resolution to adequately resolve all features of the solution there. This is an important property
of the grid hierarchy, not only for the obvious reason of providing the desired resolution everywhere, but it
justifies the use of the B&O time-stepping algorithm to evolve the hierarchy, as we now review.

3.2. The Berger and Oliger time-stepping algorithm

The B&O recursive time-stepping algorithm was designed to solve hyperbolic equations, discretized on the
AMR grid hierarchy. The basic ideas behind this update scheme are as follows. The hierarchy is evolved in
time through a particular sequence of unigrid time-steps, performed on individual grids within the hierarchy.
A time step of size Dt‘ is taken on all grids at level ‘, before a number qt,‘ (the temporal refinement ratio) time
steps of size Dt‘+1 = Dt‘/qt,‘ are taken on level ‘ + 1. The preceding rule is applied recursively, from the coars-
est to finest level in the hierarchy. In general, qt,‘ must be an integer greater than or equal to qs,‘ in order to
satisfy the CFL condition on all levels in the hierarchy if it is satisfied on the coarsest level. As with qs, we only
consider a constant temporal refinement ratio qt for all levels. The reason why a time step is first taken on
coarse level ‘ is that the solution obtained there at time t + Dt‘ is then used to set boundary conditions, via
interpolation in time, for the subsequent time steps on the finer level ‘ + 1 (unless some portion of the fine
level abuts the boundary of the computational domain, in which case the physical/mathematical boundary



Fig. 3. A pseudo-code representation of the Berger and Oliger time stepping algorithm.
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conditions of the original problem can be applied.) It is possible to do this because the solution obtained on
the coarse level in the vicinity of the finer level boundary will be as accurate, to within the specified truncation
error, as a putative solution would have been that was obtained on a fine level encompassing the entire com-
putational domain.6 The solution obtained on the coarse level interior to this boundary will not be as accurate;
however, the assumed hyperbolic nature of the PDEs will protect this inaccuracy from polluting the coarse/
fine boundary region within a single coarse level time step.

After qt time-steps on level ‘ + 1, when the solution on grids at levels ‘ and ‘ + 1 are again in synchrony,
grid functions from level ‘ + 1 are injected into the coarse grids at level ‘, in the region of overlap between the
two levels. Thus, the most accurate solution available at a given point~x is continuously propagated to all grids
in the hierarchy that contain~x. Injection simply consists of copying values from level ‘ + 1 to level ‘ at com-
mon points (in the more general B&O algorithm, where finer levels can be rotated relative to coarser levels, the
injection step requires some form of interpolation). Fig. 3 is a pseudo code description of the B&O time-
stepping procedure just described.

4. Berger and Oliger style AMR for constrained evolution

The locality argument given in the preceding section to justify the use of the B&O evolution algorithm is
only applicable to hyperbolic equations, for then the finite speed of propagation prevents contamination of the
solution in the boundary region of a coarse level by a poorly resolved solution in the interior. Solutions to
elliptic equations do not share this property, and therefore it is not feasible to solve for such equations on
the coarse grid alone, with the intention of supplying boundary conditions for subsequent fine grid time steps.7

One way to circumvent this problem is to abandon the B&O recursive time-stepping procedure. In other
words, one could evolve the entire hierarchy forward in time with a global time step, for example by perform-
6 Assuming that the specified maximum TE estimate used in the construction of the grid hierarchy is sufficiently small that the solution is
within the convergent regime, and hence the TE estimate is a good approximation to the actual solution error.

7 Except, as mentioned in Section 1, for certain kinds of linear systems, where the source terms appearing in the elliptic equations can
cleanly be identified and coarsened in a manner that conserves the source ‘‘energy density’’. This is not possible for the Einstein equations,
which are fundamentally non-linear, since the gravitational field acts as its own source.
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ing a Crank–Nicholson style iteration as in the unigrid code (see Section 2.3). A major drawback to this
method is that, to satisfy the CFL condition, the global time step will need to be set to kDq(‘f), where Dq(‘f)
is the cell size on the finest level ‘f in the hierarchy, and 0 < k [ 1 is a constant. This would require that one
take q

‘f�‘
t � 1 additional time steps at level ‘ for each time step that the usual B&O algorithm would have

taken.
The technique that we propose here to incorporate elliptic equations into the standard B&O time-stepping

framework is to employ a combination of extrapolation and delayed solution of the elliptic variables (see
Fig. 4). Simply stated, on coarse levels one does not solve the elliptic equations during the evolution step of
Fig. 4. A pseudo-code representation of the modified Berger and Oliger time stepping algorithm described in Section 4; compare to the
original algorithm in Fig. 3. Notice that here we have expanded the ‘‘perform 1 evolution step. . .’’ statement in Fig. 3 to highlight the fact
that in the modified algorithm the finest level is treated differently than the coarser levels then (though the particular details of the evolution
step are not significant – for concreteness we list the same scheme as used in the unigrid code). Here we also show where the truncation
error estimate is computed when using a self-shadow hierarchy (see Appendix B).
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the algorithm; rather, one extrapolates the corresponding variables to the advanced time from the solution
obtained at earlier times. The solution of the elliptic equations is delayed until after the injection of fine grid
(level ‘ + 1) values into the parental coarse grids (level ‘). At that stage, all levels from ‘ to ‘f are in sync, and
the elliptic equations are solved over the entire resulting subset of the hierarchy, with boundary conditions on
AMR boundaries of level ‘ set via extrapolation. This ensures that all details from finer grids interior to level ‘
are represented in the solution.

One of the non-trivial aspects of this technique is the method used to extrapolate the elliptic variables,
which we now describe. We use linear (second order) extrapolation in time, with periodic corrections to try
to account for changes that occur upon global multigrid solves. For level ‘, ‘ > 1, the two past-times used
in the extrapolation are the two most recent times when levels ‘ and ‘ � 1 were in sync (thus, at times when
a solution of the elliptic variables involving at least levels ‘ � 1 to ‘f was obtained); in other words, every
qt steps we save the elliptic variables for use in extrapolation8 (see Appendix B.5 for a pseudo-code description
of how the past time levels are initialized for the very first time step of evolution). For level ‘ = 1, the two most
recent time levels are used for extrapolation.9 The correction, applied only to levels ‘ > 1, is calculated as fol-
lows. Whenever level ‘ is in sync with level ‘c, ‘c + 1, . . . ,‘f + 1,‘f, where ‘c < ‘, a multigrid solve takes place
over levels ‘c, . . . ,‘f. Denote by f̂ ‘ðtÞ the value of a variable f at level ‘, calculated via extrapolation from
f(t � qtDt‘)‘ and f(t � 2qtDt‘)‘, and let f‘(t) denote the value of the same variable after the multigrid solve
at time t (note that for simplicity in notation we have dropped the spatial coordinate dependence of the
variable f). As illustrated in Fig. 5, the correction contains two components:
8 Ea
9 Th

error e
only u
Df‘ðtÞ � f‘ðtÞ � f̂ ‘ðtÞ and f c‘ðtÞ �
Df‘ðtÞ
q‘�‘c

t

; ð10Þ
which are used to change the past time value f‘(t � qtDt‘) as follows:
f‘ðt � qtDt‘Þ ! f‘ðt � qtDt‘Þ þ Df‘ðtÞ � fc‘ðtÞ ð11Þ

