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Black-hole–scalar-field interactions in spherical symmetry
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We examine the interactions of a black hole with a massless scalar field using a coordinate system
extends ingoing Eddington-Finkelstein coordinates to dynamic spherically-symmetric spacetimes. We
problems with the singularity by excising the region of the black-hole interior to the apparent horizon. We
a second-order finite difference scheme to solve the equations. The resulting program is stable and con
and will run forever without problems. We are able to observe quasinormal ringing and power-law tails as
as an interesting nonlinear feature.@S0556-2821~96!03520-5#

PACS number~s!: 04.25.Dm, 04.30.Nk, 04.40.Nr, 04.70.2s
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I. INTRODUCTION

A long-standing goal of relativists has been the long-tim
numerical evolution of a black-hole spacetime. Such an e
lution is difficult because of the physical singularity th
spacetime contains. Despite their early promise, it has
sufficed to use slicings~choices of time coordinate! which
avoid the physical singularity. Invariably, such coordina
systems develop coordinate singularities in the vicinity of t
event horizon and computationally, physical and coordin
singularities are essentially equally pathological. Many ye
ago, Unruh suggested that it might help to consider evolut
of only the exterior of a black hole. In fact, he argued, sin
the black hole interior is, by definition, causally disconnect
from the rest of the universe, evolution of events within t
horizon constituted wasted computational effort. In the ne
essary absence of exact information concerning the spa
location of the event horizon at any instant during the ev
lution of given black-hole initial data, Unruh proposed th
the apparent horizon be tracked and used as an approx
tion to the true horizon. Thornburg developed these ide
first in the context of generating initial data forn black holes
~each of which could have arbitrary momentum and sp!
@1#, and then in a program of research for solving the vacu
axisymmetric Einstein equations@2,3#. However, the first
clearly successful application of the black-hole excisi
technique in a dynamical situation came with the work
Seidel and Suen who studied spherical evolution of t
vacuum~Schwarzschild! as well as a self-gravitating mass
less scalar field@4#. Extensions of this work are discussed
Anninoset al. @5#. The Seidel-Suen paper is also notable f
the introduction of a general technique, termedcausal differ-
encing, which ensures that, independently of the details
the coordinate system adopted, the difference scheme’s
merical domain of dependence contains the physical dom
of dependence~i.e., is causal!. Alcubierre and Schutz have
used a similar but somewhat more general technique wh
they callcausal reconnectionto treat the wave equation on
an arbitrarily moving grid@6#. Scheelet al. have recently
used black-hole excising in a study of gravitational collap
in Brans-Dicke gravity@7,8#.
541/96/54~8!/4929~15!/$10.00
e
vo-
e
not

te
he
ate
ars
ion
ce
ed
he
c-
tial
o-
at
ima-
as,

in
um

ng
of
he
-
in
or

of
nu-
ain

ich

se

In this paper, we again use the black-hole excising tec
nique to examine the interactions of a black hole with
massless, minimally-coupled scalar field in spherical symm
try. Unlike previous work, we use anull based slicing to get
a coordinate system~ingoing Eddington-Finkelstein! which
fits naturally with black-hole excision~for a Schwarzschild
black hole, all variables are static and nonsingular~appropri-
ately smooth! everywhere on the solution domain, and per
turbations about Schwarzschild give perturbations of this b
havior!. Further, we introduce a modification to these
coordinates which allows for easy tracking of the apparen
horizon. We are able to get a second-order, convergent ev
lution scheme which will stably evolve forever, and which
shows the expected effects of quasinormal ringing and th
power-law decay of the scalar field. We also see some inte
esting coordinate and nonlinear effects.

The plan of the remainder of the paper is as follows. I
Sec. II, and following some unpublished previous work
@9,10#, we define the minimally modified ingoing Eddington-
Finkelstein ~MMIEF! coordinate system and derive equa
tions of motion for the gravitational and scalar fields which
are specialized to this coordinate system. This derivation
based on detailed calculations of the Einstein-Klein-Gordo
equations of motion in a general spherically symmetric co
ordinate system@11# which have been summarized in the
Appendix. In Sec. III, we examine the issue of regularity a
the origin, r50, with the principal result that use of the
coordinate system must be restricted to cases where ma
never reachesr50. We follow with a detailed description of
our finite difference approximations in Sec. IV and a discus
sion of initial data in Sec. V. We discuss the convergenc
and stability of our difference solutions in Sec. VI—the evi-
dence presented there suggests that the scheme can be
to carry out arbitrarily long evolutions. Various physical and
coordinate effects which have emerged from our studies a
discussed in Secs. VII–XI, and we end with some conclud
ing remarks.

