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Black-hole—scalar-field interactions in spherical symmetry
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We examine the interactions of a black hole with a massless scalar field using a coordinate system which
extends ingoing Eddington-Finkelstein coordinates to dynamic spherically-symmetric spacetimes. We avoid
problems with the singularity by excising the region of the black-hole interior to the apparent horizon. We use
a second-order finite difference scheme to solve the equations. The resulting program is stable and convergent
and will run forever without problems. We are able to observe quasinormal ringing and power-law tails as well
as an interesting nonlinear featuf&0556-282(196)03520-5
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[. INTRODUCTION In this paper, we again use the black-hole excising tech-
nique to examine the interactions of a black hole with a
A long-standing goal of relativists has been the long-timemassless, minimally-coupled scalar field in spherical symme-
numerical evolution of a black-hole spacetime. Such an evotry. Unlike previous work, we use gull based slicing to get
lution is difficult because of the physical singularity the a coordinate systerfingoing Eddington-Finkelste)nwhich
spacetime contains. Despite their early promise, it has ndits naturally with black-hole excisioffor a Schwarzschild
sufficed to use slicingéchoices of time coordinatewvhich  black hole, all variables are static and nonsinggapropri-
avoid the physical singularity. Invariably, such coordinateately smooth everywhere on the solution domain, and per-
systems develop coordinate singularities in the vicinity of theturbations about Schwarzschild give perturbations of this be-
event horizon and computationally, physical and coordinatéavior). Further, we introduce a modification to these
singularities are essentially equally pathological. Many yearsoordinates which allows for easy tracking of the apparent
ago, Unruh suggested that it might help to consider evolutiomorizon. We are able to get a second-order, convergent evo-
of only the exterior of a black hole. In fact, he argued, sincelution scheme which will stably evolve forever, and which
the black hole interior is, by definition, causally disconnectedshows the expected effects of quasinormal ringing and the
from the rest of the universe, evolution of events within thepower-law decay of the scalar field. We also see some inter-
horizon constituted wasted computational effort. In the necesting coordinate and nonlinear effects.
essary absence of exact information concerning the spatial The plan of the remainder of the paper is as follows. In
location of the event horizon at any instant during the evoSec. 1l, and following some unpublished previous work
lution of given black-hole initial data, Unruh proposed that[9,10], we define the minimally modified ingoing Eddington-
the apparent horizon be tracked and used as an approximbinkelstein (MMIEF) coordinate system and derive equa-
tion to the true horizon. Thornburg developed these ideadjons of motion for the gravitational and scalar fields which
first in the context of generating initial data forblack holes are specialized to this coordinate system. This derivation is
(each of which could have arbitrary momentum and spin based on detailed calculations of the Einstein-Klein-Gordon
[1], and then in a program of research for solving the vacuunequations of motion in a general spherically symmetric co-
axisymmetric Einstein equation®,3]. However, the first ordinate systenj11] which have been summarized in the
clearly successful application of the black-hole excisingAppendix. In Sec. lll, we examine the issue of regularity at
technigue in a dynamical situation came with the work ofthe origin, r=0, with the principal result that use of the
Seidel and Suen who studied spherical evolution of thecoordinate system must be restricted to cases where matter
vacuum(Schwarzschillas well as a self-gravitating mass- never reaches=0. We follow with a detailed description of
less scalar fieldl4]. Extensions of this work are discussed in our finite difference approximations in Sec. IV and a discus-
Anninoset al. [5]. The Seidel-Suen paper is also notable forsion of initial data in Sec. V. We discuss the convergence
the introduction of a general technique, ternvadisal differ-  and stability of our difference solutions in Sec. VI—the evi-
encing which ensures that, independently of the details ofdence presented there suggests that the scheme can be used
the coordinate system adopted, the difference scheme’s nts carry out arbitrarily long evolutions. Various physical and
merical domain of dependence contains the physical domaicoordinate effects which have emerged from our studies are
of dependencéi.e., is causal Alcubierre and Schutz have discussed in Secs. VII-XI, and we end with some conclud-
used a similar but somewhat more general technique whichng remarks.
they callcausal reconnectioto treat the wave equation on We note that the programs used to generate the results
an arbitrarily moving grid[6]. Scheelet al. have recently described below were written in RNP(Rapid Numerical
used black-hole excising in a study of gravitational collapsePrototyping Language a language designed by the authors
in Brans-Dicke gravity[7,8]. [11]. This language allows for the easy and compact expres-
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Here and subsequently, overdots and primes denote partial
differentiation with respect td andr, respectively. Solving
this last equation for the shift vector componéot simply
“the shift”) B, and noting that ¢b)=f, (rb)’ =1, we ob-

tain the condition on the shift which must be dynamically
enforced to keep the metric functignareal:

B=f+saK?,. (2.9

We now fix the time slicing by demanding that the ingoing
combination of timelike and radial tangent vectors—
d,— d,—be null, exactly as in the case of the original IEF
coordinates. This gives a condition on the metric, hamely
Ou—20:+9,,=0. Using Eq.(2.2) this implies

a=*a(l—p). (2.5

We choose the sign sa is positive for <1, that is
FIG. 1. The ingoing Eddington-Finkelstein slices in Kruskal- a=a(1— B). Using this and Eq(2.4) we get
Szekeres coordinates. The dotted lines are congtanhile the
dashed lines are constantThe dark curves are the singularity. The p 0 g
diagonal lines are the horizom € 2M). B= % a= a(l—f)_
1+saK’,’ 1+sakK’,
sion of time-dependent systems of partial differential equa-
tions and the rapid trial of various finite-difference tech- Hence the metric takes the form
niques for solving them.
ds’=a?(2B—1)dt?>+2a?Bdtdr+a?dr?+s?dQ?2.
II. MINIMALLY MODIFIED INGOING EDDINGTON- 2.7
FINKELSTEIN COORDINATES

We begin by recalling that the ingoing Eddington- Factoring the first three terms yields