The logic behind this form of correction stems from a couple of observations about how the re-solved solution
differs from the extrapolated solution, and how some adaptive solutions differ from unigrid solutions of com-
parable resolution. First, in general D f‘(t) is (in a loose sense) proportional to ‘c � ‘; i.e., the more levels over
which the elliptic equations are re-solved, the larger the change in the interior, finer level ‘ solution. However,
the change in the interior part of the solution induced by the global solve tends to be a near constant shift,
leaving finer details of the interior solution unchanged. Second, the local ‘‘velocity’’ f‘(t) � f(t � qtDt‘)‘ (cal-
culated prior to the correction) tends to be represented quite accurately in the adaptive solution scheme. There-
fore the Df‘(t) part of the correction preserves this velocity for subsequent extrapolation, and is in fact essential
for the stability of the algorithm with a deep hierarchy, as then the global shift is often larger in magnitude
than the local velocity. The second part of the correction fc‘(t) is an attempt to improve the accuracy of
the extrapolation, for if in hindsight the quantity fc‘(t) had been added to f at each one of the q‘�‘c

t intermediate
time steps between solves over levels ‘c..‘f, then Df‘(t) would be zero at time t (ignoring, of course, the effect
that this putative correction would have had on the solution).

One last comment regarding the extrapolation: on the finest level of the hierarchy, the elliptic equations are
solved via the usual interleaved Crank–Nicholson/V-cycle iteration as discussed in Section 2.3; then the
extrapolation simply serves to set boundary conditions.

5. Results

The extrapolation technique described in the previous section is rather ad hoc, though both the choice of
which past times to extrapolate from and the use of corrections play a significant role in the stability and accu-
rly experiments using the values from the two most recent time steps of level ‘ for extrapolation resulted in unstable evolution.
ough note that in our algorithm level 1 is always fully refined because of the self-shadow hierarchy mechanism we use for truncation
stimation (see Appendix B.1), and therefore level 2 should be considered the ‘‘true’’ coarsest level of the hierarchy (in effect, level 1 is
sed for truncation error estimation).



Fig. 5. An illustration of the technique used to extrapolate and solve for elliptic variables within the AMR framework. In this example, we
show the evolution of an elliptic variable f‘ from t � D t to t, assuming that qt = 2 and ‘ < ‘f. Initially (step 1), f‘ at t is calculated via linear
extrapolation from data at past times t � 2Dt and t � 4Dt (quantities used for extrapolation are depicted by boxes in the diagram). This
value, labeled f̂ ‘ðtÞ, is used during the solution of the hyperbolic variables (via Crank–Nicholson iteration (CN) here). At time t, we
assume levels ‘and ‘c = ‘ � 1 are in sync, and so after the CN iteration (and after the equations on finer levels ‘ + 1..‘f have been evolved
to t) the elliptic equations are re-solved over levels ‘c..‘f (step 2). This results in a change in the value of f from f̂ ‘ðtÞ to f‘(t) (for simplicity
we assume that a similar change that occurred at time t � 2Dt is zero). This change is propagated back to t � 2Dt, so that the same velocity
v, modulo a correction fc‘(t), will be used to extrapolate f to t + Dt (step 3). Here, since ‘ � ‘c = 1, the correction is such that one is
effectively extrapolating from t � 4Dt and t to time t + Dt; this would not be the case otherwise – see (10,11). (If ‘ = ‘f, then the elliptic
variables are solved within the CN iteration, and the value obtained afterward is used for f̂ ‘ðtÞ.)
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racy of the adaptive evolution code. In this section we present some results showing the effectiveness of the
algorithm.

5.1. Comparison with a unigrid evolution

The first test of the algorithm presented here is a comparison of unigrid evolutions to a similar AMR evo-
lution (test results on the convergence properties of the unigrid code can be found in [32]). Specifically, we
compare an evolution obtained with the AMR code to a unigrid evolution, where the entire unigrid mesh
is given the resolution h of the finest level in the AMR hierarchy. To gauge how well the AMR solution
approximates the unigrid one, we then compare the unigrid solution to that obtained with two additional
unigrid runs, with resolutions of 2h and 4h. In certain respects this is not a very stringent test, as limited
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computational resources do not allow us to run using very high resolution unigrid simulations (which of
course is the motivation for pursuing AMR). Also, the accuracy of the AMR solution will largely depend
on the structure of the grid hierarchy, which is (predominantly) controlled by the maximum allowed TE. Thus,
in principle one could obtain better agreement between the AMR and unigrid simulations by decreasing the
TE parameter while keeping the maximum depth of the AMR hierarchy fixed. Nevertheless, this comparison
does demonstrate that the adaptive algorithm works in practice.

The initial data for this example is a time symmetric scalar field pulse:
Fig. 6.
the ma
AMR
513 · 1
Uð0; q; zÞ ¼ A exp � q2 þ z2

D2

� �
; ð12Þ
with A = 0.23 and D = 1.0 (all other free fields are set to 0 at t = 0). This amplitude is sufficiently large that the
solution is in the non-linear regime (and thus close to forming a black hole). The outer boundary is at
qmax = zmax = �zmin = 10. The maximum value for the TE is set to 10�5 (only U and P are used in the cal-
culation of the TE – see Appendix B). The resolution of the base grid is 65 · 129, with qs = 2, and up to three
additional levels of refinement. Thus, level 4 has an effective resolution of 513 · 1025, and so we choose uni-
grid comparison runs with resolutions of 513 · 1025 (h), 257 · 513 (2h) and 129 · 257 (4h). The Courant factor
is k = 0.3 for all runs, and the physical time at the end of each simulation is t � 2.8 (which corresponds to 480
time steps on the level with the finest resolution).

Fig. 6 shows a plot of the conformal factor w at t = 2 from the adaptive simulation, with grid bounding
boxes overlaid to give an idea of the structure of the hierarchy adaptively generated by the AMR code.
Fig. 7 shows ‘2 norms of the differences between the solutions generated by the h resolution unigrid simulation
and the two lower resolution unigrid and adaptive simulations. For brevity we only show differences for the
four elliptic variables; differences in the hyperbolic variables exhibit similar behavior. What Fig. 7 demon-
strates is that, compared to the h unigrid simulation, the adaptive solution has accuracy comparable to the
2h simulation, and significantly greater accuracy than the 4h simulation, even though (as illustrated in
Fig. 6) the majority of the coordinate domain in the adaptive solution is spanned by a grid with less resolution
that either that of the 2h or 4h simulations. Fig. 8 is a comparison of the time-difference of the maximum (or
minimum, as appropriate) of the elliptic variables w, a, bq and bz from the h unigrid and adaptive simulations.
The time-difference Df/Dt is calculated as (fn+1 � fn)/Dt, where fn denotes one of the quantities, w, a, bq or bz at
time step n. Fig. 8 demonstrates two interesting aspects of the extrapolation scheme of the adaptive code.
First, the high frequency temporal ‘‘noise’’ that is apparent in the adaptive solution of the elliptic variables
(and that has been exaggerated in the figure by taking a time-difference) does not adversely affect the accuracy
of the solution on average. Second, the presence of such noise suggests why linear extrapolation at level ‘ from
the most recent times of level ‘ is unstable; however, it is not so obvious why extrapolation from past times
that are in-sync with a parent level (‘ � 1 or less) results in stable evolution. Note that with the particular
system of equations solved for here (summarized in Appendix A) no explicit time derivatives of any elliptic
A surface plot of w at t = 2 from the adaptive simulation discussed in Section 5.1, where the height of the surface is proportional to
gnitude of w (ranging approximately from 1 at the outer boundary to 1.5 at the origin q = z = 0). Overlaid on the surface are the
grid bounding boxes – the smallest, interior box has the finest resolution, corresponding to an effective unigrid resolution of
025.