We note that the programs used to generate the resu
described below were written in RNPL~Rapid Numerical
Prototyping Language!, a language designed by the author
@11#. This language allows for the easy and compact expre
4929 © 1996 The American Physical Society
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4930 54R. L. MARSA AND M. W. CHOPTUIK
sion of time-dependent systems of partial differential equ
tions and the rapid trial of various finite-difference tec
niques for solving them.

II. MINIMALLY MODIFIED INGOING EDDINGTON-
FINKELSTEIN COORDINATES

We begin by recalling that the ingoing Eddington
Finkelstein~IEF! coordinate system~see, for example, Chap
30 of @12#! is defined for static, spherically symmetric spac
times~i.e., Schwarzschild! and combines an areal~measures
proper surface area! radial coordinater , with a time coordi-
natet, which is chosen so that the ingoing tangent combin
tion ]W t2]W r is null. Figure 1 shows some slices of consta
IEF time plotted in Kruskal-Szekeres coordinates. Noti
that all of the slices penetrate the horizon and meet the
gularity.

In generalizing IEF, we first consider the following gen
eral ‘‘311’’ form for a time-dependent spherically symme
ric metric:

ds25~2a21a2b2!dt212a2bdtdr1a2dr21r 2b2dV2.
~2.1!

Here,a, b, a, andb are functions ofr and t, anddV2 is
the metric of the unit sphere. We fix the spatial degree
coordinate freedom by introducing a ‘‘shifted’’ areal coord
nates, defined bys[r1 f (t) for some as yet undetermine
function f . With this choice, the metric becomes

ds25~2a21a2b2!dt212a2bdtdr1a2dr21s2dV2.
~2.2!

Comparison with the general form~A4! yields the identifi-
cationss5rb and b511 f /r . From the general evolution
equation forb ~A11!, we have

~
.
rb !52arbKu

u1b~rb !8. ~2.3!

FIG. 1. The ingoing Eddington-Finkelstein slices in Kruska
Szekeres coordinates. The dotted lines are constantt, while the
dashed lines are constantr . The dark curves are the singularity. Th
diagonal lines are the horizon (r52M ).
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Here and subsequently, overdots and primes denote par
differentiation with respect tot and r , respectively. Solving
this last equation for the shift vector component~or simply
‘‘the shift’’ ! b, and noting that (

.
rb)5 ḟ , (rb)851, we ob-

tain the condition on the shift which must be dynamicall
enforced to keep the metric functions areal:

b5 ḟ1saKu
u . ~2.4!

We now fix the time slicing by demanding that the ingoin
combination of timelike and radial tangent vectors—
] tW2] rW—be null, exactly as in the case of the original IEF
coordinates. This gives a condition on the metric, name
gtt22gtr1grr50. Using Eq.~2.2! this implies

a56a~12b!. ~2.5!

We choose the sign soa is positive for b<1, that is
a5a(12b). Using this and Eq.~2.4! we get

b5
ḟ1saKu

u

11saKu
u
, a5

a~12 ḟ !

11saKu
u
. ~2.6!

Hence the metric takes the form

ds25a2~2b21!dt212a2bdtdr1a2dr21s2dV2.
~2.7!

Factoring the first three terms yields

ds25a2@~2b21!dt1dr#~dt1dr !1s2dV2, ~2.8!

which shows that the characteristic speeds are

c521,122b. ~2.9!

We now specialize the general spherically-symmetr
equations of motion~A10!–~A18! given in the Appendix to
the MMIEF coordinate system. The full set of constraint an
evolution equations for the geometric variables is

a81
1

2s
~a32a!1

a3s

2
Ku

u~2Kr
r1Ku

u!22psa~F21P2!

50, ~2.10!

Ku
u81

Ku
u2Kr

r

s
2
4pFP

a
50, ~2.11!

ȧ52a2~12b!Kr
r1~ab!8, ~2.12!

K̇u
u5bKu

u81a~12b!Ku
u~Kr

r12Ku
u!1

12b

s2 S a2
1

aD
1

b8

as
, ~2.13!
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K̇r
r5bKr8r1a~12b!Kr

r~K
r
r12Ku

u!1
b21

a

3Fa9

a
2S a8

a D 222a8

sa
18pF2G1

b8a8

a2
1

b9

a
,

~2.14!

while the wave equation for the massless scalar field
comes the first-order~in time! system:

Ḟ5@bF1~12b!P#8, ~2.15!

