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In the past, arguments have been advanced suggesting that certain finite-difference solutions of the
3+1 form of Einstein’s equations suffer from a fundamental inconsistency. Specifically, it has been
claimed that freely evolved solutions, where the constraint equations are not explicitly imposed after the
initial time, will generally satisfy discrete versions of the constraints to a lower order in the basic mesh
spacing h than the truncation order of the discretized evolution equations. This issue is reexamined
here, and using the key observation, originally due to Richardson, that a numerical differentiation need
not produce an O (h? ~!) quantity from an O (h”) one, it is argued that there should be no such incon-
sistency for convergent difference schemes. Numerical results from a study of spherically symmetric
solutions of a massless scalar field minimally coupled to the gravitational field are presented in support
of this claim. These results show that the expected convergence of various residual quantities can be

achieved in practice.

I. INTRODUCTION

In 3+1 numerical relativity [1,2], as with other
branches of computational physics involving the solution
of initial-value problems, a principle task is the conver-
sion of a set of continuum evolution equations to a corre-
sponding discrete algebraic form which can then be
solved numerically. To date, finite differencing has been
the main vehicle for performing this discretization, and
although other techniques have been successful applied,
it is clear that finite-difference methods will continue to
play a major role in the development of the field. The
task of differencing Einstein’s equations is complicated by
the fact that there are also conmstraint equations which
must be satisfied. It is a basic result of the Hamiltonian
treatment of general relativity [3] that the evolution equa-
tions preserve the constraints by virtue of the Bianchi
identities. Thus, in principle, the constraint equations
need to be explicitly solved only on the initial data sur-
face and this approach has often been successfully adopt-
ed in numerical work, resulting in what numerical rela-
tivists term free evolution schemes [4—11]. However,
even if the initial data supplied to such an algorithm
(code) satisfy some differenced from of the constraints to
machine precision, deviations from the constraints—at a
much higher level than that attributable to hardware
limitations—invariably develop during the evolution of
the data.

The fact that such deviations appear is not in itself
very surprising. As has been frequently pointed out, the
Bianchi identities are differential identities, so that, in
general, one can only expect them to be approximately
satisfied by a finite-difference solution. Nevertheless,
from time to time, considerable concern has been ex-
pressed about this particular feature of free-evolution
schemes, both by practitioners of the art and by outside
observers. Most of this concern seems to come from a
general consensus that it is most desirable to construct a
spacetime, slice by slice, so that on each hypersurface
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some form of the constraint equations are properly
satisfied. There has always been a somewhat vague feel-
ing of uncertainty about the “drifting” of the numerical
data “off of the constraint surface” during the course of a
free evolution and the extent to which such data can reli-
ably be regarded as a “good” approximate solution of
Einstein’s equations. These worries have been further ex-
acerbated by the empirical observation that algorithms in
which discrete versions of the constraints are imposed at
regular intervals tend to be less prone to numerical insta-
bilities than free-evolution schemes [12-16].

One particularly intriguing view of the nature of the
constraints in 3+ 1 numerical relativity is discussed in re-
view articles by Piran [17] and Stewart [18]. Both of
these papers contain an argument which suggests that
free evolution schemes generically suffer from an incon-
sistency with respect to the constraint equations. We will
review this argument in more detail in the next section,
but basically, it goes as follows. We focus attention on
some dynamical geometrical variable g (a three-metric or
extrinsic curvature component) which, roughly speaking,
can be evolved either by (1) using the specific evolution
equation for the variable, or (2) solving a constraint equa-
tion for the variable once all other quantities appearing in
that equation have been evolved. We then imagine writ-
ing two distinct finite-difference codes which differ only
in how the function g is approximated. In one code, we
approximate g with a grid function (discrete representa-
tion) g, which satisfies a differenced version of the evolu-
tion equation for g. We have the other code compute
another grid function g, which, at all times, satisfies a
discrete form of the constraint equation. Now, the basic
parameter which will govern the accuracy of these finite-
difference codes is a discretization scale 4 (which we will
also refer to as the mesh spacing or grid spacing). Typi-
cally, in our construction of the two algorithms, we will
have replaced all derivatives by finite differences which
are O(h?) (“second-order”) accurate, and then, at least
naively, we can expect second-order convergence of both
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the freely evolved grid function g and the constrained
grid function §—that is, we anticipate §=g +0(h?) and
£=g+O0(h?) as h—0. The inconsistency seems to arise
when we ask how well the freely evolved quantity g will
satisfy the constraint equation. Since g is defined on the
finite-difference grid, we cannot evaluate how well it
satisfies the analytic constraint, and it is only natural to
examine how well it satisfies the same discrete version of
the constraint which we use to compute g. Specifically, if
we write the discrete constraint as Hg =0, where H is the
“discrete constraint operator,” then the grid function 3
defined by § Hg is a measure of the deviation of the
freely evolved grid function from the constraint. Presum-
ably, if g is consistent with the constraint equations, we
will find that £=0(h?)—we certainly have
E=Hg=0(h?), by our construction of a second-order
difference scheme for the constraint equations. However,
the arguments made by Piran and Stewart suggest that
we will discover, quite generically, that E=0(h) or
§ O(1)—that is, we will find that the freely evolved
quantity g satisfies the (discretized) constraint equation to
a lower order of accuracy in h than the order of accuracy
of the difference schemes used to compute either g or g.
It is in this sense that free-evolution schemes have been
claimed to be inconsistent with the constraint equations.