Fig. 7. Comparison between unigrid and adaptive simulation results for the elliptic variables w, a, bq and bz, as discussed in Section 5.1.
Shown here are ‘2 norms of differences between the solution generated by the h resolution (513 · 1025) unigrid simulation and each of the
solutions produced by two lower resolution unigrid simulations, 2h (257 · 513) and 4h (129 · 257), and an adaptive simulation (see Fig. 6 for
a representative sample of the mesh structure from the AMR solution at t = 2, where the base level 1 has resolution 65 · 129, and the finest
level 4 has the same resolution as the h unigrid run). Thus, we are using the h unigrid solution as a benchmark, and the plots show that the
adaptive solution is of comparable accuracy to the 2h unigrid solution, and of significantly greater accuracy than the 4h unigrid solution,
despite that the majority of the coordinate domain of the AMR solution is covered by grids with mesh spacing hl satisfying hl > 4h > 2h.

Fig. 8. Comparison between h resolution (513 · 1025) unigrid and adaptive simulations results as discussed in Section 5.1, showing the
time-difference of the maximum (or minimum, as appropriate) of the elliptic variables w, a, bq and bz. For clarity, only about 50 time-steps
are shown, and the differences for a and w have been scaled by constants to fit all the plots on the same vertical scale. The time-difference
Df/Dt is calculated as (fn+1 � fn)/Dt, where fn labels one of the above quantities at time step n. These figures demonstrate a couple of
interesting aspects of the extrapolation scheme for the adaptive code. First, the high frequency ‘‘noise’’ that is apparent in the adaptive
solution (which has been exaggerated here by taking a time-difference) does not adversely affect the accuracy of the solution on average.
Second, the presence of such noise suggests why linear extrapolation from the most recent time levels is unstable (though it is not obvious
why extrapolation from past time levels that are in-sync with a parent level results in stable evolution).
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quantities appear. Furthermore, during the evolution phase of the algorithm (see Section 2.3), the Crank–
Nicholson differencing scheme only couples the time average (over two time steps) of elliptics variables to
the hyperbolic equations, providing a certain amount of temporal smoothing. Thus, the results shown in



Table 1
Timing information for the tests described in Section 5.1

Unigrid-4h Unigrid-2h Unigrid-h AMR

Runtime (s) 4.45 · 102 4.48 · 103 3.31 · 104 2.19 · 103

Total number of grid points 4.01 · 106 3.18 · 107 2.54 · 108 1.97 · 107

Average time per grid point (ls) 111 141 131 111

The runtime is the wall time taken (on a 2.4 GHz Intel XEON processor), in seconds, for each simulation, including initial data calculation
and evolution. The total number of grid points is a count of all the grid points, in space and time, at which a solution was obtained during
the simulation. This includes the grid points used during calculation of the initial data, and the calculation of the initial hierarchy for the
adaptive run. The average time per grid point (in microseconds) is the runtime divided by the total number of grid points. What these
numbers suggest (see also Table 2) is that the computational cost of this solution method scales approximately linearly with the total
number of grid points, and that the computational overhead for the adaptive algorithm is negligible. Note however that we have not taken
into account that in the adaptive hierarchy certain coordinate locations are covered by multiple points, and therefore there is some
‘‘wastage’’ in the AMR calculation. In this particular simulation, at any one time between 15% and 20% of the points in the adaptive
hierarchy were redundant, and this should be viewed as an additional (and unavoidable) overhead to the per-point cost of this Berger and
Oliger style AMR algorithm.
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Fig. 8 suggest that modifications to the extrapolation scheme may be needed for systems of PDEs that use
other methods to difference in time, or if time derivatives of variables solved for using elliptic equations couple
to the hyperbolic equations.

5.1.1. Timing information

We conclude this section by presenting timing information in Table 1 above for the comparison test just
described. This serves to show that, at least for the elliptic-hyperbolic system considered here, the overhead
of the AMR algorithm is negligible, and that the solution time scales roughly linearly with the total number
of grid points in the discrete solution. See also Section 5.2.1, which contains more detailed information on the
percentage of time spent in various stages of the algorithm for the test simulations presented in the next
section.

5.2. Convergence and consistency tests

In this section we present some convergence test results, providing evidence that the overall AMR solution
scheme is stable and convergent. We also compare the solution of the conformal factor w to that obtained in a
partially constrained evolution, where a, bq and bz are solved as described in Section 2 via the slicing condition
and momentum constraints respectively, but where a hyperbolic evolution equation (A.10) obtained from the
maximal slicing condition K = 0, rather that the elliptic Hamiltonian constraint, is now used to update w.10 In
the continuum limit, and the limit where the outer boundary position goes to infinity, the solution obtained
from fully and partially constrained evolution should (assuming both numerical implementations are consis-
tent and stable) converge to a unique solution of the Einstein equations. In the partially constrained evolution,
w is evolved as a hyperbolic variable, and thus within the traditional B&O time stepping framework; however,
during fully constrained evolution w is solved for using an elliptic equation using the new AMR technique.
Thus, demonstrating convergence to a consistent solution for w is a rather non-trivial test of the modified
AMR algorithm.

We use the following technique to calculate convergence factors for the adaptive code. We choose a ‘‘mod-
est’’ value (10�3 in this case) for the maximum allowed TE (calculated as described in Appendix B.1), run a
simulation, and save a copy of the dynamical grid structure produced during the evolution. The solution on
this grid hierarchy will serve as the coarsest resolution simulation, labeled 4h. For the higher resolution sim-
ulations 2h and h, We rerun the code with identical initial data, and use the same grid hierarchy produced by
the 4h case except that the resolution of all grids in the hierarchy is doubled (quadrupled) for the 2h (h)
simulation; the Courant factor is kept constant, hence the number of time-steps taken per level also doubles
10 That an independent equation (other than the Hamiltonian constraint) exists for w is due to the over-determinism in the Einstein
equations, as discussed in Section 1.
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(quadruples). Then, by assuming the usual Richardson expansion, one can compute a convergence factor Qh
f

for a variable f via
11 Th
maxim
Qh
f �
jjf4h � f2hjj2
jjf2h � fhjj2

; ð13Þ
where f4h is the solution on the 4h hierarchy, and similarly for f2h and fh. In (13), the subtraction of grid func-
tions is only defined at common points between the hierarchies (every other point of the finer mesh in this
case). The ‘2 norm of a grid function f is taken point-wise as follows:
jjf jj2 ¼
P

‘

P
g

P
i;jf‘ðqg þ iDq‘; zg þ jDz‘Þ2

� �1=2

P
‘

P
g

P
i;j1

; ð14Þ
where the sum over ‘ is the sum over all levels in the hierarchy where f is defined (so for the differences in (13)
this will be all levels except the finest), the sum over g is over all grids at the given level, and the sum over (i, j)
covers all points within a given grid, where (qg, zg) is the location of the (i = 0, j = 0) point. Note that such a
point-wise norm is biased (compared to an area-weighted norm, such as an integral norm) toward the highest
resolution region of the domain, where most of the points are clustered. This is desirable for the solution pre-
sented here, where the region of high refinement is centered on a very small part of the domain, and outside of
this region the solution is slowly varying and well represented by the coarse mesh. An area-weighted norm in
this case would almost completely ignore information on the finest levels. For a ‘‘residual’’ function R, in other
words a function that should converge to zero in the limit as h! 0, we use the following expression for its
convergence factor:
Qh
R �
jjR2hjj2
jjRhjj2

. ð15Þ
For a second-order accurate finite difference scheme one expects both Qh
f and Qh

R to approach 4 asymptotically.
The initial data for this example is also a time symmetric scalar field pulse given by (12), with A = 0.25 and

D = 0.5, and all other free fields set to 0 at t = 0. Adopting apparent horizon detection as our operative def-
inition of black hole existence, in this case a black hole (with mass M � 0.12 in geometric units) does form by
t � 2.5.