Ṗ5
1

s2
$s2@bP1~12b!F#%82

2ṡ

s
P. ~2.16!

We note that we have used the slicing conditio
a5a(12b), to eliminate the lapse function from the abov
set. In addition, as is always the case in general relativi
dynamics, we have more constraint and evolution equati
governing the geometric variables than variables themsel
We adopt the often-used~and somewhatad hoc! approach of
discretizing some sufficient subset of the equations with
expectation that, provided the difference scheme conver
residuals of discretized forms of the remaining equations w
be of the same order in the mesh spacing as the trunca
error of the difference scheme itself. In fact, we have ma
considerable use of our freedom to construct schemes b
on various combinations of constraint and evolution eq
tions in the development of the stable second-order meth
described in Sec. IV. It is entirely possible that we cou
construct a stable scheme without explicit use of the c
straints but our attempts to do so with the type of differen
ing described in Sec. IV were not successful.

Since the functionf (t) @recalls(r ,t)[r1 f (t)# is still un-
specified, we require one more equation to determine
time evolution of our model system. We derive an evoluti
equation forf by demanding that a certain radial coordina
r5r h , be tied to the location of a marginally trapped su
face. In general we will want to track theoutermostmargin-
ally trapped surface, so in the following we will assume th
the surface we are tracking is, in fact, an apparent horiz
We recall that ifSm is an outward-pointing, spacelike un
normal to a marginally trapped surface, then it satisfies@13#

DiS
i2K1SiSjKi j50, ~2.17!

where Di is the covariant derivative compatible with th
three-metric andK[Ki

i . In spherical symmetry, and with
the functional forms of the three-metric and extrinsic curv
ture given in the Appendix, this equation reduces to

~rb !82arbKu
u50. ~2.18!

In the MMIEF system this is simply

asKu
u51. ~2.19!

To keep the apparent horizon at fixedr , we demand that
(asK̇u

u)ur h50, wherer h is the initial position of the appar-
ent horizon. Solving this equation forḟ and using the con-
be-
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straint and evolution equations to eliminate time and spa
derivatives of the geometric variables, we find

ḟ5
4ps2~F1P!2

a2 U
r h

. ~2.20!

We are most interested in the situation where the initia
data for our spacetime describes a black hole of massM
which is well separated from any scalar field. In this case w
have r h52M and, provided that Eq.~2.20! is satisfied, the
apparent horizon will remain atr5r h52M . The area of the
apparent horizon, however, is given by 4psh

2[4p(r h1 f )2,
and hence will increase as matter falls into the black hole,
accord with physical expectations.

It is useful to write down the Schwarzschild solution in
IEF coordinates. The metric is usually written as@12#

ds252S 12
2M

r DdṼ212dṼdr1r 2dV2, ~2.21!

whereṼ is a null coordinate. Defining a timelike coordinate
t[Ṽ2r , the metric becomes

ds252S 12
2M

r Ddt21 4M

r
dtdr1S 11

2M

r Ddr21r 2dV2.

~2.22!

A comparison of this last result with the general form~A4!
yields the following expressions for the various metric com
ponents:

ā5A r

r12M
, b̄5

2M

r12M
, ā5Ar12M

r
,

~2.23!

where we use overbars on quantities to stress that the expr
sions are valid only for the vacuum case. Using the abov
and Eqs.~A10! and ~A11!, we can compute the extrinsic
curvature components:

K̄u
u5

2M ~r12M !

@r ~r12M !#3/2
, K̄r

r5
22M ~r1M !

@r ~r12M !#3/2
. ~2.24!

Since we are working in spherical symmetry, we ca
meaningfully define the mass~or mass aspect! function
m(r ,t) which, at least in a vacuum region, provides an in
variant measure of the gravitational mass contained with
radius r at time t. Moreover, even when matter is present
m(r ,t) andm8(r ,t) are useful diagnostic quantities in our
calculations. The mass in MMIEF coordinates can be com
puted from the surface area using the general expression

m~r ,t !5
1

2
s„12~16pA!21A,mA,m…, ~2.25!

where A54ps2. Substituting this expression for the area
into Eq. ~2.25! and differentiating, we get

m~r ,t !5
1

2
sS 12

12~saKu
u!2

a2 D . ~2.26!
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4932 54R. L. MARSA AND M. W. CHOPTUIK
By making use of the evolution and constraint equations,
can write this mass as an integral over the mass density
this form we have

m~r ,t !5
sh
2

14pE
r h

r

s2S F21P2

2a2
1sKu

u

FP

a Ddr,
~2.27!

where as before,r h is the location of the apparent horizon
and sh[s(r h). We note here that as used above,M repre-
sents the mass of the black hole, that issh/2. We also define
M` as the total mass in the spacetime: namely,

M`[m~`!5M14pE
r h

`

s2S F21P2

2a2
1sKu

u

FP

a Ddr.
~2.28!