Finkelstein(IEF) coordinate systertsee, for example, Chap. , oo

30 of[12]) is defined for static, spherically symmetric space- ds’=a’[ (28— 1)dt+dr](dt+dr)+s°dQ? (2.8
times(i.e., Schwarzschildand combines an areaheasures

proper surface arg¢aadial coordinate, with a time coordi-  which shows that the characteristic speeds are

natet, which is chosen so that the ingoing tangent combina-

tion 5t—5r is null. Figure 1 shows some slices of constant c=-1,1-2p. (2.9
IEF time plotted in Kruskal-Szekeres coordinates. Notice
that all of the slices penetrate the horizon and meet the sin- e now specialize the general spherically-symmetric

gularity. - _ _ _ equations of motiorfA10)—(A18) given in the Appendix to
In generalizing IEF, we first consider the following gen- the MMIEF coordinate system. The full set of constraint and

eral “3+1" form for a time-dependent spherically symmet- gyojution equations for the geometric variables is

ric metric:

3

2 202\ 4:2 52 24021 12124 ()2 1 ads
ds?=(—a’+a?B?)dt?+2a’pdtdr+a®dr2+r2b?dQ2. a’+E(a3—a)+7K99(2Krr+K%)—Zwsa(¢>2+ﬂz)

(2.9
Here,a, b, «, andp are functions of andt, anddQ? is =0, (2.10
the metric of the unit sphere. We fix the spatial degree of
coordinate freedom by introducing a “shifted” areal coordi- 0 _ et
. . K=K, 47®Il
nates, defined bys=r + f(t) for some as yet undetermined K%+ - =0, (2.1
function f. With this choice, the metric becomes a
—(_ 2 202 2 2 242 2 2 .
ds?=(—a?+a2B?)dt?>+2a2pdtdr+a%dr+s dQ(é.Z) A= —a2(1— K’ +(aB)’, 2.12
Comparison with the general for\4) yields the identifi- . 1-8 1
cationss=rb and b=1+f/r. From the general evolution K%=,BK";+a(l—,B)K%(Krr+2K90)+—2— a——
. S a
equation forb (Al11), we have
+ B— (2.13

(rb)=—arbK’,+ B(rb)’. (2.3 as



54 BLACK-HOLE—-SCALAR-FIELD INTERACTIONS IN ... 4931

. B—1 straint and evolution equations to eliminate time and space
Krr:ﬁK”r+a(1—[3)Krr(Krr+2K00)+T derivatives of the geometric variables, we find
” 1\ 2 i rat " i 4 52((I)+H)2
a a 2a p'a’ B T
— = ——+ 2|4 —+— f=——— . (2.20
a \a sa g d a a’ a ,h
(2.19

We are most interested in the situation where the initial
while the wave equation for the massless scalar field bedata for our spacetime describes a black hole of nMss

comes the first-ordein time) system: which is well separated from any scalar field. In this case we
haver,=2M and, provided that Eq2.20 is satisfied, the
('I):[Bq)Jr(l_ﬁ)H], (2.19 apparent horizon will remain at=r,=2M. The area of the

apparent horizon, however, is given byréﬁz47-r(rh+f)2,
1 25 and hence will increase as matter falls into the black hole, in
= S{s[BII+(1—B)P]} — —1I. (2.1  accord with physical expectations.
gz{ L& (1=AP]} S It is useful to write down the Schwarzschild solution in

o _|IEF coordinates. The metric is usually written [42]
We note that we have used the slicing condition,

a=a(l- B), to eliminate the lapse function from the above M
set. In addition, as is always the case in general relativistic ds’= —(l— e
dynamics, we have more constraint and evolution equations
governing the geometric variables than variables themselve
We adopt the often-usddnd somewhatd hog approach of
discretizing some sufficient subset of the equations with th
expectation that, provided the difference scheme converges, (

1_ R

dV2+2dvdr+r2dQ2?, (2.21)

alhgrev is a null coordinate. Defining a timelike coordinate
=v-r, the metric becomes

residuals of discretized forms of the remaining equations willgs2= —
be of the same order in the mesh spacing as the truncation
error of the difference scheme itself. In fact, we have made (2.22
conadgrable use_of our freedom to construct sche_mes bas"/&dcomparison of this last result with the general fo(A4)
on various combinations of constraint and evolution equa- . . : ; . i
1 . ields the following expressions for the various metric com
tions in the development of the stable second-order metho Sonents:
described in Sec. IV. It is entirely possible that we could” '
construct a stable scheme without explicit use of the con- p oM oM
straints but our attempts to do so with the type of differenc- =1/ . B= , a= ,
ing described in Sec. IV were not successful. r+2m r+2m r

Since the functiorf (t) [recalls(r,t)=r+ f(t)] is still un- (2.23
s_pecmed, we require one more equation to determme_ th?vhere we use overbars on quantities to stress that the expres-
time evolution of our model system. We derive an evolution

equation forf by demanding that a certain radial coordinate sions are valid only for the vacuum case. Using the above
q oy 9 . 'and Egs.(A10) and (All), we can compute the extrinsic
r=ry, be tied to the location of a marginally trapped sur-

. , curvature components:
face. In general we will want to track tlmutermostmargin- P

4M 2M
dt?+ Tdtdl’+ ( 1+ T) dr?+r2dQ2.

ally trapped surface, so in the following we will assume that — 2M(r+2M) — —2M(r+M)
the surface we are tracking is, in fact, an apparent horizon. Kly=—————p, K'=——————5. (2.29
[r(r+2M)] [r(r+2Mm)]

We recall that ifS* is an outward-pointing, spacelike unit

normal to a marginally trapped surface, then it satidfie} . N .
ginatly trapp Since we are working in spherical symmetry, we can