Now, as we will discuss below, this “inconsistency ar-
gument” hinges on the application of a familiar rule of
thumb of numerical analysis which states that if a grid
function g is an O(h”) approximation of some continuum
function g then a numerical derivative of § will generally
be an O(h? ~!)-accurate approximation of the derivative
of g. The basis of this rule of thumb is simply the obser-
vation that a numerical (first) derivative of a grid function
invariably contains an overall factor of # ~!. However, it
was realized a long time ago by Richardson [19] that this
rule would not necessarily apply to grid functions which
are solutions to finite-difference analogues of partial
differential equations. Richardson was specifically con-
cerned with grid functions which satisfied second-order,
centered difference approximations, and, although his
considerations apply in modified form to cases where oth-
er types of differencing are used, we will also focus on
second-order, centered approximations. Richardson ar-
gued that if a grid function # satisfies an O(h?)
centered-difference approximation to some partial
differential equation (PDE) which has the exact solution
u, then, in the limit 2 —0, we can expect u to have an ex-
pansion of the form

u=u+h%,+hte,+ -, (1.1)

where e,,e,, ... are error functions which are indepen-
dent of the mesh spacing h. On the basis of the
(presumed) existence of such expansions, Richardson
went on to introduce the well-known technique of
Richardson extrapolation. However, he also noted that
the existence of such an expansion implies, for example,
that if we take a numerical first derivative of #%, using an
O(h?) difference formula, then we will in general get an
O(h?), not an O(h), approximation of the first derivative
of u.
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The main purpose of this paper is to reanalyze this is-
sue of consistency in numerical relativity in light of these
old ideas of Richardson. The basic conclusion we will
come to is that provided that we are sufficiently careful
with our finite differencing, it is not too difficult, in prin-
ciple, to construct a freely evolved differenced form of
Einstein’s equations which preserves a discrete form of
the constraints to the same order of accuracy as the accu-
racy of the underlying difference scheme. Here, an im-
portant qualification is in order: the arguments presented
for consistency can be expected to apply only when we are
dealing with PDE’s and initial data which result in
sufficiently smooth solutions. For example, we do not ex-
pect expansions of the form (1.1) to hold for numerical
solutions of model systems which admit shocks or tur-
bulent phenomena. For such problems, which have the
feature that a ‘“‘wave-number cascade” concentrates
power on the smallest resolvable scale (i.e., the grid scale
h) in any numerical computation, we simply cannot use-
fully apply Richardson’s ideas. However, it is clear that
there are many interesting general-relativistic problems
which do involve smooth solutions. One such problem is
the subject of Sec. III, where we present some results
from two separate codes where the expected (consistent)
rate of convergence of £ has been observed.

II. ANALYSIS OF CONSISTENCY
IN NUMERICAL RELATIVITY

In this section we go through the previously sketched
arguments in more detail, and for this, some familiarity
with finite-difference techniques for initial-value problems
[20] (time-dependent partial differential equations) will be
helpful. However, we must first define some notation,
and in order to keep the development reasonably self-
contained, we review some basic notions from numerical
analysis which are useful in analyzing the issue of con-
sistency.

The principal mathematical objects we will be con-
cerned with in our discussion are grid functions. As the
name suggests, these are functions defined on a grid
(mesh, lattice) and will generally satisfy finite-difference
analogues of partial differential equations. A grid is a
discrete set of events which typically forms a regular lat-
tice in the coordinate space of our problem domain. The
specific differential equations we consider in this paper in-
volve, at most, dependence on one spatial coordinate
x'=x or r, and time, x°=1¢. (Differentiation with respect
to these variables will often be denoted by a prime and an
overdot, respectively.) We will always work with grids
which are either (1) uniform (constant spacing between
grid points in each coordinate direction) and rectilinear
(aligned with the coordinate axes), or (2) the union of
some small number of such grids. Specifically, a uniform,
rectilinear grid, Q2, satisfies

Q' C{(x2,xDIx?=xJ+nAx%x}=x{+jAx'} , (2.1

where n and j assume lntegral values, the origin of the
mesh is at (x3,x}), and Ax® and Ax! are of order-1 mul-
tiples of the basic mesh spacing (grid spacing, resolution),
h. Because we will be considering hyperbolic systems, we
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expect temporal and spatial variations in our solutions to
be on the same scale, so we will keep A=Ax°/Ax! fixed
when we vary A. Thus (Ax°) and (Ax!)? will always be
O(hP).

Grid functions (g,g,...) will be distinguished from
continuum functions (g, ...) by the use of a caret or
tilde. We will use the former notation (g) for all grid
functions except those, such as g, which are associated
with the constraint equations. Continuum functions,
which generally satisfy differential equations, are, of
course, defined at all events of the continuum. Strictly
speaking, when interpreting, ‘“mixed-mode” expressions
such as “g—g,” we should adopt either of the following
conventions: continuum functions are restricted to the
mesh in some fashion, or mesh functions are in some way
extended to the continuous domain. Our discussion will
not be sufficiently rigorous that our conclusions will de-
pend on which interpretation we choose, but in under-
standing Richardson’s ideas, it does seem useful to adopt
the latter viewpoint. Also, we will use an operator for-
malism when we write down and manipulate actual
finite-difference expressions and the view that for any
given resolution # any specific grid function is defined at
all events of the continuum is more logically consistent
with this formalism. The finite-difference operators we
use are defined in Fig. 1; also given are the first few terms
of the formal expansions (in powers of /) of these opera-
tors in terms of differential operators.