Given that our finite difference grid does not extend to infi
ity, we will approximateM` by taking the upper limit of the
above integral to be the outer boundary of our computatio
domain.

III. REGULARITY AT THE ORIGIN

In cases where a black hole is not initially present or the
is insufficient mass in the scalar field to form a black hole v
collapse, the infalling matter will encounter the coordina
origin, r50. As is generically the case when using spheric
coordinates, the various geometric and matter variables m
satisfy regularity conditions asr→0 in order that the origin
remains a regular point in the spacetime~see @14# for an
extensive discussion of regularity conditions!.

Sincef is a scalar anda, Ku
u , andK

r
r are components

of rank-two tensors, we assume that they are even inr near
the origin. This means that their spatial derivatives must va
ish at r50:

f85a85Ku
u85Kr8r50. ~3.1!

Elementary flatness near the origin in MMIEF coordinat
dictates thata(0,t)51. An examination of the momentum
constraint~2.11! shows thatKu

u(0,t)5Kr
r~0,t!. We can find

further conditions by examining the potentially divergen
terms of the evolution equation forKu

u ~2.13!. These terms,
which are those with powers ofr in the denominator, can be
collected and written as

~12b!~a221!1rb8

r 2a
. ~3.2!

Clearly, asr→0 both the numerator and the denominator
Eq. ~3.2! go to zero, so we use L’Hoˆpital’s rule to compute
the limit. The derivative of the numerator is
2(12b)aa82b8(a221)1b81rb9. As r→0 this goes to
b8. The derivative of the denominator isr 2a812ra. Clearly
this goes to zero asr goes to zero. Thus, we must hav
b(0,t)850.

Since we still have an indeterminate form, we app
L’Hôpital’s rule again. The second derivative of the numer
tor is (12b)(2aa912(a8)2)2b9(a221)22ab8a812b9
1rb-. As r goes to zero, this goes to 2(12b)a912b9.
we
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The second derivative of the denominator is
r 2a914ra812a. The limit of this is 2. Thus, we have

lim
r→0

~12b!~a221!1rb8

r 2a
5~12b!a91b9. ~3.3!

Let us now consider the behavior of the spatial derivative
of b asr→0. When there is no black hole present, the shi
is given by

b5
raKu

u

11raKu
u
. ~3.4!

From this we can easily see thatb is zero at the origin. Now

b85
raKu

u81ra8Ku
u1aKu

u

~11raKu
u!2

. ~3.5!

Thus,

lim
r→0

b85Ku
u . ~3.6!

Since we have argued that b8(0,t)50 and
Ku

u(0,t)5Kr
r(0,t), we have

Ku
u~0,t !5Kr

r~0,t !50. ~3.7!

Now the second derivative ofb is

b95
raKu

u912aKu
u812ra8Ku

u812a8Ku
u1ra9Ku

u

~11raKu
u!2

2
2„~raKu

u!8…2

~11raKu
u!3

. ~3.8!

As r→0, this expression vanishes. Thus,b9(0,t)50.
SinceKu

u(0,t)50, we must haveK̇u
u(0,t)50 and con-

sequently the right-hand side of Eq.~2.13! must vanish as
r→0. This will happen only if the limit of Eq.~3.2! is zero,
which, given the results deduced above, can only happen
a(0,t)950.

The evolution of the scalar field is accomplished throug
two auxiliary variables,F andP. These are defined by Eq.
~A14!. The condition onF has already been stated in Eq
~3.1!,

F~0,t !50, ~3.9!

and it is easy to show thatP must be even inr near the
origin. Thus we have

P8~0,t !50. ~3.10!

Unfortunately, these regularity conditions are inconsiste
with the Hamiltonian constraint~2.10!. If we solve Eq.~2.10!
for a8, take a radial derivative of the resulting expression
then take ther→0 limit, we find

a9~0,t !}P~0,t !2Þ0. ~3.11!

Thus, we are led to the conclusion that the MMIEF coord
nate system will admit no non-singular curvature at the or
gin. The only consistent solutions near the origin describ
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TABLE I. Two-level finite difference operators.