D.S—K+SSK.=0 (2.17 meaningfully define the masfr mass aspectfunction
' e m(r,t) which, at least in a vacuum region, provides an in-
where D; is the covariant derivative compatible with the variant measure of the gravitational mass contained within

three-metric andK =K', . In spherical symmetry, and with radiusr at timet. Moreover, even when matter is present,

the functional forms of the three-metric and extrinsic curva-M(r,t) andm’(r,t) are useful diagnostic quantities in our
ture given in the Appendix, this equation reduces to calculations. The mass in MMIEF coordinates can be com-

puted from the surface area using the general expression

(rb)’—arbK?,=0. (2.18 1
=— — —1lp.m
In the MMIEF system this is simply m(r.t) 25(1 (16mA) “AEA ), (.29
ask’)=1. (219  where A=47s?. Substituting this expression for the area

into Eq.(2.295 and differentiating, we get
To keep the apparent horizon at fixed we demand that
(asK"0)|,h=0, wherer,, is the initial position of the appar-
ent horizon. Solving this equation fdrand using the con-

— 0 \2
ﬂ) (2.26

1
m(r,t)=§s(1— =
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By making use of the evolution and constraint equations, w&dhe second derivative of the denominator s
can write this mass as an integral over the mass density. Irfa”+4ra’+2a. The limit of this is 2. Thus, we have
this form we have 5

(1-p)(a*=1)+rp’

s, r D2+ T2 OII lim 7 =(1-p)a"+p". (3.3
_ - [ r—0
m(r,t) 5 +47rfrhs a2 +sK% a dr,
(2.27 Let us now consider the behavior of the spatial derivatives

of B asr—0. When there is no black hole present, the shift
where as before;, is the location of the apparent horizon is given by
ands,=s(ry). We note here that as used abow,repre-

sents the mass of the black hole, thasj&2. We also define B= rak’ (3.9
M., as the total mass in the spacetime: namely, 1+rakK?,’ '
" ) Jw Z(q)2+ 12 , @11 q From this we can easily see thatis zero at the origin. Now
w=M(0)=M+47| S >—+sK”——|dr
h 2a (2.29 . raK%+ra’K’+akK’
' B (1+rakK?)? 3.5

Given that our finite difference grid does not extend to infin- h
ity, we will approximateM ,, by taking the upper limit of the Thus,
above_ integral to be the outer boundary of our computational limpg' =K?¢,. (3.6)
domain. -0

IIl. REGULARITY AT THE ORIGIN Since we have argUEd that ,8,(01) =0 and

K?,(0t)=K",(0}t), we have

In cases where a black hole is not initially present or there
is insufficient mass in the scalar field to form a black hole via K(0t)=K".(0t)=0. 3.7
collapse, the infalling matter will encounter the coordinate o .
origin, r =0. As is generically the case when using sphericaf\oW the second derivative @ is
coordinates, the various geometric and matter variables must rak? +2aK? +2ra’ K% +2a'K?, +ra"K®
satisfy regularity conditions as—0 in order that the origin B'= 0 0 o o 4
remains a regular point in the spacetirse=e[14] for an (1+raK®)
extensive discussion of regularity conditipns 2((raK?,)")?

Since ¢ is a scalar and, K, andK', are components — —”03
of rank-two tensors, we assume that they are evenrirar (1+rak%)
the origin. This means that their spatial derivatives must vany,
ish atr=0:

(3.8

s r—0, this expression vanishes. Thy#,(0,t)=0.
SinceK?,(0t)=0, we must hav&?,(0t)=0 and con-
¢ =a =K =K' =0. (3.1) sequently the right-hand side of E(.13 must vanish as
o ' r—0. This will happen only if the limit of Eq(3.2) is zero,
Elementary flatness near the origin in MMIEF coordinatesVNich, given the results deduced above, can only happen if

dictates thata(0t)=1. An examination of the momentum a(0)"=0. , o .
constraint(2.1) shows thak ?,(0t) =K', (0,t). We can find The evolution of the scalar field is accomplished through

further conditions by examining the potentially divergent WO auxiliary variables® andIl. These are defined by Eg.
terms of the evolution equation fét?, (2.13. These terms, (A14). The condition ond has already been stated in Eq.

which are those with powers ofin the denominator, can be (3.2,
collected and written as ®(01)=0, 3.9
(1-p)@*-1)+rp’ (3.2 and it is easy to show thdil must be even irr near the
rla ' ' origin. Thus we have
Clearly, asr—0 both the numerator and the denominator of IT"(0t)=0. (3.10

Eg. (3.2 go to zero, so we use L'Hutal's rule to compute
the limit. The derivative of the numerator is
2(1-pB)aa’ —B'(a®—1)+ B’ +rp". As r—0 this goes to
B'. The derivative of the denominatoriida’ + 2ra. Clearly
this goes to zero as goes to zero. Thus, we must have
pOY'=0. , _ a"(0t)I1(0,t)2#0. (3.1
Since we still have an indeterminate form, we apply

L’Hopital’'s rule again. The second derivative of the numera-Thus, we are led to the conclusion that the MMIEF coordi-
tor is (1—B)(2aa’+2(a’')?)—pB"(a®—1)—2ap'a’ +28" nate system will admit no non-singular curvature at the ori-
+rB"”. As r goes to zero, this goes to 2{lB)a"+28".  gin. The only consistent solutions near the origin describe

Unfortunately, these regularity conditions are inconsistent
with the Hamiltonian constrair(2.10. If we solve Eq.(2.10
for a’, take a radial derivative of the resulting expression,
then take the — 0 limit, we find
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TABLE I. Two-level finite difference operators.