Computationally, relevant parameter settings are as follows. The outer boundary is at qmax = zmax =
�zmin = 32, and for the 4h simulation the resolution of the base grid is 65 · 129. The maximum value for
the TE is set to 10�3; this results in a grid hierarchy containing three additional levels (qs = 2:1) at t = 0,
and six additional levels at the end of the simulation.11 See Fig. 9 for sample plots of w at t = 0 and t = 3
to illustrate the grid hierarchy. The effective finest grid resolution for the h simulation is roughly
16,000 · 32,000, making it impractical to do a unigrid comparison in this case. Fig. 10 shows the calculated
convergence factors for the four elliptic quantities w, a, bq and bz, and Fig. 11 contains the convergence factor
for wc � wf, where wc is the conformal factor w from fully constrained evolution, and wf is the conformal fac-
tor calculated from the free evolution of w. These plots show reasonable convergence and consistency results,
with a couple of caveats discussed in the captions.

5.2.1. Timing information

Table 2 contains some timing information for the set of simulations described in this section. The major
point we would like to emphasize with this table (see the caption for more information) is that solution of
the elliptic equations is not significantly more expensive than the solution of the hyperbolic equations in
our model; moreover the scaling of the solution time with problem size is close to linear, again for both types
of equations. This is not surprising or new in any sense, as one can immediately predict this ‘‘Golden Rule’’
scaling behavior from Brandt’s work on multi-level adaptive (MLAT) schemes [46]; indeed, that elliptic equa-
e increase in hierarchy depth that occurs when black holes form is partly due to the ‘‘grid-stretching’’ phenomena associated with
al slicing.



Fig. 9. Surface plots of w at t = 0 and t = 3 from the h adaptive simulation discussed in Section 5.2, where the height of each surface is
proportional to the magnitude of w (ranging approximately from 1.00 (1.00) at the outer boundary to 1.24 (3.20) at the origin q = z = 0 at
t = 0 (t = 3)). Overlaid on the surfaces are the AMR grid bounding boxes – there are four levels of 2:1 refinement at t = 0, seven levels at
t = 3, and the base (coarsest) level has a resolution of 257 · 513.

Fig. 10. Convergence factors (13) for the variables w, a, bq and bz, calculated from the fully constrained adaptive simulations discussed in
Section 5.2. For second-order accurate finite differencing one would expect Q � 4. Time symmetric initial data was used in this case, for
which the exact solution for bq and bz at t = 0 is 0, hence the anomalous spikes for the corresponding convergence factors then (i.e.,
Q � 0/0). A black hole forms at t � 2.5 (denoted by the dashed vertical line), after which significant gradients in metric functions develop
due to the ‘‘grid-stretching’’ property of maximal slicing as the spacetime singularity is first approached, but ultimately avoided; this
appears to be the dominant factor causing these three simulations (h, 2h and 4h) to start to depart from the convergent regime (though for
any given resolution one expects departure from convergence to eventually occur). We cannot explain why the convergence factor is
somewhat greater than four during intermediate times in the simulation, however this is not atypical behavior in simulations we have
looked at.
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Table 2
Timing information for the fully constrained simulations described in Section 5.2

Runtime (s) AMR-4h AMR-2h AMR-h

3.38 · 102 2.00 · 103 1.40 · 104

Percentage of runtime solving elliptics equations 68.2 60.3 50.8
Percentage of runtime solving hyperbolic equations 24.4 33.1 43.1
Percentage of runtime in AMR related functions 3.4 3.4 3.8
Percentage of runtime in miscellaneous functions 4.0 3.2 2.3

The runtime is the wall time taken (on a 2.4 GHz Intel XEON processor), in seconds, for each simulation, including initial data calculation
and evolution. For this set of simulations, the total number of grid points in space and time (compare Table 1) increases by a factor of 8
from the 4h to 2h simulation, and again by a factor of 8 from the 2h to h simulation. Hence the runtime should increase by a corresponding
factor for an algorithm whose cost scales linearly with the number of points – we do, approximately, see this behavior. The next four rows
give a rough breakdown of the percentage of total time spent in each of the key parts of the program (calculated using the function
profiling option of Portland Group’s pg compilers). The two main points we want to stress with this data is that the scaling (with problem
size) of the adaptive multigrid algorithm used to solve the elliptic equations is close to linear, and is not significantly slower than the
solution of the hyperbolic equations. Second, the cost of AMR related functions (including regridding, truncation error estimate calcu-
lation, interpolation and injection functions) is quite small compared to the cost of solving the numerical equations. The miscellaneous
functions of the last row include calculations of diagnostic quantities, the cost of the apparent horizon finder (that searches for the
presence of black holes), and I/O.

Fig. 11. Convergence factors (15) for the assumed residual quantity wc � wf from the adaptive simulations discussed in Section 5.2, where
wc is the conformal factor w from the fully constrained simulation, and wf is the conformal factor obtained via free evolution. At t = 0 both
wf and wc are calculated by solving the Hamiltonian constraint, hence the anomalous behavior in the convergence factor then. Moreover,
the boundaries conditions employed are only consistent with the full set of Einstein equations in the limit where the outer boundary
position goes to infinity [32]. Early on in the simulation this inconsistency produces a difference in wc � wf that is of the same magnitude as
the truncation error of the h simulation, and this causes Qh

wc�wf
to start below 4 near t = 0. However, as evolution proceeds and

gravitational collapse occurs, the gradients in w in the central region grow rapidly, and the truncation error component of Qh
wc�wf

begins to
dominate. As with the results shown in Fig. 10, grid-stretching effects apparently cause the decrease in Q after the black hole forms near
t � 2.5. However, in this plot we can see a trend to improved convergence results at any given time when resolution is increased from Q2h

to Qh.
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tions could be solved in linear time within the context of general relativity was already demonstrated in the
early 1980s [48,49].