Now, let u be a function satisfying the differential
equation

Lu=0, (2.2)
where L is some differential operator, and let
Li=0 2.3)

be a finite-difference approximation of (2.2) where L is
some finite-difference analogue of L. We define the trun-
cation error 7 of the operator (difference scheme) L as

-~

=Lu . (2.4)

~»

We say the difference scheme is pth-order accurate [or
pth order, or O(h?)] if #=0O(h?). We also define the
solution error € by

u—1u . (2.5)

Il

e

Let us say that the difference scheme (2.4) is optimally
convergent if the truncation error and the solution error
are of the same order in the mesh spacing, that is, if
O(2)=0(7). Previous discussions of the consistency of
free-evolution schemes have tacitly assumed that the
difference schemes used in numerical relativity are op-
timally convergent. This assumption is rather central to
the issue of consistency and we will later present heuristic
arguments for why we should expect it to be valid. At
this point, for the sake of exposition, we will also proceed
with the assumption that our difference schemes are
generically optimally convergent.

We can now easily reconstruct the argument [17,18]
which suggests that freely evolved finite-difference solu-
tions are generally inconsistent with the constraint equa-
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FIG. 1. Definitions of the difference, averaging, and extrapo-
lation operators used in the text. When applied to smooth func-
tions of more than one variable, (x € {xo,x'} ), the definitions
and expansions remain valid (with d/dx—9/0x° or
9/3x',h—Ax® or Ax!) provided that a uniform, rectlinear
mesh is used.

tions. Let § and T denote the sets of geometric and
matter variables for some solution of Einstein’s equa-
tions. For some particular geometric variable (three-
metric component or extrinsic curvature component)
contained in 8, let g and & denote the exact solution and
the output from some O(h”) free-evolution scheme, re-
spectively. Thus, the continuum function g satisfies the
differential evolution equation

g=L[9,T], (2.6)

where L is some differential operator, while the grid func-
tion g satisfies a finite-difference equation

0¢=L19,7].
Here U and L are O(h?) approximations of d/9¢ and L.

Now, the truncation error 7 of the discrete evolution
equation is

?=0¢—L[9,T],

(2.7

(2.8)

and, by construction, is O(h?). By the assumption of op-
timal convergence, we have that the solution error € of
the freely evolved grid function

e=g—§¢ (2.9)

is also O(h”). We now consider one of the constraint
equations, which we write schematically as
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H[S,T]=0, (2.10)

and which we assume can be solved for g. We further as-
sume, as will typically be the case, that this equation in-
cludes terms linear in the first and second (spatial) deriva-
tives of g. Thus, for the sake of argument, we write (2.10)

as
Hg=P[9,Tlg"+Q[9, Tlg'+R[S,T]=0, (.11

and, using the operators defined in Fig. 1, we difference it
to second order as

g=P[G,T1A*A*g+Q[9, T]A%E +R[S,T]=0.
2.12)

Thus, g satisfies a discrete version of the constraint equa-
tion, and will generally differ from £. Associated with H
is another truncation error 7 defined by

7=Hg , (2.13)
which is p(hz) by construction. Now we consider the
quantity &, which, as discussed in the Introduction, mea-
sures how well the freely evolved grid function satisfies
the discrete constraint equation. Specifically,

Hg
H(g—2)=7—P[8,T|A A" 2

~

—Q[8,T)Ae+0(h?),

~

5

Il

(2.14)

where there are additional O(h?2) terms which arise if H
is nonlinear or if the coefficient functionals P, 0, and R in
(2.12) depend on g. Now, € is an O(h”) quantity. The
difference operators A% A* and A% have factors 4 ~2 and
h ~1, respectively. Thus, we reason

AXA*e=0(h?P?) (2.15)

and

Age=0(n?™1) . (2.16)
In particular, for second-order, free-evolution schemes,
p =2, and this argument implies that é‘\ =0(1). However,
A% AT and Aj are operators not algebraic quantities, and
there is no justification for this last step, which amounts
to an invalid application of the familiar “rule of thumb”
which states that a numerical differentiation generally
produces an O(h? ~1) quantity from an O(k?) one. More
care is needed in our analysis, as the following simple ex-
ample illustrates.
Consider the equation

Lu= |91 |u=0 2.17)
dx

on the half line, x =0. With the initial condition
u(0)=1, this equation has the solution

u=e*. (2.18)

|

d 2 d _ 1 d3 1 d?
—_— —_ __1 - = =

dx 1‘”+h [ [dx ‘e2+ 24 dx’ 8 dx?
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Let us first consider the problem of computing an O(h?)-
accurate grid function %, which approximates u. Using
the operator notation of Fig. 1, we write down the follow-
ing finite-difference version of (2.17):

La=(A% —p%)a=o0, (2.19)
where our grid is {jh,j=0,1,...}. We can easily show
that this is second-order accurate by performing Taylor-
series expansions about X =(j+1)h (the event at which
the difference scheme is centered):