Operator Definition Expansion
Affp (—3fP+4fP  — 1 )/2Ar . f|"+0O(Ar?)
APED (3fP—4f" +fM )/2Ar a,f|"+0O(Ar?)
A f} (fl 1 —fiy)/2Ar d,f[7+O(Ar?)
AfD (FM1—fM/At af|M Y2+ 0(At?)
A%D (FM1—fM/At+ o f M2+ 0(At?)
€aid 6 + i o+ 1l o~
A(f1_ 41D, )]/16At
] (frri+ )2 fIPr Y2+ 0(At?)
et (f+ /2 fIi 1+ O(Ar?)
Afagn wAD o, f|" 2+ O(Ar2+ At?)
AbagD W APED o, f|M 2+ O(Ar2+ At?)
ARf] w7 o, f|M 2+ O(Ar2+ At?)
ASED (FM =Pl £ —fM)/2Ar 3, M2+ O(Ar2+ At?+ Ar At)

n

flat space or a black hole. Thus, MMIEF is a “good” coor- I
Af(sZ(ﬁm(1—,8><I>)>:‘—2Ats?m(g) ,

dinate system to use only when a black hole already exists irA?Hin
the spacetime. In a spacetime without a black hole, the equa-

=Mt(3in)2

|

tions will remain consistent as long as no matter encounters (4.5
the origin. This will be the case if the scalar field is outgoing S(+11)| "2
or if it collapses to form a black hole before it encounters the Atfin:47wt(— , (4.6)
origin. For a collapse problem, we could start with another a i
coordinate system and change to MMIEF coordinates if an
apparent horizon forms. If no such horizon forms, there is shtl=r 4+, 4.7
really no need for the special horizon tracking properties of
MMIEF coordinates anyway. Though we have not imple- A+ u(ask?p)!
mented such a scheme, this approach was used successfully wiBi'= 1+ p(ask?,)l (4.8

I

in [4,5,7,8.

IV. FINITE DIFFERENCE EQUATIONS

We use Egs(2.12, (2.13, (2.19, (2.16, and (2.20 to
evolvea, K, ®, II, andf; Eq.(2.1)) to findK', ; and Eq.
(2.6) to find B. We solve these equations using finite differ-
ence techniques on a uniform mesh with spaciagsand
At=AAr, where the Courant factaox, is held fixed when we
change the basic scale of discretization.

These equations are applied everywhere in the interior except
at the two points next to the boundary points. At these points,
we use the same equations except the dissipative time deriva-
tives (A?) are replaced by regular time derivatived,),

since the value dt+2 ori—2 is not available at these loca-
tions. It is interesting to note that all of the spatial derivatives
areangled(A?) except for the derivative o8 in Eq. (4.2)

and the derivative ok ?, in Eq. (4.3). Switching any of these

Table | shows the operators we use in the discretizationgerivatives from angled to nonangled or from nonangled to

Note that while the derivative operators take a lower prece

dence than the arithmetic operators,
A fP2=(f", 2= ,%)/Ar, the time averaging operator
takes a higher precedence, that igf?=(uf)? and
wi(a'bl) = walubi' .

In the interior, the finite difference equations are

Afal'=— u(@%(1-B)'+A%@pB)!, (4.0)
1- 1\\" Agg!
d 6 n_  pnASon - Pla=Z il
AtK 0i /'LtﬁlArK i + g S2 a a i Mt(as)in

+p@(1— B)K (2K 2+ K" )P, (4.2
K?—K', ®IT\"
S a i

ADI=AT SO+ (1-p)I], (4.4

that is

angled results in an instability. We do not have an explana-
tion for why this particular combination of derivatives
works, but the use of angled derivatives here was motivated
by their successful application in previous work by Choptuik
(se€[13,15)). This is a good example of a technique that was
perfected by “experimental” numerical analysis.

As discussed previously, the inner boundary of our com-
putational domain is fixed to the apparent horizosry,. In
accord with the causal properties of the apparent horizon,
function values on the horizon can be advanced without use
of any information defined at<r,. Therefore, at =r, we
use the same equations employed in the interior, except that
we replace centered differences with forward differences.
For example, Eq(4.1) becomes

Ad]=—w@(1-B+AX@E)T. (49

Since the computational grid does not extend to infinity,
we adopt outgoing conditions at the outer boundary, that is,
we assume that no radiation will enter the grid from large
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r. While this is not strictly trudthere will be curvature back- and

scattering from the outgoing pulsé¢his assumption provides

a reasonable computational solution. S2K Y~ m(r,t). (4.17)
For the scalar field variabled andII, the outgoing con-

ditons come from the condition on¢, namely We now deduce hown(r,t) behaves in the largs, weak-

s¢~F(s—ct), with c=1—2p being the speed of the out- field limit. Sincea—1 andK’,—0 we have

going waves. This means that

m~4wf s?(d2+11%)ds. (4.18

. s+1-2B8—2sB’
d+(1-2B8)D' + S D
From the condition onp we can see tha®~G(u)/s and

s+1-2B+2sB’ I1~G(u)/s, whereu=s—ct. Thus
- 2 $=0 (4.10
and m~8wf G2(u)du~H(u), (4.19
1_23+é that is, m is “outgoing” at large s. Therefore we get the
(1_3)(H+¢))+T¢:O' (4.10 following conditions fora andK?,:
These equations are discretized as s(a—1)~H(s—ct) (4.20
and
ASM+1—2u,B"—2u,S"APA"
n m A ban 4 i 21 2r i
A+ (1-2uB) A O + S s?K?,~H(s—ct). (4.21)
COASMLI-2u BN 2mSAN B These are discretized as
></*"'[(I)i - (M Sr‘l)2 Iu’t(;bi =0
tSi
412 Ads(@a— DI+ (1-2u BN A s(a-1)]7=0
: (4.22
and and
1— 248"+ A,s" Af(SPKO )M+ (1- 2 BMAPY(SPK?)'=0. (4.23
pl (1= B+ I+ DTS oo, o e

MtSi The outgoing boundary condition reduces the amplitude

(4.13 of reflections off the boundary, but unless the boundary is
We can get approximate conditions anand K¢, from  Placed at very large, these reflections can still interfere with
their Schwarzschild form$2.23 and (2.24 with the mass the results of a calculation. To further reduce the reflections,
aspect(2.27 used in place oM, since in vacuum, or in any We use aponge filteras detailed i 13]. Briefly, this means
region where the scalar field's self-gravitation is negligible,that in the interior of the grid, we add a term to the wave
a andK’, should take on these forms. For largeasymp-  €duation which effectively applies the outgoing condition on

totic expansion of these expressions gives a finite region rather than at a single radial location. For
instance, we use the following modified evolution equation
for @:
m(r,t) ,
a~1+ S +0(s™9) (4.19
P=[pd+(1-p)I]
and .
. s+1-2B8-2sp’
-y d+(1-28)P' + 0]
2m(r,t) B S
Kly~ ——=—+0(s73). (4.15 _
S s+1-28+2sp’
. - 2 ¢ ) (424)
Thus, at larges we have, to leading order, S
s(a—1)~m(r,t) (4.16  where the coefficient functiom(r), given by
|
0, Fmin<r<fre,
v(r)= m ° (4.29