6. Conclusions

In this paper we have discussed modifications of the standard Berger and Oliger adaptive mesh refinement
method, so that the resulting algorithm can solve systems resulting from the discretization of coupled,

non-linear, hyperbolic and elliptic equations in linear time. Moreover, as we have retained recursive time-
stepping, the algorithm is still optimally efficient in solving systems that contain hyperbolic equations which
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are subject to a CFL stability condition. The initial application that drove development of the method was a
study of critical gravitational collapse of the scalar field in axisymmetry [32,11,12]. This involved the approx-
imate solution of a mixed elliptic/hyperbolic system: the coupled Einstein–Klein Gordon system in a certain
coordinate system, with a particular choice among the overdetermined set of PDEs at our disposal to advance
the solution in time. However, the algorithm is sufficiently general that it can be applied to a variety of similar
systems of partial differential equations. For example, there are numerous problems in astrophysics that need
to evolve various matter equations coupled to gravity and/or the electromagnetic field, including cosmological
structure formation, stellar evolution, supernovae, jets, accretion disks, etc. Many of these scenarios have a
large range of spatio-temporal length scales that need to be modeled, and can benefit tremendously from
Berger and Oliger style AMR. In some situations Newtonian gravity is sufficient to accurately describe the
physics, and due to the linearity of the Poisson equation, modifications to Berger and Oliger as described here
are not strictly necessary. However, some of the most interesting astrophysical events occur in regions where
gravity is sufficiently strong that non-linear effects become important, and the algorithm described in this
paper could be of significant use in such simulations.12

With regards to new applications of this algorithm in numerical relativity, of particular interest is con-
strained evolution in 3D, which, on the basis of substantial 1D and 2D evidence [50–56,7,57,58,10,
13,61,62,32,11,63,12], we have long felt has great potential for the study of problems such as black hole col-
lisions, critical gravitational collapse, and the structure of black hole interiors. All of the aforementioned lower
dimensional studies made use of the symmetries in the problem, in addition to particular coordinate choices,
to obtain well-posed coupled elliptic/hyperbolic systems, and so there is some skepticism in the community
about whether constrained evolution can be implemented for general problems in 3D. Though recently a fully
constrained 3D evolution scheme was proposed in [38], based on the Dirac gauge and spherical coordinates
(the implementation presented in [38] made use of a multidomain spectral solution method). A potential dis-
advantage of this system is that it is not obvious how to generalize it beyond spherical coordinates, which are
not well adapted to studying problems that are far from spherical symmetry. A formulation of the Einstein
equations that is amenable to 3D constrained evolution and can be written in Cartesian coordinates was
described in [64]. Both of these formulations are prime candidates for numerical implementation using our
AMR algorithm.
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Appendix A. Equations and finite difference operators

Here, for completeness, we list all of the equations introduced in Section 2, and the specific set of finite
difference operators used to discretize them.

A.1. Equations

Summarizing Section 2, the four-metric is
12 We
gravity
ds2 ¼ ð�a2 þ w4½ðbqÞ2 þ ðbzÞ2�Þdt2 þ 2w4ðbqdqþ bzdzÞdt þ w4ðdq2 þ dz2 þ q2e2q�rd/2Þ. ðA:1Þ
note that even the conformally flat approximation to the field equations, which seems to be an adequate extension of Newtonian
for a certain class of problems [59,60], requires solution of a non-linear elliptic equation.
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The conjugate variable to the scalar field U is P (A.8), and the conjugate to �r is X (6). All of these variables are
functions of q, z and t. The maximal slicing condition results in the following elliptic equation for a:
2ðqa;qÞ;q2 þ a;zz þ a;q 2
w;q

w
þ ðq�rÞ;q

� �
þ a;z 2

w;z

w
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;q � bz
;zÞ

2 þ ðbq
;z þ bz

;qÞ
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� w4

6a
½2aqXþ bq

;q � bz
;z�

2 � 16paP2 ¼ 0. ðA:2Þ
The Hamiltonian constraint is
8
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The q and z momentum constraints are
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The definition of X (6) gives an evolution equation for �r:
�r;t ¼ 2bqðq�rÞ;q2 þ bz�r;z � aX� bq
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. ðA:6Þ
The evolution equation for X is
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� �
þ 64p

a

w4
qðU;q2Þ2. ðA:7Þ
The definition of P and the wave equation for U give
U;t ¼ bqU;q þ bzU;z þ
a

w2
P; ðA:8Þ
and
P;t ¼ bqP;q þ bzP;z þ
1

3
PðaqXþ 2bq

;q þ bz
;zÞ þ

1

w4
½2ðqaw2U;qÞ;q2 þ ðaw2U;zÞ;z� þ

a

w2
½ðq�rÞ;qU;q þ ðq�rÞ;zU;z�.

ðA:9Þ

The maximal slicing condition K = 0 gives an independent hyperbolic evolution equation for w:
_w;t ¼ w;zb
z þ w;qb

q þ w
6
ð2bq

;q þ bz
;z þ qaXÞ. ðA:10Þ
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A.2. Boundary conditions

The set of axis regularity conditions, applied at q = 0 are:
a;q ¼ 0;

w;q ¼ 0;

bz
;q ¼ 0;

bq ¼ 0;

�r ¼ 0;

X ¼ 0;

U;q ¼ 0;

P;q ¼ 0. ðA:11Þ
The outer boundary conditions used, applied at q = qmax, z = zmax and z = zmin, are:
a ¼ 1;

w� 1þ qw;q þ zw;z ¼ 0;

bz ¼ 0;

bq ¼ 0;

r�r;t þ q�r;q þ z�r;z þ �r ¼ 0;

rX;t þ qX;q þ zX;z þ X ¼ 0;

rU;t þ qU;q þ zU;z þ U ¼ 0;

rP;t þ qP;q þ zP;z þP ¼ 0. ðA:12Þ
A.3. Finite difference operators

In this section, we write out all of the difference operators used to convert the differential equations in the
previous section to finite difference equations. At all interior points of the mesh, the centered forms of the der-
ivate operators are used, and along boundaries, backward and forward operators are used as appropriate.
Kreiss–Oliger style dissipation is applied to evolution equations, at interior points at least two grid points
inward, in the direction of the stencil, from any boundary. For �r and X, we linearly interpolate in q at location
Dq (and optionally at 2Dq as well), using the values of these variables at q = 0 and q = 2Dq (or q = 3Dq).
Below, we use the notation ui,j to label a point in the mesh corresponding to coordinate location (i � 1)Dq,
zmin + (j � 1)Dz (except for the coordinate variable q, where it is sufficient to use qi). For time derivatives,
we use un

i;j to denote the retarded time level, and unþ1
i;j the advanced time level. All of the finite-difference oper-

ators are second-order accurate.

A.3.1. Centered difference operators

uiþ1;j � ui�1;j
u;q !
2Dq

; ðA:13Þ

u;z !
ui;jþ1 � ui;j�1

2Dz
; ðA:14Þ

u;qq !
uiþ1;j � 2ui;j þ ui�1;j

ðDqÞ2
; ðA:15Þ

u;zz !
ui;jþ1 � 2ui;j þ ui;j�1

ðDzÞ2
; ðA:16Þ
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u;q2 ! uiþ1;j � ui�1;j

q2
iþ1 � q2

i�1

; ðA:17Þ

ðu=qÞ;q !
uiþ1;j þ ui;j

2Dqðqi þ Dq=2Þ �
ui;j þ ui�1;j

2Dqðqi � Dq=2Þ ; ðA:18Þ

ðu;q=qÞ;q !
uiþ1;j � ui;j

ðDqÞ2ðqi þ Dq=2Þ
� ui;j � ui�1;j

ðDqÞ2ðqi � Dq=2Þ
; ðA:19Þ

u;t !
unþ1

i;j � un
i;j

Dt
. ðA:20Þ
A.3.2. Forward-difference operators
u;q !
�uiþ2;j þ 4uiþ1;j � 3ui;j

2Dq
; ðA:21Þ

u;z !
�ui;jþ2 þ 4ui;jþ1 � 3ui;j

2Dz
. ðA:22Þ
A.3.3. Backward-difference operators
u;q !
ui�2;j � 4ui�1;j þ 3ui;j

2Dq
; ðA:23Þ

u;z !
ui;j�2 � 4ui;j�1 þ 3ui;j

2Dz
. ðA:24Þ
A.3.4. Dissipation operators
The following dissipation operator is applied in the q direction:
�d

16
ðui�2;j � 4ui�1;j þ 6ui;j � 4uiþ1;j þ uiþ2;jÞ ðA:25Þ
and in the z direction:
�d

16
ðui;j�2 � 4ui;j�1 þ 6ui;j � 4ui;jþ1 þ ui;jþ2Þ; ðA:26Þ
where 0 6 �d 6 1.