P=Lu=(A% —p%)u
|4 _loa,2|_1d> 1 d°
dx 1]"“’ l 8 dx2 24 dx?
+0(h*)
=0(h?), (2.20)

where 7 =u(X). Let us adopt the usual subscript nota-
tion for specific elements of a grid function:
4;=%u(x;)=u(hj). Then the particular solution of
difference equation (2.19) for =1 is

u;=p’, (2.21)
where

pzit—zg . (2.22)
But

p/=exp lj In 1+% — In 1—% ] ] ’

=e 4+ Lhix;e T +0(hY) (2.23)

so we have

?j:uj—"il\j:_lehzxjexj+0(h4) . (2.24)

We first note that since ’e‘j is O(h?), the difference scheme
(2.19) is optimally convergent. More importantly for our
present discussion, however, is the form of the solution
error. In accordance with Richardson’s general argu-
ments, the continuum solution # admits an asymptotic
expansion of the form

u=u+he,+he,+ -, (2.25)
where e,,e4, ... are h-independent functions with
smoothness comparable to u (or more precisely, compara-
ble to some appropriately high-order derivative of ). In
fact, we can derive (2.24) in another way by assuming
that the above expansion holds. Thus, if we solve (2.25)
for #, then substitute the result in (2.19) and expand
about X, we find (again, with the aid of the operator ex-
pansions given in Fig. 1)

(2.26)
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Now, the terms in this expansion must vanish order by
order in 4. The order-1 term vanishes by virtue of the
original differential equation (consistency of the
difference scheme). The vanishing of the O(h?) term
gives us a differential equation for e,:

(2.27)

Since u =e*, and e,(0)=0 (we use the exact initial condi-
tion in our difference scheme), this equation has the solu-
tion

—Lxe* . (2.28)

Thus we recover (2.24), as claimed.

Now, suppose that we want to numerically evaluate the
second derivative of the difference solution (2.21). By the
“inconsistency argument” outlined above, we expect
A* A* —1 to be (only) an order-1-accurate approximation
of the exact second derivative, d*u /dx?>=e*. However,

AYA* G =h"*p—2+p hHa (2.29)
and

p—2+p '=h2+1r*+0(h®) . (2.30)

Thus
AL A G =[e*+ Lh’xe*+O(h")][1+1h*+0(h*)]
=e*+h* 1+ Lx)e*+0(h*)

:dzu

2
S rouh

(2.31)

and we have, in fact, an O(h?) (optimally convergent),
not order-1, approximation of the second derivative.
Again, we can readily verify this result using (2.25) [with
the specific leading-order error term given by (2.27)] and
the expansion

2 4
d +h2i d
dx? 12 dx*

ALAT = +0(h*) (2.32)
from Fig. 1.

The fact that the “numerical second derivative” of our
finite-difference solution g is second-order accurate may
be a little surprising. However, we see that the result fol-
lows rather directly if we adopt (2.25) as an ansatz and
observe that finite-difference operators have asymptotic
expansions in terms of differential operators. It was pre-
cisely this type of result which Richardson anticipated
when he wrote [19] (emphasis provided) *. .. the errors
of the integral [solution of a difference equation] and of
any differential expressions derived from it, due to using
the simple central differences ... instead of differential
coeflicients, are of the form”

h2f2(x’y,2)+h4f4(-’C,y,Z)+h6f6(x,y,Z)+ .

Let us return to the question of consistency of free-
evolution schemes in 3+ 1 numerical relativity. Provided
that the following type of expansion holds for the
geometric variable g:
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(2.33)

where the ’e‘q are smooth functions, all of the quantities on
the right-hand side of (2.14) are O(h?). Specifically, the
suspect terms become

Ay A e=hPe,'+0(h?*"), (2.34)
Age=hre,+0(h?*"), (2.35)

for some r >0. In particular, if p =2, so that we are us-
ing a second-order accurate free-evolution scheme, then &
should also be O(h?). However, even if p=1, which is
the best that can be expected for many schemes which
have been used in numerical relativity, then E should be
O(h). Only if the underlying difference scheme is incon-
sistent with the original set of Einstein-matter equations
(70 as h—0) should a £ of order 1 be observed.

Heuristically then, we are arguing the following. If we
use a (free-evolution) difference scheme that produces
grid functions which admit asymptotic expansions such
as (2.33) (which we call Richardson expansions), then we
should not observe any basic inconsistency of the type we
have discussed. Furthermore it seems plausible to expect
expandability (as we will refer to that property attained
by grid functions which have Richardson expansions) for
the solutions of carefully constructed difference schemes.
To understand this, we observe that for any set of PDE’s
and a given finite-difference discretization of that set of
PDE’s, we can imagine writing down Richardson expan-
sions for all of the grid functions and then carrying out a
development along the lines of (2.25)-(2.28). This will in-
volve expanding various finite-difference operators and
deriving a hierarchy (in A) of additional systems of
PDE’s for the various error functions appearing in the
expansions. In order to rigorously establish expandabili-
ty, we would have to demonstrate that these additional
systems are well posed, and yield unique solutions when
supplied with appropriate boundary data [21,22]. How-
ever, a key point is that the form (and hence nature) of
these auxiliary systems is apt to be similar to (and at least
as complex as) the form of the original set of equations.
(For example, if we discretize a “wave equation,” and our
finite-difference solutions of this equation exhibit wave
like behavior, then surely the various error functions
satisfy some other ‘“wave equations.”) Thus, if we are wil-
ling to accept the existence and uniqueness of the solu-
tion of the continuum equations, it seems reasonable for
us to expect that our grid functions will be expandable
provided, of course, that they are convergent.