Operator Definition Expansion

D r
f f i
n (23 f i

n14 f i11
n 2 f i12

n )/2Dr ] r f u i
n1O(Dr 2)

D r
bf i

n (3 f i
n24 f i21

n 1 f i22
n )/2Dr ] r f u i

n1O(Dr 2)
D r f i

n ( f i11
n 2 f i21

n )/2Dr ] r f u i
n1O(Dr 2)

D t f i
n ( f i

n112 f i
n)/Dt ] t f u i

n11/21O(Dt2)
D t
df i

n ( f i
n112 f i

n)/Dt1 ] t f u i
n11/21O(Dt2)

edis@6 f i
n1 f i22

n 1 f i12
n 2

4( f i21
n 1 f i11

n )]/16Dt
m t f i

n ( f i
n111 f i

n)/2 f u i
n11/21O(Dt2)

m r f i
n ( f i

n1 f i21
n )/2 f u i21/2

n 1O(Dr 2)
D r
f af i

n m tD r
f f i
n ] r f u i

n11/21O(Dr 21Dt2)
D r
baf i

n m tD r
bf i

n ] r f u i
n11/21O(Dr 21Dt2)

D r
af i

n m tD r f i
n ] r f u i

n11/21O(Dr 21Dt2)
D r
sf i
n ( f i

n112 f i21
n111 f i11

n 2 f i
n)/2Dr ] r f u i

n11/21O(Dr 21Dt21DrDt)
pt
,
a-

o
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-

,
e
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flat space or a black hole. Thus, MMIEF is a ‘‘good’’ coor
dinate system to use only when a black hole already exist
the spacetime. In a spacetime without a black hole, the eq
tions will remain consistent as long as no matter encount
the origin. This will be the case if the scalar field is outgoin
or if it collapses to form a black hole before it encounters t
origin. For a collapse problem, we could start with anoth
coordinate system and change to MMIEF coordinates if
apparent horizon forms. If no such horizon forms, there
really no need for the special horizon tracking properties
MMIEF coordinates anyway. Though we have not impl
mented such a scheme, this approach was used success
in @4,5,7,8#.

IV. FINITE DIFFERENCE EQUATIONS

We use Eqs.~2.12!, ~2.13!, ~2.15!, ~2.16!, and ~2.20! to
evolvea, Ku

u , F, P, and f ; Eq. ~2.11! to findKr
r ; and Eq.

~2.6! to find b. We solve these equations using finite diffe
ence techniques on a uniform mesh with spacingsDr and
Dt5lDr , where the Courant factorl, is held fixed when we
change the basic scale of discretization.

Table I shows the operators we use in the discretizatio
Note that while the derivative operators take a lower prec
dence than the arithmetic operators, that
D r f i

n25( f i11
n 22 f i21

n 2)/Dr , the time averaging operato
takes a higher precedence, that ism t f i

n25(m t f i
n)2 and

m t(ai
nbi

n)5m tai
nm tbi

n .
In the interior, the finite difference equations are

D t
dai

n52m t„a
2~12b!…i

n1D r
s~ab! i

n , ~4.1!

D t
dKu

u i
n5m tb i

nD r
sKu

u i
n1m tS 12b

s2 S a2
1

aD D
i

n

1
D r
ab i

n

m t~as! i
n

1m t„a~12b!Ku
u~2Ku

u1Kr
r !…i

n , ~4.2!

m tS D rK
u

u1
Ku

u2Kr
r

s
24p

FP

a D
i

n

50, ~4.3!

D t
dF i

n5D r
s@bF1~12b!P# i

n , ~4.4!
-
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D t
dP i

n5
1

m t~si
n!2

D r
s~s2„bP1~12b!F…! i

n22D tsi
nm tS P

s D
i

n

,

~4.5!

D t f i
n54pm tS s~F1P!

a D
i

n2

, ~4.6!

si
n115r i1 f i

n11 , ~4.7!

m tb i
n5

D t f i
n1m t~asK

u
u! i

n

11m t~asK
u

u! i
n . ~4.8!

These equations are applied everywhere in the interior exce
at the two points next to the boundary points. At these points
we use the same equations except the dissipative time deriv
tives (D t

d) are replaced by regular time derivatives (D t),
since the value ati12 or i22 is not available at these loca-
tions. It is interesting to note that all of the spatial derivatives
areangled(D r

s) except for the derivative ofb in Eq. ~4.2!
and the derivative ofKu

u in Eq. ~4.3!. Switching any of these
derivatives from angled to nonangled or from nonangled t
angled results in an instability. We do not have an explana
tion for why this particular combination of derivatives
works, but the use of angled derivatives here was motivate
by their successful application in previous work by Choptuik
~see@13,15#!. This is a good example of a technique that was
perfected by ‘‘experimental’’ numerical analysis.