A(r_rs)n(rmax_r)(rmax_rs)_n_z(n+1)(n+2): Ms<T<<Imax;
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FIG. 3. Convergence factors as a function of time for a strong-
field evolution withA=2.5x 103, c=10, ando=2. These values
FIG. 2. Sponge filter coefficient function féx=1.0 andn=2. are approximately four, indicating second-order convergence.
ric variables should have approximately their Schwarzschild

is nonzero in the filtering regiomgs=<r=<r,,,. Here,A and . : )
n are parameters which can be adjusted to tune the fiIteForm' Specifically, we demand thiit (Or) satisfy the equa

Figure 2 showsy for A=1.0 andn=2, the values used in tion [see Eq(2.24]
this work. . — 2m(r + m)
K v (r+ 2m) 2 (5.5
V. INITIAL DATA
) . ] ] wherem is the mass aspect function defined by E327).

We wish to examine the interactions of the black holeThjs equation, along with the equation for the mass aspect
with compact ingoing pulses of scalar field. We can generatgz 27) and the constraint€2.10 and (2.11), is then solved
nearly ingoing pulses using the following method. Letiteratively for any given initial scalar field configuration. We
¢(r,t)y=F(u=r+t)/r. This gives ¢=9,F/r and have found that initial data prepared in this mandermgen-
¢'=d,FIr—F/r?. For a compact pulse, we s& to a erate spacetimes of the type we seek even when the scalar
Gaussian of the form field is significantly self-gravitating at the initial time.

F(u)=Au?exp(— (u—c)% a9, (5.1 VI. CONVERGENCE AND STABILITY

In order to assess the correctness and accuracy of our
fdifference equations and the program which solves them, we
perform some tests. These include computing convergence
factors, performing a long-time vacuurgBchwarzschily
evolution and comparing it to the known solution, and per-

whered is an integer, and is the radial coordinate of the
center of the pulse. This results in scalar field initial data o
the form

¢=Arexp(—(r—c)%a), (5.2} forming a long-time strong-field evolution.
To measure convergence, we define the convergence fac-
1 d(r-c)9? tor for a grid functionu by
b= ¢ ? - —O'd_ y (53)
Uop— U
C = | A2h b 4h|2, 6.1)
2-p d(r—c)d-1t |Up—Ugn|2
II=¢ - d (5.4 . _ L .
r(1-p) o whereu,, is a solution of the finite difference equations on a

grid with spacinga, and the/’, norm is defined in the usual
We solve forB, a, andK’, using Egs.(2.6), (2.10, and  way, that is
(2.11). Ostensibly,K",(0r) can be freely specified and the
constraints can still be satisfied by appropriate adjustments to R Ei'\Llui
the other geometric variables. However, abitrarily cho- |ufo= N
senK' (0r) combined with the initial data for the scalar
field given by Egs(5.2)—(5.4) will not, in general, generate The convergence factors for the scalar field and geometric
a spacetime describing the desired physical scenario of ariables are shown in Fig. 3. These factors are computed
scalar pulse initially infalling on a black hole. We therefore from a strong-field evolution. They are approximately four
adopt an ansatz fdk",(0,r) which is motivated by the ob- throughout, indicating second-order convergence.
servation that at the initial time, the self-gravitation of the Figure 4 shows the deviation of the evolved vacuum
scalar field is generally relatively weak, and thus the geometspacetime from that of Schwarzschild. We note however,

6.2
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FIG. 4. The/, norms of the differences of the computed
vacuum geometrical variables and their Schwarzschild values vs FIG. 6. The masssolid line) and the", norm of the four-Ricci
time. Note that both axes are logarithmic. The outer boundary foscalar(dotted ling for a vacuum evolution with outer boundary at
this evolution was placed at=82M. r=22M. Both functions are asymptoting to a fixed value, indicating
that the spacetime is settling down to a static configuration. The

. . . . time axis is logarithmic.
that the spacetime being evolved is not Schwarzschild, rather g

it is a black hole in a “box” with ratherad hocboundary
conditions. clearly in Fig. 6. The curves in this graph are asymptoting to
At late times, the outer boundary condition causes thdixed values. Thus, although the computed spacetime drifts
spacetime to “drift” away from the initial configuration. from Schwarzschild, it eventually reaches a fixed configura-
Figure 5 shows plots of the mass and the Ricci scalar fofOn.
vacuum evolutions with outer boundaries at2242M, and Figure 7 shows the’, norm of the scalar field during a
82M. This plot clearly shows the rather large effect the po-strong field evolution tat=10 00(M. Figure 8 shows the
sition of the outer boundary has on the late-time evolutionmass and the Ricci scalar for the same evolution. While the
We could get better convergence of the difference solution tgcalar field and the mass fall off as expected, the plot of the
the continuum solutiorii.e., with boundary conditions only Ricci scalar again shows the “drifting” of the geometry.
at spatial infinity by matching the interior Cauchy evolution  The plots of the Ricci scalar were made by discretizing, to
to an exterior characteristic evolutiaisee[16,17)) or by first order, the analytic expression fBrderived in the usual
using an adaptive mesh refinement algorithm to push thway by R=R* , whereR,, is the Ricci tensor. Although
outer boundary to a large radius without unduly increasinghe values oR appear large given that they are computed for
the computational load. Nevertheless, the position of thé vacuum spacetime, they do converge to zero to first order
outer boundary has no effect on stability. This can be seei the mesh spacing as expected. Moreover, the values of the
individual additive terms in the expression f@rare orders
of magnitude larger than the scalar itself, indicating fRas
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FIG. 5. The mass and thé, norm of the four-Ricci scalar for
vacuum spaces with varying outer boundary position. The sub- FIG. 7. A log-log plot of the/, norm of the scalar field vs time
scripts indicate the position of the outer boundary in unitdvbf  for a strong-field evolution. The inset shows an expanded vertical
The time axis is logarithmic. axis for the late time evolution. The outer boundary is at42M.
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FIG. 8. The masssolid line) and the/, norm of the four-Ricci \ N
scalar(dotted ling vs time for a strong-field evolution. The mass
should be nearly constant except for a small amount of scalar field
which radiates to infinity. The plot of the Ricci scalar shows the FIG. 9. Schematic motion of the horizon for various amplitudes
drifting of the geometry caused by the outer boundary conditionsof the scalar field. Notice that this diagram uses the areal coordinate
Contrary to the impression given by this figure, the Ricci scalar iss and not the radial coordinate The solid dark vertical line which
asymptoting to a fixed value. The time axis is logarithmic. jogs right and then continues vertically represents the critical path