Appendix B. Additional algorithm details

This appendix contains descriptions of a few additional features of the AMR algorithm described in the
paper: computing TE estimates using a self-shadow hierarchy, details of how the multigrid algorithm is
applied to an adaptive hierarchy, and a description of the particular set of interpolation and restriction oper-
ators used.

B.1. A self-shadow hierarchy for computing truncation error estimates

A self-shadow hierarchy is a simplification of the idea of using a shadow hierarchy to do truncation error
estimation. A shadow hierarchy is a coarsened (usually with qs = 2:1 version of the main hierarchy). Both hier-
archies are evolved simultaneously, and the function values of a given grid in the shadow hierarchy are
replaced with those of the corresponding grid in the main hierarchy whenever the two are in sync. For exam-
ple, with qt = 2:1, each time step of a shadow grid corresponds to two time steps of the main grid, and the
shadow is updated every two main-grid time steps. A TE estimate can therefore readily be computed by com-
paring function values in the shadow with corresponding values in the main hierarchy just before the update
step.
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Notice however, that within the recursive time-stepping flow of the Berger and Oliger algorithm, informa-
tion for computing a TE estimate is ‘‘naturally’’ available prior to the fine-to-coarse grid injection step (see
Fig. 4). The coarse level ‘ is evolved independently of the fine level ‘ + 1 from t0 to t0 + Dtc, where Dtc is
the coarse level time step. Also, at t = t0 the level ‘ grid functions are restricted copies of level ‘ + 1 grid func-
tions in the region of overlap O‘þ1

‘ . Therefore, prior to injection at time t0 + D tc, the difference in an evolved
variable f in levels ‘and ‘ + 1, within the region O‘þ1

‘ , can serve as an approximation to the truncation error
ss(f‘+1) for f at level ‘ + 1:13
13 In
shadow
(Dtc/qs
ssðf‘þ1Þ � f‘þ1 � f‘. ðB:1Þ

Therefore, for levels ‘ > 1, one can use (B.1) as the basis for computing truncation error estimates, without the
need to refer to a shadow hierarchy (i.e., the main hierarchy ‘‘casts its own shadow’’, hence the name self-
shadow hierarchy). This method cannot give a TE estimate for the coarsest level (1) in the hierarchy, and
so we require that the coarsest level always be fully refined. Thus, the resolution of level 2 is chosen to match
the desired coarsest resolution for a given problem (for the sample evolutions described in Section 5, level 2 is
always quoted as the base level).

In practice, a slightly modified form of B.1 is used, as we now describe. Depending upon the problem, one
or more of w, U, PU, X, and �r are used in the calculation (i.e., all evolved quantities – w is not used when the
Hamiltonian constraint is used to solved for w in a fully constrained evolution). Optionally, the truncation
error estimate is scaled by the norm of the function, if the norm is larger than some constant k (k = 1 typi-
cally), and can also be multiplied by qp, for some integer p chosen heuristically to either enhance or reduce
the near-axis refinement. The TE estimate for a function f‘ at level ‘ is thus defined to be
ssðf‘Þ ¼
f‘ � f‘�1ð Þqp

maxðk; jjf‘jj2Þ
; ðB:2Þ
where it is implied that f‘ is only defined in the overlap between levels ‘ and ‘ � 1, f‘ is restricted to the res-
olution of level ‘ � 1 prior to subtraction, and the result is then interpolated back to the resolution of level ‘.
Typically, we use p = 2 for X, p = 1 for �r, and p = 0 for the other variables. The TE estimate for the level is
defined to be
ssð‘Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ssðf‘Þ2
q

; ðB:3Þ
where the sum is taken over the desired subset of variables listed above.
Optionally, the TE estimate calculated in (B.3) is further smoothed (using simple averaging over a 5-by-5

square cell of points), and/or scaled by a quantity H‘ P 1 in the region of overlap between levels ‘ and ‘ + 1.
H‘ therefore provides a kind of ‘‘hysteresis’’ to the truncation error estimation process: when the TE estimate
in a region of level ‘ grows above smax, that region is refined; however, for the region to be unrefined at a later
time, the TE estimate needs to drop below smax/H‘ there. In most of the simulations we keep H‘ = 1, though
occasionally it has proven useful to set it to around 5–10.

B.2. Multigrid on an adaptive hierarchy

The FAS multigrid algorithm, with V-cycling, that we use to solve elliptic equations on a grid hierarchy
such as that shown in Fig. 2 is based on Brandt’s multi level adaptive (MLAT) scheme [46], and is similar
to that used in [25]. To simplify the algorithm, we require that qs = 2q for some integer q; then the AMR hier-
archy can easily be extended to incorporate the multigrid levels, which have a refinement ratio qmg of 2:1.
When building the multigrid hierarchy, each AMR grid is individually coarsened by factors qmg (i.e., factors
of 2) until either (a) one dimension of the grid is smaller that the minimum allowed, or (b) the coarsened grid
can be ‘‘absorbed’’ into a larger grid at that level in hierarchy. With this type of hierarchy the V-cycle begins
fact, if there are only two levels in the hierarchy, then this estimate is exactly the truncation error estimate one would obtain with a
hierarchy. If levels finer than ‘ + 1 exist, then in the overlap O‘þ2

‘þ1 the estimate (B.1) will be modified by an amount of order
)2.



g1
g2

g3

Fig. 12. A hypothetical multigrid grid configuration that will adversely affect execution speed. In the figure we depict three grids, g1, g2
and g3, several levels down in the grid hierarchy (i.e., after several coarsening steps have already been performed). Grid g3 cannot be
coarsened any further, while grids g1 and g2 can, and ideally should be coarsened further, to maintain the speed of the algorithm.
However, because g3 overlaps the other two grids, this entire level must be considered a coarsest level, and solved ‘‘exactly’’.
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with relaxation of the finest level grids only. Then as the finer levels are coarsened they are absorbed, if pos-
sible, into coarser levels. This method of relaxation on an adaptive hierarchy is in contrast to the fast adaptive
composite grid method [65], though we do not believe that the particular details of how the elliptic equations
are solved have much bearing on the algorithm described here for dealing with coupled elliptic/hyperbolic
equations.