As discussed previously, the inner boundary of our com
putational domain is fixed to the apparent horizon,r5r h . In
accord with the causal properties of the apparent horizon
function values on the horizon can be advanced without us
of any information defined atr,r h . Therefore, atr5r h we
use the same equations employed in the interior, except th
we replace centered differences with forward differences
For example, Eq.~4.1! becomes

D tai
n52m t„a

2~12b!…i
n1D r

f a~ab! i
n . ~4.9!

Since the computational grid does not extend to infinity
we adopt outgoing conditions at the outer boundary, that is
we assume that no radiation will enter the grid from large
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r . While this is not strictly true~there will be curvature back-
scattering from the outgoing pulse!, this assumption provides
a reasonable computational solution.

For the scalar field variablesF andP, the outgoing con-
ditions come from the condition onf, namely
sf;F(s2ct), with c5122b being the speed of the out-
going waves. This means that

Ḟ1~122b!F81
ṡ1122b22sb8

s
F

2
ṡ1122b12sb8

s2
f50 ~4.10!

and

~12b!~P1F!1
122b1 ṡ

s
f50. ~4.11!

These equations are discretized as

D tF i
n1~122m tb i

n!D r
bF i

n1
D tsi

n1122m tb i
n22m tsi

nD r
bb i

n

m tsi
n

3m tF i
n2

D tsi
n1122m tb i

n12m tsi
nD r

bb i
n

~m tsi
n!2

m tf i
n50

~4.12!

and

m t@~12b!~F1P!# i
n1

122m tb i
n1D tsi

n

m tsi
n m tf i

n50.

~4.13!

We can get approximate conditions ona andKu
u from

their Schwarzschild forms~2.23! and ~2.24! with the mass
aspect~2.27! used in place ofM , since in vacuum, or in any
region where the scalar field’s self-gravitation is negligibl
a andKu

u should take on these forms. For larges, asymp-
totic expansion of these expressions gives

a;11
m~r ,t !

s
1O~s22! ~4.14!

and

Ku
u;

2m~r ,t !

s2
1O~s23!. ~4.15!

Thus, at larges we have, to leading order,

s~a21!;m~r ,t ! ~4.16!
e,

and

s2Ku
u;m~r ,t !. ~4.17!

We now deduce howm(r ,t) behaves in the larges, weak-
field limit. Sincea→1 andKu

u→0 we have

m;4pE s2~F21P2!ds. ~4.18!

From the condition onf we can see thatF;G(u)/s and
P;G(u)/s, whereu[s2ct. Thus

m;8pE G2~u!du;H~u!, ~4.19!

that is,m is ‘‘outgoing’’ at large s. Therefore we get the
following conditions fora andKu

u :

s~a21!;H~s2ct! ~4.20!

and

s2Ku
u;H~s2ct!. ~4.21!

These are discretized as

D t@s~a21!# i
n1~122m tb i

n!D r
ba@s~a21!# i

n50
~4.22!

and

D t~s
2Ku

u! i
n1~122m tb i

n!D r
ba~s2Ku

u! i
n50. ~4.23!

The outgoing boundary condition reduces the amplitu
of reflections off the boundary, but unless the boundary
placed at very larger , these reflections can still interfere with
the results of a calculation. To further reduce the reflection
we use asponge filteras detailed in@13#. Briefly, this means
that in the interior of the grid, we add a term to the wav
equation which effectively applies the outgoing condition o
a finite region rather than at a single radial location. F
instance, we use the following modified evolution equatio
for F:

Ḟ5@bF1~12b!P#8

2nF Ḟ1~122b!F81
ṡ1122b22sb8

s
F

2
ṡ1122b12sb8

s2
fG , ~4.24!

where the coefficient functionn(r ), given by
n~r !5H 0, rmin<r,r s ,

A~r2r s!
n~rmax2r !~rmax2r s!

2n22~n11!~n12!, r s<r,rmax,
~4.25!



ld

ct

lar

ur
e
ce

-

ac-

ric
ed
r

r,

-

54 4935BLACK-HOLE–SCALAR-FIELD INTERACTIONS IN . . .
is nonzero in the filtering region,r s<r<rmax. Here,A and
n are parameters which can be adjusted to tune the fil
Figure 2 showsn for A51.0 andn52, the values used in
this work.