of the horizon. The dotted lines are subcritical paths and the vertical
the size we would expect for first-order differencing at thesedashed lines are supercritical paths. The two thin, diagonal lines
resolutions. represent the bounds of the ingoing pulse of scalar field. A super-
critical pulse moves inward until it crosses its gravitational radius.

Once this happens, the apparent horizon jumps from its initial po-

VII. MASS SCALING sition to this new position where it remains. A subcritical pulse

fnoves inward until it encounters the horizon. If the field is very
weak, the horizon is unaffected. For stronger fields, the horizon
moves out until the pulse is entirely inside. For a critical pulse, the

. : ' horizon moves out at the speed of light. Note however, that unless
dependent on the amplitude and width of the pulse. These atfe energy density is a square wave, the horizon will not move

scatteringfrom the existing black hole ancbllapseto form along the straight lines as shown in the diagram, but will move

a new horizon _outside the existing_ horizon. Gen_erically,abng a curve with gradually increasing and then decreasing slope.
these two behaviors are separated layitical value of either

amplitude or width. Figure 9 shows the path of the appareng.n(r) on ¢. While this seems a reasonable assumption, it

horizon for various amplitudes of initial data. must be checked numerically in the strong field regime.
The final mass of the black hole should scale as a power o+ nymerical results verify this calculation. For instance,
of the amplitude of the initial pulse. To find out what this o gata in Fig. 10 are fit by the line

power should be, we can use HG.28. Since the mass is

conservedM., is a constant. HoweveM is not constant. As IN(M—1)=2.01InPA+4.96, (7.2

the scalar field encounters the horizon, some mass will be

transferred from the integral term td. The mass of the indicating that the mass grows with the square of the ampli-
black hole will increase by an amount proportional to thetude as expected. The graph also shows there is no difference
mass in the scalar field. By this we mean that after the interin behavior for sub- and supercritical data. That is, the final

»
»
S

As discussed in Sec. V we focus study on the evolution o
initially ingoing “Gaussian” pulses of scalar radiation. In
this case, the infalling field exhibits two limiting behaviors

action we have mass of the black hole exhibits the same dependence on the
amplitude when the hole grows by accretion as when it
= [ @211 , @I forms by collapse.
M—M +47ka $°\ gz tsKy—Jdr. (7. Similarly, the data in Fig. 11 are fit by the line
h
In(M—1)=1.99IM\+5.19, (7.3

wherek is a positive constant less than 1. For a very narrow
pulse, the entire mass of the field will go into the black hole,indicating that the mass scaling is independent of the exact
and hencek will be very close to 1. If the pulse is very shape of the ingoing pulse.
wide, howeverk will be very close to 0. Thus, to see how
the final mass of the black hole scales with the amplitude of
the scalar pulse, we need only examine the integral term in
Eq. (7.2). Figure 12 shows¢ at constantr for runs with
From Egs.(5.2—(5.4) we see thatb andll are propor- r.,=42,82,162. It is clear that the position of the outer
tional to ¢ and hence ta\. This means that the integrand is boundary has a large effect on the late-time falloff of the
proportional toA?. This of course assumes the dependencescalar field. Even with the sponge filter, there is enough re-
of a, K%, andB on ¢ is much less than the dependence offlection from the outer boundary to cause the field to die off

VIIl. TAILS
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%810 FIG. 12. The absolute value of the scalar fieldrat30M vs

time for various spatial domains. Notice the differences in late time

FI.G' 10. A log-log plot_ of the final bl_ac_:k hole mass vs the falloff caused by the different positions of the outer boundary. The
amplitude of the scalar field pulse for initial data with=2, vertical axis is logarithmic

o=2, andc=10. The squares represent data with amplitude less

than the critical value, while the crosses represent data with ampli- Li ized bati h di h
tude greater than the critical value. The slope of this line is 2.01 Inearized perturbation theory predicts these exponents

showing that the black hole mass depends on the square of trould both be—3 [18]. We note that previous evolutions
scalar field amplitude. carried out by Gundlach, Price, and Pullin gave exponents

between—2.63 and—2.74 for ¢ at constant [19].

more slowly than it otherwise would.

However, with the outer boundary ig},,= 162, it takes at IX. RINGING
least 300/ for reflections from the scattered pulse to travel )
in from the outer boundary and interfere with measurements Figures 14—-17 show the waveforms generated by the scat-
at r=30, and still longer for reflections to interfere with t€ring of packets of various widths and amplitudes. The sca-
measurements at the horizon. This should provide enougl@' field is measured both at the horizon and at30M. The
time to accurately measure the rate of falloff of the scalaiscillation period in each of these figures is approximately
field. Figure 13 shows the evolution gfatr =30 and at the 53M, and is independent of initial amplitude and pulse
horizon up untilt=300M. A fit to the r =30 curve between width. Gundlachet al. measured an oscillation period of ap-
200M and 300/ showsé falling off ast 338 A fit to the ~ Proximately 4M [19] during collapse of Gaussian wave

horizon curve over the same range showdalling off as  Packets.
t_3'06.