Finally, even though we may not be able to prove, a
priori, the proposition that a given finite-difference solu-
tion of Einstein’s equations will be expandable (from
which consistency follows almost immediately), we can
always perform ‘“‘numerical experiments” designed to test
the proposition. Moreover, these experiments are, in
principle, quite easy to carry out. They involve little
more than performing several computations which use
the same initial data, but different values of 4. Such ex-
periments are the subject of the next section, where we
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first discuss two O(h?) difference schemes for a model
problem in numerical relativity and then show that, at
least empirically, the schemes are consistent, as we have
argued they should be.

III. SOME CONSISTENT NUMERICAL SOLUTIONS

The results described in the remainder of this paper
come from a numerical study [23] of one of the simplest
conceivable general-relativistic systems. The model con-
sists of a single massless scalar field minimally coupled to
the gravitational field with the additional restriction of
spherical symmetry. For several reasons, this system is
particularly useful for providing clear evidence of the
consistent behavior of finite-difference schemes which we
posited in the preceding section. First, due to the spheri-
cal symmetry, the gravitational field has no “true” (radia-
tive) dynamical degrees of freedom. Provided appropri-
ate choices of coordinate systems are made, this means
that we can construct difference schemes which are either
completely constrained (no use of the geometric evolution
equations) or completely freely evolved (no use of the con-
straint equations, except at t=0). Second, the high de-
gree of symmetry renders the model quite tractable com-
putationally so that, using reasonable amounts of com-
puter time, it is possible to investigate the behavior of our
finite-difference solutions over a considerable range of
values for h. Finally, the simplicity of the equations of
motion, the spherical symmetry, and the fact that solu-
tions of the model equations are asymptotically flat, con-
spire to make it relatively easy to design numerical
boundary conditions which produce convergent finite-
difference solutions, on a bounded computational domain.
By contrast, in more generic (less symmetric) calcula-
tions, it is generally the case that we expect to recover the
exact solution only in the limit that #—0 and R —
simultaneously, where R is the radius of the computation-
al domain, and this is largely due to the use of boundary
conditions which are asymptotically (R — o) correct.
We take advantage of these features of the model to set
up numerical experiments where we can directly and
unambigously measure the rate of residual quantities
such as §&.

The full description of the differential equations for the
model and the difference techniques used to generate the
numerical solutions is somewhat involved and has been
documented in detail elsewhere [23]. Here, a schematic
view of the various equations will be given, along with a
discussion of those numerical points which bear directly
on the issue of consistency. (We note at this point that
this model has also been studied recently in considerable
detail by Christodoulou [24] (analytic work) and
Goldwirth and Piran [25] (numerical work based on the
method of characteristics)).

The manifestly covariant field equations for the model
are easily derived from the action

1
——R—1¢ 4"

3.1
167 , (3.1)

1= [dv

where R is the Ricci scalar and ¢ is the scalar field, in the
standard fashion, with the familiar results
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Gy =87T,, , (3.2)
T,,=¢,.$.,~38u9.0", (3.3)
0 1 —_ _
¢"“;u———‘/:g(\/——g¢"),#—0. (3.4)

Here g is the determinant of the four-metric g, and we
have adopted the units and sign conventions of Misner,
Thorne, and Wheeler [26]. Hamiltonian equations of
motion for the ‘“‘true” Arnowitt-Deser-Misner (ADM)
variables (g;;,7/) may also be derived [27,28] from (3.1).
Here, we adopt the 3+ 1 approach which has been used
so extensively in numerical relativity, and specialize it to
the case of spherical symmetry. Using the standard
spherical-polar coordinates xi=(r,0,<p), the three-metric
and extrinsic curvature tensors can both be written in di-
agonal form, each with two independent components:

(3.5)
(3.6)

g, =diag(a(r,t)%,r?b(r,t)*,r’b*sin’0) ,
i =diag(K",(r,1),K %(r,1),K%) .

Generally, (a,K",) and (b,K 99) constitute dynamical
pairs of variables. Introducing the remaining two degrees
of coordinate freedom via the lapse function a(r,t), and
the shift vector B'=(8(r,t),0,0), the most general spheri-
cally symmetric space-time metric is

ds?=(—a?+a?B*)dt*+2a?*Bdt dr +a%dr*+r?b2dQ? ,
(3.7

where d Q? is the (flat) metric on the two-sphere.

The precise forms of the 3+ 1 versions of the equations
of motion, (3.2) and (3.4), depend strongly on the specific
coordinate system we use. We would like to argue that,
in spite of this fact, our choice of coordinates will have
little (if any) impact on whether or not we can construct
consistent free-evolution difference schemes. In order to
provide empirical support for this conjecture, we perform
two sets of numerical experiments using two distinct
coordinate systems. Both of these coordinate systems
which we use have been employed in previous numerical
studies of spherically symmetric, general relativistic
systems—most notably the investigations of Shapiro and
Teukolsky [15,16] involving the coupling of distributions
of collisionless particles to the gravitational field.