A couple of minor points regarding the details of the multigrid solution are worth mentioning. First, inter-
level operations, such as restriction, computing coarse-grid corrections, etc., are only performed in the region
of overlap between the two levels (which is always the region of the fine level, given the kind of hierarchies that
are produced by B&O AMR). Second, the manner in which the relaxation sweep proceeds over a level is mod-
ified, to account for possible grid overlap,14 as follows. During the relaxation sweep, the variables at a given
coordinate location and level are relaxed only once, regardless of the number of grids encompassing that loca-
tion. This is crucial in order to preserve the smoothing properties of the relaxation scheme. We use a mask
function to enforce this requirement of a single update per grid point. The mask is initialized to zero on all
grids at that level, prior to a relaxation sweep. Then, on a given level, a sweep is applied, in turn, to each grid
in the level, but only variables at points where the mask is equal to zero are modified. After the sweep is com-
plete on a given grid, the mask is set to one throughout the grid, and the mask and other grid functions are
copied to overlapping grids at the same level. Therefore, subsequent relaxation sweeps on adjacent grids skip
over points that have already been relaxed. This communication step, in addition to enforcing a single update
per point, ensures that grid functions are numerically unique at all physical grid locations,15 which is impor-
tant for preserving the convergence properties of multigrid. Also, although Dirichlet boundary conditions are
used at interior boundaries (i.e., those not abutting boundaries of the computational domain) of any single
grid, the communication ensures that points interior to a union of grids are ultimately updated using the
PDEs, even if they lie on the boundary of some grid in the overlap region.

With regards to the performance of this multigrid scheme on a general adaptive hierarchy, there are two
situations of relevance where performance could suffer, compared to the single grid multigrid algorithm.
The first occurs when, at some level down (coarser) in the multigrid hierarchy, one or more grids in a
connected union of grids is a ‘‘coarsest grid’’, and hence needs to be solved ‘‘exactly’’16 – see Fig. 12.
14 We require that grids at the same level must overlap when spanning a connected region of the computational domain. In other words, it
is not sufficient for grids to merely ‘‘touch’’ at a common boundary between them. This requirement simplifies the relaxation subroutine so
that it can operate locally on a grid-by-grid basis, without needing to communicate adjacent information. However, as described in the
text, the communication step then needs to be shifted to other parts of the algorithm.
15 Note that such a communication step is also performed after relaxation of evolved variables, during the Crank–Nicholson iteration.
16 Here, ‘‘exactly’’ means that the residual on the coarsest grid is reduced by several orders of magnitude by relaxation (it is usually not

necessary to solve the coarse-grid problem to within machine precision).
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Experimentation showed that the entire union needs to be solved exactly in that situation; i.e., it is not suffi-
cient to solve the equations exactly on the coarsest grids, then proceed down the V-cycle on the remaining
grids. If the union of grids consists of a relatively small number of grid points, then such a situation will
not be a problem; otherwise, there will be a significant slow-down of the code, for the speed of an exact solve
suffers dramatically as the number of unknowns increase. To date, we have been able to avoid this potential
speed bottleneck by using a more simplistic clustering method that does not produce grid-overlap, as discussed
in the following section.

The second situation where performance suffers is when the TE estimate requires long, skinny rectangular
regions to be refined. This does occur with the more prolate initial data configurations that have been studied
[43]. What happens then, is that such an elongated grid can not be coarsened very much along the larger grid
dimension before the smaller dimension has reached the smallest allowed size. Again, this results in a relatively
large number of points on the coarsest grid where the solution needs to be obtained exactly. As of yet this
problem has not been addressed.

B.3. Clustering

We have incorporated two clustering routines into the code. The first, written by Reid Guenther, Mijan
Huq and Dale Choi [66], is based upon the signature-line method of Berger and Rigoutsos [67]. The second
is a simple routine that produces single, isolated clusters – each isolated region of high TE is surrounded by a
single cluster, and then all clusters within a certain distance of each other are merged together into an encom-
passing cluster. For the problems studied so far, the isolated cluster method turns out to be almost as efficient
as the signature-line method. Therefore, since efficiency is not an issue, the isolated cluster method is prefer-
able, because it avoids one of the potential speed-bottlenecks of the multigrid algorithm discussed in Appendix
B.2; furthermore, as mentioned in Appendix B.6, minimizing cluster overlap helps reduce high-frequency noise
problems.

A clustering issue that needs to be dealt with in this code is that the resultant grid hierarchy must be com-
patible with the multigrid solver. This places two restrictions on cluster sizes and positions. First, an individual
grid must have dimensions that can be factored into xmin2n, where xmin is one of the smallest, allowed grid
dimensions, and n is a non-negative integer. Second, if several grids overlap, then their relative positions must
be such that the common grid points align on all possible levels of a multigrid hierarchy. Specifically, if a union
of overlapping grids can collectively be coarsened m times in the multigrid hierarchy, then the relative offsets
of grid origins on the finest level must be multiples of 2m grid points. These requirements are enforced after the
initial clustering algorithm is called, by modifying the returned cluster list accordingly. This gives more flex-
ibility to experiment with different clustering routines, which consequently do not need to be aware of the
alignment issues.

To conclude this section we mentioned a couple of additional options that have been implemented in the
post-clustering routine. They are adding ‘‘ghost zones’’ between adjacent, touching clusters, so that both the
multigrid and evolution relaxation sweeps correctly solve the system of equations in a domain given by the
union of grids at a given level; and optionally moving or shrinking clusters, if necessary, to prevent them from
touching parent boundaries,17 which helps to avoid instabilities that occasionally occur in such situations.

B.4. Interpolation and restriction operators

Here we state the restriction and interpolation operators used in the AMR code. Simple injection is used to
restrict a fine grid to a coarse grid during the injection phase of the AMR algorithm, and when computing the
TE estimate. A fourth order (bi-cubic) interpolation scheme is used to initialize newly refined fine grids (or
regions thereof) from the encompassing coarser grid. The scheme proceeds by first interpolating every row
17 In principle this should never occur if one adds a buffer zone about the region of high truncation error. However, because of the grid
shuffling performed to obtain a hierarchy acceptable to multigrid, a grid could be extended to touch a parent boundary. With the option
enabled to prevent this, the grid will be reduced rather than extended to fit into the multigrid scheme. This comes at the expense of not
obtaining ‘‘optimal’’ zones about the region of high truncation error.
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of the coarse grid to the fine grid (i.e., every qsth row of the fine grid is filled in), then all the remaining points
on the fine grid are computed via interpolation, column-by-column. The multigrid routine uses half-weight
restriction when transferring from a fine to coarse grid, and linear interpolation for the coarse to fine transfer.