V. INITIAL DATA

We wish to examine the interactions of the black ho
with compact ingoing pulses of scalar field. We can gener
nearly ingoing pulses using the following method. Le
f(r ,t)5F(u[r1t)/r . This gives ḟ5]uF/r and
f85]uF/r2F/r 2. For a compact pulse, we setF to a
Gaussian of the form

F~u!5Au2exp„2~u2c!d/sd
…, ~5.1!

whered is an integer, andc is the radial coordinate of the
center of the pulse. This results in scalar field initial data
the form

f5Arexp„2~r2c!d/sd
…, ~5.2!

F5fF1r 2
d~r2c!d21

sd G , ~5.3!

P5fF 22b

r ~12b!
2
d~r2c!d21

sd G . ~5.4!

We solve forb, a, andKu
u using Eqs.~2.6!, ~2.10!, and

~2.11!. Ostensibly,Kr
r(0,r ) can be freely specified and the

constraints can still be satisfied by appropriate adjustment
the other geometric variables. However, anarbitrarily cho-
senKr

r(0,r ) combined with the initial data for the scala
field given by Eqs.~5.2!–~5.4! will not, in general, generate
a spacetime describing the desired physical scenario o
scalar pulse initially infalling on a black hole. We therefor
adopt an ansatz forKr

r(0,r ) which is motivated by the ob-
servation that at the initial time, the self-gravitation of th
scalar field is generally relatively weak, and thus the geom

FIG. 2. Sponge filter coefficient function forA51.0 andn52.
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ric variables should have approximately their Schwarzschi
form. Specifically, we demand thatKr

r(0,r ) satisfy the equa-
tion @see Eq.~2.24!#

Kr
r5

22m~r1m!

@r ~r12m!#3/2
, ~5.5!

wherem is the mass aspect function defined by Eq.~2.27!.
This equation, along with the equation for the mass aspe
~2.27! and the constraints~2.10! and ~2.11!, is then solved
iteratively for any given initial scalar field configuration. We
have found that initial data prepared in this mannerdo gen-
erate spacetimes of the type we seek even when the sca
field is significantly self-gravitating at the initial time.

VI. CONVERGENCE AND STABILITY

In order to assess the correctness and accuracy of o
difference equations and the program which solves them, w
perform some tests. These include computing convergen
factors, performing a long-time vacuum~Schwarzschild!
evolution and comparing it to the known solution, and per
forming a long-time strong-field evolution.

To measure convergence, we define the convergence f
tor for a grid functionu by

Cf[
uû2h2û4hu2
uûh2û2hu2

, ~6.1!

whereûa is a solution of the finite difference equations on a
grid with spacinga, and thel 2 norm is defined in the usual
way, that is

uûu2[A( i51
N ui

2

N
. ~6.2!

The convergence factors for the scalar field and geomet
variables are shown in Fig. 3. These factors are comput
from a strong-field evolution. They are approximately fou
throughout, indicating second-order convergence.

Figure 4 shows the deviation of the evolved vacuum
spacetime from that of Schwarzschild. We note howeve

FIG. 3. Convergence factors as a function of time for a strong
field evolution withA52.531023, c510, ands52. These values
are approximately four, indicating second-order convergence.
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that the spacetime being evolved is not Schwarzschild, ra
it is a black hole in a ‘‘box’’ with ratherad hocboundary
conditions.

At late times, the outer boundary condition causes
spacetime to ‘‘drift’’ away from the initial configuration
Figure 5 shows plots of the mass and the Ricci scalar
vacuum evolutions with outer boundaries at 22M , 42M , and
82M . This plot clearly shows the rather large effect the p
sition of the outer boundary has on the late-time evoluti
We could get better convergence of the difference solution
the continuum solution~i.e., with boundary conditions only
at spatial infinity! by matching the interior Cauchy evolutio
to an exterior characteristic evolution~see @16,17#! or by
using an adaptive mesh refinement algorithm to push
outer boundary to a large radius without unduly increas
the computational load. Nevertheless, the position of
outer boundary has no effect on stability. This can be s

FIG. 4. The l 2 norms of the differences of the compute
vacuum geometrical variables and their Schwarzschild values
time. Note that both axes are logarithmic. The outer boundary
this evolution was placed atr582M .

FIG. 5. The mass and thel 2 norm of the four-Ricci scalar for
vacuum spaces with varying outer boundary position. The s
scripts indicate the position of the outer boundary in units ofM .
The time axis is logarithmic.
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clearly in Fig. 6. The curves in this graph are asymptoting
fixed values. Thus, although the computed spacetime dr
from Schwarzschild, it eventually reaches a fixed configur
tion.