In the 3+ 1 formalism, a coordinate system is specified
by giving (1) a slicing condition, which determines the
lapse function, and (2) a condition which determines the
shift-vector component 3, and hence fixes the radial coor-
dinate labeling. We first describe the two slicing condi-
tions we use. In both cases, the lapse function is deter-
mined through a condition on the mean extrinsic curva-
ture K:

K=K',=K',+2K?%, . (3.8)
The first condition is maximal slicing [6—11,14—
17,23,29,30]

K=0 (3.9)

which, when imposed on each slice of a spacetime
(8K /9t =0), constrains the lapse to satisfy a linear,



3130

homogeneous, elliptic equation. The second condition,
resulting in what is known as polar slicing [16,23,31,32],
is defined by
K=K", . (3.10)

In this case, the lapse satisfies a linear, homogeneous,
parabolic equation. (It should be noted that due to the
spherical symmetry, the slicing equations as well as the
constraint equations are ordinary differential equations,
so the terms “elliptic” and ‘““parabolic” are to be under-
stood to imply ‘“two-point boundary-value problem” and
“initial-value problem,” respectively). Clearly, both of
these choices allow an extrinsic curvature component to
be eliminated from the 3+ 1 equations.

Two different conditions are also used to fix our radial
coordinates through the specification of the shift-vector
component 3. Our first choice requires that

a=b (3.11)
at all events, resulting in isotropic (sometimes called iso-
thermal [23,30]) coordinates and a first-order equation for
3 which is solved at each time step. We use this condi-
tion in conjunction with maximal slicing, giving what we
will call the maximal-isotropic coordinate system. Our
other choice of radial coordinates follows from the
demand that

b=1 (3.12)
at all events. This yields radial or areal [31]
coordinates—in such a system, a two-sphere of radius r
has proper surface area 4772 When combined with polar
slicing, it can be shown that 8 must vanish everywhere
and these polar-radial coordinates may be thought of as a
natural extension of the standard Schwarzschild labeling
for a vacuum spacetime to a nonvacuum spherical sys-
tem. The simplification of the Einstein—scalar-field equa-
tions induced by this choice is quite remarkable; this fact
has been used to advantage in analytic studies of the
model [27,28]. Particularly noteworthy are the facts that
the Hamiltonian constraint (considered as an equation for
a) is nonlinear, but first order and the momentum con-
straint (considered as an equation for K", ) is algebraic.

Now, some of these features of the polar-radial coordi-
nate system caused concern when we were setting up the
numerical experiments designed to demonstrate con-
sistency of a free-evolution scheme. In particular, since
the constraint equations in this coordinate system do not
involve second spatial derivatives of the geometric vari-
ables, a skeptic could argue that our computations in this
coordinate system were not truly representative of a gen-
eric calculation in numerical relativity. Thus, in design-
ing the numerical experiments, we decided to monitor ad-
ditional residual quantities (quantities which should van-
ish as A —0) which did involve taking numerical second
derivatives of a numerical solution.

For example, through the introduction of auxiliary
variables [23,33], the equations of motion for the
geometric variables (in either of the coordinate systems
we have adopted) may be written schematically as

M. W. CHOPTUIK 4

qd=Bq'+vp'+R ,
p=Bp'+8q'+S ,

where (q,p)E{(aqa’,K',),(bqb’,Koe)} and a,, by, v, §,
R, and S are functions of the geometric and matter vari-
ables, r and ¢. It is this form of the evolution equations
which we finite difference to generate the results de-
scribed below. Now, using the notation of the preceding
section, one of the additional residual quantities we can
compute is a measure of how well a constrained grid func-
tion g satisfies the discrete evolution equation which is
exactly satisfied by the freely evolved grid function &.
From the structure of (3.13) it is clear that if g is a three-
metric component, then we will have to evaluate a nu-
merical second derivative of g in order to compute such a
residual, and, of course, the inconsistency argument im-
plies that such a quantity is also of order 1 if g is O(h?).
Again, our aim here is to ensure that our numerical ex-
periments, as much as possible, give an unambigouous in-
dication of whether there is a fundamental “‘consistency
problem” with our finite-difference solutions.

We now briefly discuss the basic approach we take in
finite differencing the equations of motion for our model
problem. The most notable feature of our difference
schemes is that they are constructed to be precisely
second-order accurate [O(h?) truncation error] in both
space and time. As we argued in the preceding section, it
is not that- we feel it necessary to use O(h?) methods in
order to demonstrate consistency. Rather, our approach
of using O(h?) approximations everywhere in our
schemes, and then establishing that quantities such as E
are indeed O(h?), is once again principally motivated by
our desire to produce clear evidence for the consistency
of our particular difference solutions.

The sets of PDE’s we are studying are hyperbolic, and
we write them in first-order (in time) form before we finite
difference them. As an aid in constructing O(h?)
schemes, we use a ‘“‘staggered > mesh [20] (see Fig. 2),
which facilitates the centering of various spatial and tem-
poral finite-difference expressions. The 3+1 evolution
equations for the geometric variables are, by construc-
tion, in first-order form. The wave equation (3.4) for the
scalar field can be placed in this form by introducing aux-

(3.13)

© X o x o x o x © X o©

AN l.‘:J A 0O & 0o & Db & LAt A

©O X 0O X O X O X O ¥ o

A D A O A 0O O 0o A O Ansb
o >k 0O X O X O X O X 0On
A 9 6 0O 0D L D L 0D n-%
o * O X 0O X O X O X o