X. COORDINATE EFFECTS
05 ————

] Certain evolutions exhibit interesting effects which result
from the use of MMIEF coordinates. Recall that the shift
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FIG. 11. A log-log plot of the final black hole mass vs the t

amplitude of the scalar field pulse for initial data with=4,

o=2, andc=10. The slope of this line is 1.99 indicating again that  FIG. 13. A log-log plot of the absolute value of the scalar field
the black hole mass depends on the square of the scalar field arat the horizor{solid line) and atr =30M (dotted ling vs time for an
plitude. evolution with the outer boundary at=162M.

o vl




54 BLACK-HOLE—-SCALAR-FIELD INTERACTIONS IN ... 4939

s s
5 25 N E
2 i)
3ok | c=4 |
-35 - o= -
-40 |- — - - o=6 ]
45 | | | | | | | | | 45 | | ! | | | | | |
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

t t

FIG. 14. lod¢| at the horizon vs time for various pulse widths ~ FIG. 16. lod¢| at the horizon vs time for various pulse ampli-
(A=2.0x10"8). While the curves match well for about 10  tudes ¢=2.0, amplitudes arex 10 %).
there are differences in late-time behavior exhibited by the wider
pulses, particularly those witr=5 and o=6. This is an outer rizon for a given pulse shape. The valuesBoét the horizon
boundary effect. As the width becomes larger, less and less of thand at the outer boundary are plotted in Fig. 18 for a near-
initial pulse is absorbed by the black hole. This means there is morgritical solution.3 gets as large as 0.95, but never reaches 1.
scalar field available to be reflected from the outer boundary ang\ near-critical solution from a family of pulses witt=4

this causes differences in the late-time evolution. gives a slightly higher maximung, but still less than 1. It
g ; may be possible that a narrow enough pulse could chise
E%m(goign;gdza:sfﬁz E aqv.(62.6). At the apparent horizon, reach 1 for an instant, but this has not been verified. Further-
o more, it may be that such a narrow pulse would collapse to
f(t) 1 form a new horizon before crossing the existing horizon.
B(ry,t)= - + > (10.2 Nevertheless, whenev@>0.5, the outgoing characteris-

tic speed is negative. Thus, outgoing pulses will appear to
ove inward when plotted in the radial coordinateFigure

9 shows an evolution o’ for the critical solution de-
cribed above. There are two periods of backwards motion:
ne at about W and the other at about M. These are the

From this we can see that when no matter is crossing th
horizon,3=1/2, so the outgoing characteristic spg2d) is
zero, as it must be since the tracked surface is marginallg

trapp_ed_. Howeve_r, if=1, then,8= 1 and _the outgm_ng char- imes when each of the “bumps” crosses the horizon. The
acteristic speed is-1. In this case, the light cone is degen- re(5grade motion is easier to see in Fig. 20 which shows
erate. In fact, from Eq(2.6) we can see that if=1, then  contours ofm’ on a spacetime plot for the same evolution.
B=1 everywhereDoesf ever equal one? The most likely Figure 21 shows a fairly weak-field evolutionwf for com-
place for this to happen is the critical solution because that iparison. There is no retrograde motion in this case.

when the “maximum” amount of energy is crossing the ho- To completely remove these coordinate motion effects,

5+ - 5 - ‘ .

log, 9!

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
t t

FIG. 15. lodg| at r=30 vs time for various pulse widths FIG. 17. logg| at r=30 vs time for various pulse amplitudes
(A=2.0x1079). (0=2.0, amplitudes are 10" 8).
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FIG. 18. B at the horizon(solid line) and the outer boundary FIG. 20. Contour plot ofm’ for a near-critical solution with
(dotted ling for a near-critical solution withc=2, d=2, and o=2,d=2, andc=10. The small pulse moves out between the
¢=10. The outer boundary is at=42M. Outgoing pulses of scalar first and second arrows then moves back in between the second and
radiation will exhibit retrograde motion whenevger>-0.5. third arrows. It then moves out briefly between the third and fourth

arrows and then moves back in between the fourth and fifth arrows
before renewing its outward motion.

we can abandon the shifted areal coordirat@nd use the
usual IEF coordinates. In this caseis areal again sb=1
instead of & f/r. The evolution and constraint equations are

oe M 1= trivially derived from Eqgs.(2.10—(2.16 with the substitu-
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FIG. 19. Evolution ofm’ for a near-critical solution with

o=2, d=2, and c=10. Retrograde motion is apparent near ’\/\ /\/x /\/ f\

t=7M andt=10M. The frames are spaced/lapart in time. The

vertical scale changes &t 5M so that the small outgoing pulse can FIG. 21. Evolution ofm’ for a weak-field solution with

be observed. The thin vertical lines passing through the frame#=0.001,0=2,d=2, andc=10. The frames are spaceMlapart

provide a common horizontal reference to aid detection of the retin time. The vertical scale changestat5M so the small outgoing

rograde motion. pulses can be observed. There is no retrograde motion apparent.
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FIG. 22. A comparison o computed in IEF coordinatésolid
line) compared with¢y) computed in MMIEF coordinate@otted
line). The frames are spacedWin time. The horizontal axis ex-
tends from O to 4B in areal radius. Differences between the two
computations are caused by small differences in the position of the
inner boundary. black hole. A similar bump develops for initial data with

d=4. These bumps always have the same characteristic
tionss—r ands—0. Note that the functiori(t) no longer shap.e, though theyr widths may vary. . . :
It is clear from Fig. 24 that the amplitude of this outgoing

appears. . L .
Such a coordinate choice has the additional benefit 0;eature does not depend linearly on the initial amplitude of