B.5. Initializing the grid hierarchy

Fig. 13 below contains a pseudo-code description of the steps used to initialize the grid hierarchy.
t:=0;
initialize the grid hierarchy with 2 levels, each covering the entire domain; (so f = 2)

repeat
p
f := f;
call set initial data(); (see below)
call set past t data 1st order(); (see below)
call single step(1); (see Fig.4)
regrid the entire hierarchy using truncation error estimates

computed in the previous step; (thus possibly changing f)
reset t to t := 0 while retaining the current hierarchy structure;

until f = p
f or maximum number of refinement levels reached

call set initial data();
call set past t data 1st order();

call single step(1); (evolve hierarchy forwards in time one coarse step)
call flip dt; (see below)

call single step(1); (evolve hierarchy backwards in time one coarse step)
call flip dt;

call set initial data();

(done computing initial data and hierarchy)

subroutine set initial data()
initialize hyperbolic variables over levels [1 f ] with freely-specifiable data;
solve the elliptic equations over levels [1 f ];

end of subroutine set initial data

subroutine flip dt()
for each elliptic variable f1(t): f1(t + Δt1) := 2f1(t) − f1(t − Δt1);
do := 2 to f

for each elliptic variable f (t): f (t + ρtΔt ) := 2f (t) − f (t − ρtΔt );
Δt := −Δt ;

end do
end of subroutine flip dt

subroutine set past t data 1st order()
do := 1 to f

for each elliptic variable f (t): f (t − ρtΔt ) := f (t);
end do

end of subroutine set past t data 1st order

Fig. 13. A pseudo-code description of the steps we use to initialize the grid hierarchy. The repeat loop is used to calculate the hierarchy
structure at t = 0. Then, to initialize past time level data for elliptic variables using linear extrapolation (which is done in flip_dt()), the
entire hierarchy is evolved forwards, then backwards in time by single coarse level time steps (alternatively we could evolve backwards,
then forwards in time here – the results would essentially be the same). The idea behind this last step is that since the evolution of the
hyperbolic variables is driving any change in the elliptic variables, we can use the results of a small evolution step to provide a better
estimate of past time level information than first-order extrapolation of the solution at t = 0. In principle, this step can be iterated if need
be, though we found that a single step is sufficient (though not always necessary depending on the free initial data) to obtain close to
second-order convergence of the final solution.
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B.6. Controlling high-frequency grid-boundary noise

An issue that needs to be dealt with in a Berger & Oliger style AMR scheme is controlling high-frequency
solution components (‘‘noise’’) that may occur at parent–child grid boundaries. For a second-order accurate
finite-difference scheme, the second derivatives of grid functions are typically not continuous across the
boundaries after child to parent injection. This potential source of high-frequency noise on the parent level
is rather efficiently eliminated by the Kreiss–Oliger dissipation filters we incorporate into our finite differenced
evolution equations.

In certain situations we have found that high-frequency noise also develops on child grids, within a grid
point or two of the AMR boundary (in particular near the corners of the grid, or places where two grids
overlap). This noise is not as easily dealt with, as the Kreiss–Oliger filter acting normal to the boundary is
only applied a distance three points and further away from the boundary. The source of this noise appears
to be the parent–child interpolation scheme used to set the boundary values, and in general the interpola-
tion method must be tailored to each variable in order to reduce the noise to an acceptable level. For our
current model, we use the following interpolation method. For all evolved variables (�r;X;U;PU and w) we
use linear interpolation in time from the parent level to set boundary values on the child grid at points coin-
cident with parent grid points. This is followed by fourth-order interpolation in space (as described in
Appendix B.4) for the remaining boundary points. Furthermore (see Fig. 14 and 15), after each step of
the Crank–Nicholson iteration we reset X and �r in a zone two grid points in from AMR boundaries with
values obtained either (1) by fourth-order interpolation using function values from the boundary and three
additional points inward from this zone, or (2) via bilinear interpolation at ‘‘corner’’ points, i.e., those
points that are a single cell width away from two boundaries. This technique for �r and X was discovered
after quite a bit of experimentation with different interpolation schemes, and is quite effective in reducing
the level of noise at the grid boundaries.

For the elliptic variables (a, bq, bz and optionally w), prior to a Crank–Nicholson evolution cycle, we
reset these variables on AMR boundaries at points unique to the grid (in between points coincident with
parent level points – those labeled by (2) in Fig. 14) using fourth-order interpolation from the remaining
points on the boundary. This overwrites the values set by coarse-grid corrections (CGCs) during the most
recent multigrid solve that involved coarser levels. The reason for doing this is as follows. In multigrid,
CGCs typically introduce high-frequency noise on the finer level, while the subsequent post-CGC relaxation
sweeps smooth out this noise. However, since no relaxation is applied on AMR boundaries, some form of
explicit smoothing is required – the above described fourth-order interpolation provides this smoothing
mechanism.

Another stage in the algorithm where high-frequency noise can creep into the solution is during the regrid-
ding phase, if the refined region on a given level expands. Then, within the part of a new grid overlapping the
Fig. 14. An illustration of the interpolation method used for �r and X during AMR evolution. In the figure we assume that the spatial
refinement ratio is 2:1, and that all four grid boundaries are AMR boundaries. Points labeled by (1) and (2) are set once prior to the
Crank–Nicholson (CN) iteration, while points labeled by (3)–(5) are reset after every CN step (see the pseudo-code in Fig. 15). Points not
explicitly labeled are ‘‘interior’’ points, and are evolved.



subroutine interp_interior_AMR_bnd(grid function f[1..Nrho,1..Nz])
for i=3 to Nrho-2 do

f(i,2)=0.4*f(i,1)+2.0*f(i,4)-2.0*f(i,5)+0.6*f(i,6)
f(i,3)=0.1*f(i,1)+2.0*f(i,4)-1.5*f(i,5)+0.4*f(i,6)
f(i,Nz-1)=0.4*f(i,Nz)+2.0*f(i,Nz-3)-2.0*f(i,Nz-4)+0.6*f(i,Nz-5)
f(i,Nz-2)=0.1*f(i,Nz)+2.0*f(i,Nz-3)-1.5*f(i,Nz-4)+0.4*f(i,Nz-5)

end do

for j=3 to Nz-2 do
f(2,j)=0.4*f(1,j)+2.0*f(4,j)-2.0*f(5,j)+0.6*f(6,j)
f(3,j)=0.1*f(1,j)+2.0*f(4,j)-1.5*f(5,j)+0.4*f(6,j)
f(Nrho-1,j)=0.4*f(Nrho,j)+2.0*f(Nrho-3,j)-2.0*f(Nrho-4,j)+0.6*f(Nrho-5,j)
f(Nrho-2,j)=0.1*f(Nrho,j)+2.0*f(Nrho-3,j)-1.5*f(Nrho-4,j)+0.4*f(Nrho-5,j)

end do

f(2,2)=(f(1,1)+f(3,3)+f(1,3)+f(3,1))/4
f(Nrho-1,2)=(f(Nrho,1)+f(Nrho,3)+f(Nrho-2,1)+f(Nrho-2,3))/4
f(2,Nz-1)=(f(1,Nz)+f(3,Nz)+f(1,Nz-2)+f(3,Nz-2))/4
f(Nrho-1,Nz-1)=(f(Nrho,Nz)+f(Nrho,Nz-2)+f(Nrho-2,Nz)+f(Nrho-2,Nz-2))/4

end of subroutine interp_interior_AMR_bnd

Fig. 15. A pseudo-code description of part of the interpolation method used for �r and X during AMR evolution. For simplicity, in this
subroutine we assume that all four boundaries are interior to the computational domain boundaries. The set of points altered here
correspond to (3)–(5) in Fig. 14, and the interpolation operators used are independent of the spatial refinement ratio (as opposed to points
(1) and (2) in Fig. 14).
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old refined region, grid functions will be initialized by copying data from an old fine grid, while on the remain-
ing part of the new grid the grid functions will be initialized via interpolation from a parent grid. Sometimes,
at the interface between the copied/interpolated data, tiny discontinuities are introduced. The grid functions
are then easily smoothed by applying a Kreiss–Oliger filter to them (at all time levels involved) after
regridding.
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