A O ObAa—N O DL O L o B

O X 0 X 0 X 0 X 0 X O

r=0 % i

FIG. 2. Structure of the finite-difference mesh used in the
algorithms discussed in the text. The various grid functions
used are defined on the four constituent submeshes as
follows: Go:{a}’,b}’,a}',d)}‘},GA:[K,’j?“/z,Kz}‘“/z,H}“/z],
GX:{ﬁ7+l/27¢?+1/2}1GD:{ ;'Ill//zz}
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iliary variables

(3.14)

(3.15)

The advantage of this particular choice of variables is
that the resulting pair of evolution equations

o= 3q>+%n , (3.16)

o 1 212 a ’ 9 (rb)

I1 TS r°b* |BII . +2 |aK o— B b Im,
(3.17)

do not involve time derivatives of the kinematical func-
tions a and . As can be seen from Fig. 2, the computa-
tional mesh can be regarded as the union of four com-
ponent meshes, each of which is uniform in both space
and time. Having adopted this grid structure, it was fre-
quently necessary to use averaging, and sometimes extra-
polation, operations in order to produce second-order
schemes, particularly in the maximal-isotropic coordinate
system. However, given the basic strategy of keeping the
difference equations precisely centered, and provided the
“correct” forms of the continuum equations were used
[23], the actual differencing techniques were quite
straightforward. For example, Eq. (3.16) was differenced
as

t n — LAr(At pnt+1/25n+1 n n
A+(I)j+]/2——7A0(X+Bj+1/2(I>j-i‘1/2—+_[3)_)'+1/2(I)j+1/2)

n
S VP B B e (3.18)

J

in the maximal-isotropic system.

Finally, we maintain a uniform time step in both coor-
dinate systems by using part of the coordinate freedom
embodied in the specification of the lapse function a. Ba-
sically, since both of the slicing conditions are linear and
homogeneous in a, the lapse is only determined up to an
overall normalization which can be chosen so that the
maximum local speed of signal propagation in the numer-
ical solution domain remains constant [23]. The usual
practice in numerical relativity [17] involves choosing a
new At at each time step to ensure that a Courant-
Friedrichs-Levy [20] stability criterion is maintained.
The resulting time variability in Az makes the construc-
tion of a second-order accurate scheme considerably
more involved.

The two programs (one for each coordinate system)
designed to solve the difference systems sketched above
were each constructed to perform two calculations in tan-
dem using the same initial data and grid structure. In
one calculation, the pair of geometric variables, which we
denote (a,K), was freely evolved, giving as output the
mesh functions (a,K¥). The other calculation produced

(a€,K€) which satisfied discrete versions of the Hamil-
tonian and momentum constraints. Note that in this sec-
tion we use a superscript E or C (rather than a caret or
tilde) to denote freely evolved and constrained grid func-
tions, respectively. Generally, the equations for the lapse
and shift were solved using the constrained quantities
(a€,KC) as “coefficient” functions; however, calculations
done using the freely evolved functions in this capacity
yielded essentially indistinguishable results.

We write the difference equations for the geometric
variables schematically in the form

OFaf=0FKE=0% =0k ‘=0, (3.19)

where, for brevity of notation, the definition of @F and
OF€ depends on what is being operated upon. Then, in or-
der to investigate the consistency of our difference
schemes, the programs compute the quantities

OFaC, OFKC, ©%E,0°KE, a®—a€, and KF—KC

at all points of the relevant subgrids. Each of these quan-
tities is a residual. If there is an inconsistency, then
some, or all, of these functions should be of order 1 or
O(h). The basic idea of the numerical experiment is to
monitor a measure of the sizes of these residuals, as a
function of time, and attempt to determine their orders
by repeating the process on a sequence of grids with mesh
spacings

h'=2"'n,, 1=0,1,...,

where h is the spacing of the coarsest mesh. We denote
by @O the I, norm of any of the residual quantities,
rE{(OEaC,@EKC, R

N 172

> rirf s (3.20)
i=1

Q(t)=Q(nAt)=N"!

where N is the total number of mesh points in the radial
direction. The level -/ convergence factor of such a quan-
tity is defined simply as

CQI
CQI+1

Then, any order-1 quantity, for example, should have a
convergence factor of 1 as # —0, while an O(h?) quantity
will have a convergence factor of 4.

In a particular trial using the polar-radial coordinate
system, initial data were constructed by specifying the in-
itial value of ¢,

(3.21)

2

é(r,0)=(1.0X10"3) exp , (3.22)

5.0

_ ‘ (r—50.0)

and demanding that the solution be time symmetric [26]
about t=0. This means that the functions II, K’,, and
K%, all vanish on the initial slice. The remaining vari-
ables were then determined from the coordinate condi-
tion equations and constraint equations. O(h?) Taylor-
series methods were used to determine the values of II at
t=—1At in accordance with the staggered structure of

the mesh; the corresponding values of K’, were then cal-
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culated from the momentum constraint. The outer edge
of all numerical grids was at » =100.0 and the total mass
of the solution was 3.9X 1073, The initial data and num-
ber of time steps were chosen so that there was no in-
teraction of the scalar-field pulses (one outgoing and one
ingoing) with either grid boundary before the runs ter-
minated. This was done so that, as much as possible, the
results would be unaffected by boundary effects.
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S

Grids with

0=<I/=<4 (3.23)