- L e ; : the pulse. For instance, from Fig. 23, the height of the high-
slightly simplifying the equations. However, the inner . . : .
boundary of the grid will not be tied to the apparent horizon®€St Eeal;_lls ?}qu %jSh times rt]he he|ghtHof the ne>r<]t h'gheft
as it is in MMIEF coordinates. This causes no problems inP€a%: While their widths are the same. However, the ampli-

practice. As matter crosses the horizon and the black hol[éjde of the outgoing feature in the first case is about 2.5
grows, some of the inner grid points are “lost” into the times the amplitude of the outgoing feature in the second

black hol d implv st Vi diff case, while their widths are the same. Figures 25 and 26
ack 10’ and we SImply S1op applying oulr ciierence equa how similar nonlinear behavior for the pulses centered at

tions there. Since the radial coordinate is areal, the growth of R ) .
g =20. It is difficult to tell whether this feature is caused by

the black hole is bounded by the total mass of the spacetimé

so there is no danger of having a large fraction of the griothe nonlinear interaction of an outgoing piece of the initial

fall into the hole. The previous one-dimensional black-holedate with the rest of the pulse, or if it is caused by back-

excising calculation4,5,7,9 used horizon-locked radial co- scattering from the _effective self-potential of the ingoing
ordinates so that once the apparent horizon formed, no fulRUlSe. Further study is needed.

ther grid points would fall into the hole. Thus, they should be
expected to exhibit similar coordinate motion effects to those

FIG. 23.m' att=0 for 0=2,d=2, ¢=10, and various ampli-
tudes, including near-criticalA®*).

-5
seen in the calculations using MMIEF coordinates. oo _ ' ' ' ' ' '
Figure 22 shows a comparison ¢fevolved in IEF coor-
dinates with¢ evolved in MMIEF coordinates for a strong- Sx10° | i
field case. The two match closely with differences caused by
small differences in the positions of the inner boundary. 4x10° - .
B
XI. NONLINEAR EFFECTS E3x10° | ]
There is a sharp “bump” at the front of the outgoing 2105 L A
pulse in Fig. 19. This feature is absent from the weak-field
evolution of Fig. 21 and is certainly amplitude dependent.
Figure 23 shows a series of initial pulse shapes for data with 1x10% - ]
various amplitudes all centered &t 10. Figure 24 shows

the corresponding pulse shapes after scattering. 0x10°
Although this bump occurs at the front of the scattered

pulse, it is not caused by interactions with the black hole. To

see this more clearly, we can start the pulse further out and F|G. 24. m’ at t=40M for ¢=2, d=2, c=10, and various

see what happens. Figures 25 and 26 show pulse shapesa@iplitudes. The inset shows 1000 times fraction of mass scattered.

t=0 andt=8 for data withc=20. The outgoing bump de- For instance, the near-critical solution has 0.243% of its mass scat-

velops for large amplitude data without any help from thetered.

45
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0.4 l : 1 | ' . various matter fields and single black holes. For instance, it
. could be used to investigate the stability properties of the
035 | — A= - solution found by Bechmann and LechtenfélD] in their
% R investigation of the scalar no-hair theorésee[11] for work
03 | . in this direction.
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APPENDIX: SPHERICALLY SYMMETRIC EINSTEIN-
KLEIN-GORDON EQUATIONS

FIG. 25.m" att=0 for =2, d=2, ¢c=20, and various ampli-

In spherical symmetryusing the usual spherical coordi-
tudes (X 10 4). P y yusing P

nate namest(r, 6, ¢)], the three-metrid;; and the extrinsic

curvature tensoK'; are diagonal. We have
XII. CONCLUSIONS

i 2 22 2h2ci
We have shown that aull based slicing works well with hij = diag@*(t,r),rb=(t,r),r Sin’), (A1)

an apparent horizon boundary condition, and results in a pro-

gram which is stable and convergent and will run forever. K'j=d|aQ1Kr,(t,r),K%(t,r),K%), (A2)

Further, we have examined the coordinate motion effects i

which result from this coordinate system and ways to avoid B=(Btr)00, a=a(tr), ¢=¢tr), (A3)

them. We have also seen an interesting nonlinear feature in

the self-gravitating scalar field. ds’=(—a?+a’p%)dt’+2a°gdtdr+a’dr?+r’b?dQ?.
While the calculations presented in this paper were car- (A4)

ried out in spherical symmetry, the coordinate system can bﬁa
generalized to multidimensions. We have worked out an ex-
tension to the case of a Kerr black hole in three dimensions

he nonzero components of the Christoffel symbols are

(see[11]), the details of which will be presented elsewhere. rrrr:ar_a, T o= — m HWZM,
Unfortunately, this coordinate system cannot be applied a a rb
globally to spacetimes which contain more than one black (A5)

hole since it depends on the notion of an areal coordinate.

Nevertheless, this technique is useful for problems involving rba,(rb) s _o(rb)

r — _ i s
4x10°® ' i ' ' ' I'?,4=—sinfcosy, F¢¢0=—cot0. (A7)
|
A The two nonzero components of the Ricci tensor are
— - A=3
3x10°0 |- .
A= L2 o)
R=—am? a (A8)
§2x106 - ] rb
~ RY)=—7—|a—d,| —d,(rb) (A9)
% ar’p a™" '
1x10°0 | 1 The evolution equations for the metric components are
J a=—aaK',+(aB)’, (A10)
0x10° L
"o s 10 45 . B
r bz—abK%JrT(rb)’. (A11)

FIG. 26.M' att=8 for 0=2,d=2, c=20, and various ampli- ) ) o
tudes (10~ 4). The small outgoing pulse appears before scatteringlhe evolution equations for the components of the extrinsic
with the black hole. curvature are
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KT = BKT 4 akr kL[ @) 2] @ S P a \]'__ b
r=PBK +aK', ala arbl a | T2 H=W{r b ,3H+E<I>” _ZHB' (A16)
(A12)
» o ) @ 1 arb Y The Hamiltonian constraint is
K 0—IBK 0+aK 0K+ W_W T(I’b) .
(A13) 2 [[(ro)"\" 1([rb '
“apllTa ] trpllm )] —a +4K" K%,
The massless Klein-Gordon equation is formulated in terms @' a r a
of the two auxiliary fieldsb andIl which are defined by B2+112
02 _
+2K%=8w = (A17)
[0 2
b=4¢", l=_(4=Be"). (A14)
i i ) o and the momentum constraint is
With these variables, the Klein-Gordon equation is
. a |\’ (ro)y" o PII
b= ,8<I>+5H , (A15) b (K?%—K"')—K 9=—47TT. (A18)
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