Ar=2Ar= %
were used, and all runs stopped at ¢t=25.0. Thus the
coarsest grid was 100X 50 (radial points X temporal
points), and the finest 1600X 800. The /, norms of the re-
sidual quantities were output every 2/ steps.
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FIG. 3. Convergence factors of various residual quantities defined in the text and computed in the polar-radial coordinate system.
Five geometrically related scales of discretization were used. The expected behavior as & —0 for all of these quantities is the constant
function 4. Note the decreasing amplitude of the initial “transient” behavior on finer meshes. The transients are probably largely
due to the preparation of the initial geometric data in a fully constrained form.
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The computed convergence factors as defined by (3.21)
and (3.22) are shown in Fig. 3. (In these plots, A is the
finest radial spacing, &,K=K", and the symbols mark
actual data points.) The dotted line in each graph indi-
cates the ideal convergence factor of 4. Although the
convergence rates deteriorate with time on the coarser
grids (presumably due to non-negligible higher-order
terms) there can be little doubt that all of the deviations
are O(h?) quantities, so there is no inconsistency. Note
that there is no graph of the convergence of KF—K°. As
noted above, in this coordinate system, the momentum
constraint is algebraic, and linear in K’,, so that, in this
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case, O°K F and K¥—K € are identical.

A similar experiment was performed to demonstrate
consistency in the maximal-isotropic coordinate system.
Initial data were determined in the fashion described pre-
viously. The initial configuration of the scalar field was

2

#(r,0)=(1.0X10"2) exp , (3.24)

5.0

_ {(r—-20.0)

the solution was time symmetric, and had an ADM mass
of 6.6 X102, Again, the same data were evolved on a
series of grids with geometrically related mesh spacings
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FIG. 4. Convergence factors of the various residual quantities in maximal-isotropic coordinates. Four different mesh spacings

were used.
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FIG. 5. Surface plots of the quantity £=0%¥ in the two
coordinate systems: (a) interior region in the polar-radial sys-
tem, (b) exterior region in the polar-radial system, and (c) exteri-
or region in the maximal-isotropic system. Features visible in
(a) are due to the originally ingoing pulse of scalar radiation
which “self-reflects” at r=0, then travels outward. In (b),
which has half the vertical scale of (a), the dominant feature for
early ¢ is due to the outgoing pulse which suffers a small amount
of “artificial” reflection at the outer boundary of the numerical
domain. At late times, the disturbance described in (a) is propa-
gating from left to right. In (c), which (unlike the radial axis la-
bels might suggest) covers r=5.0, features corresponding to
those in both (a) and (b) appear.

4“4
and outer radii of 50.0. Four grids were used with
1
Ar=4At=F, 0<I/=3 (3.25)

and the runs ended at ¢t =~6. The results of this test are
shown in Fig. 4. In this set of plots, the finest radial spac-
ing h is % and K denotes K %o. Again, it seems clear that
there is no inconsistency in either the constrained or free-
ly evolved quantities. The only problems seem to be with
OFK€ and K —KZ% The convergency factor of the
former appears to tend to a value somewhat less than 4,
while that of the latter begins to deteriorate at the highest
level of refinement. This suggests that there may be some
problem with the way the momentum constraint was
solved, and this needs further investigation.

Finally, surface plots of some of the actual residual
quantities monitored in the experiments described above
are shown in Fig. 5. Particularly notable are the facts
that regions of high deviation are correlated with large
values of the scalar field and that the deviations them-
selves are smooth functions. There is certainly no evi-
dence of “exponential” growth [18] of the residuals—in
fact, the residuals actually die off quite rapidly at late
times in the maximal-isotropic system.

IV. DISCUSSION

The results we have presented provide strong support
for the claim that properly constructed, freely evolved
finite-difference solutions of Einstein’s equations should
satisfy the constraint equations to the truncation order of
the difference scheme. Again, we stress that the behavior
we have observed can be considered a direct consequence
of the general existence of asymptotic expansions such as
(2.32) for the solution of our difference equations. There
seems to be no fundamental reason why we should not
expect similar behavior for more general difference solu-
tions in numerical relativity, including those with less
symmetry or those involving stronger gravitational fields.
Thus, although the standard procedure [4-9] of monitor-
ing the degree to which freely evolved quantities fail to
satisfy the constraints is not unreasonable [18], that pro-
cedure is really measuring a form of truncation error
which cannot, in general, provide a direct quantitative es-
timate of the solution error. A better way to estimate the
solution error is to make a comparison of the difference
solutions obtained using two or more distinct mesh spac-
ings and the same initial data. This can be done with the
finite-difference solution of any set of differential equa-
tions, so, from the point of view of estimating the accura-
cy of a numerical solution of the field equations, there is
nothing particularly special about the fact that general
relativity has constraints [8].

Finally, the demonstration of consistency in the model
system provides an excellent example of the following
fact—the manner in which a difference solution changes
with respect to the scale of the discretization will general-
ly contain a great deal of useful information, particularly
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about the error in the approximation. Although the basic
techniques of convergence testing (‘“‘the Livermore test”)
are well known and well used in numerical relativity, we
wish to emphasize that Richardson’s ideas go beyond the
basic observation that the error in our grid functions
should scale as some power of 4. Perhaps more than any-
thing, Richardson’s pioneering work taught us that, un-
der ideal circumstances, the errors in our finite-difference
solutions are no less computable than the approximate
solutions themselves are.
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