Figure 7 shows thel 2 norm of the scalar field during a
strong field evolution tot510 000M . Figure 8 shows the
mass and the Ricci scalar for the same evolution. While t
scalar field and the mass fall off as expected, the plot of t
Ricci scalar again shows the ‘‘drifting’’ of the geometry.

The plots of the Ricci scalar were made by discretizing,
first order, the analytic expression forR derived in the usual
way by R5Rm

m , whereRmn is the Ricci tensor. Although
the values ofR appear large given that they are computed f
a vacuum spacetime, they do converge to zero to first ord
in the mesh spacing as expected. Moreover, the values of
individual additive terms in the expression forR are orders
of magnitude larger than the scalar itself, indicating thatR is

d
vs
for

ub-

FIG. 6. The mass~solid line! and thel 2 norm of the four-Ricci
scalar~dotted line! for a vacuum evolution with outer boundary a
r522M . Both functions are asymptoting to a fixed value, indicatin
that the spacetime is settling down to a static configuration. T
time axis is logarithmic.

FIG. 7. A log-log plot of thel 2 norm of the scalar field vs time
for a strong-field evolution. The inset shows an expanded vertic
axis for the late time evolution. The outer boundary is atr542M .
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the size we would expect for first-order differencing at the
resolutions.

VII. MASS SCALING

As discussed in Sec. V we focus study on the evolution
initially ingoing ‘‘Gaussian’’ pulses of scalar radiation. In
this case, the infalling field exhibits two limiting behaviors
dependent on the amplitude and width of the pulse. These
scatteringfrom the existing black hole andcollapseto form
a new horizon outside the existing horizon. Generical
these two behaviors are separated by acritical value of either
amplitude or width. Figure 9 shows the path of the appare
horizon for various amplitudes of initial data.

The final mass of the black hole should scale as a pow
of the amplitude of the initial pulse. To find out what thi
power should be, we can use Eq.~2.28!. Since the mass is
conserved,M` is a constant. However,M is not constant. As
the scalar field encounters the horizon, some mass will
transferred from the integral term toM . The mass of the
black hole will increase by an amount proportional to th
mass in the scalar field. By this we mean that after the int
action we have

M→M14pkE
r h

`

s2S F21P2

2a2
1sKu

u

FP

a Ddr, ~7.1!

wherek is a positive constant less than 1. For a very narro
pulse, the entire mass of the field will go into the black hol
and hence,k will be very close to 1. If the pulse is very
wide, however,k will be very close to 0. Thus, to see how
the final mass of the black hole scales with the amplitude
the scalar pulse, we need only examine the integral term
Eq. ~7.1!.

From Eqs.~5.2!–~5.4! we see thatF andP are propor-
tional tof and hence toA. This means that the integrand i
proportional toA2. This of course assumes the dependen
of a, Ku

u , andb on f is much less than the dependence

FIG. 8. The mass~solid line! and thel 2 norm of the four-Ricci
scalar~dotted line! vs time for a strong-field evolution. The mas
should be nearly constant except for a small amount of scalar fi
which radiates to infinity. The plot of the Ricci scalar shows th
drifting of the geometry caused by the outer boundary conditio
Contrary to the impression given by this figure, the Ricci scalar
asymptoting to a fixed value. The time axis is logarithmic.
se

of

,
are

ly,

nt

er
s

be

e
er-

w
e,

of
in

s
ce
of

m(r ) on f. While this seems a reasonable assumption,
must be checked numerically in the strong field regime.

Our numerical results verify this calculation. For instance
the data in Fig. 10 are fit by the line

ln~M21!52.01lnA14.96, ~7.2!

indicating that the mass grows with the square of the amp
tude as expected. The graph also shows there is no differe
in behavior for sub- and supercritical data. That is, the fin
mass of the black hole exhibits the same dependence on
amplitude when the hole grows by accretion as when
forms by collapse.

Similarly, the data in Fig. 11 are fit by the line

ln~M21!51.99lnA15.19, ~7.3!

indicating that the mass scaling is independent of the exa
shape of the ingoing pulse.

VIII. TAILS

Figure 12 showsf at constant r for runs with
rmax542,82,162. It is clear that the position of the oute
boundary has a large effect on the late-time falloff of th
scalar field. Even with the sponge filter, there is enough r
flection from the outer boundary to cause the field to die o

s
eld
e
ns.
is

FIG. 9. Schematic motion of the horizon for various amplitude
of the scalar field. Notice that this diagram uses the areal coordina
s and not the radial coordinater . The solid dark vertical line which
jogs right and then continues vertically represents the critical pa
of the horizon. The dotted lines are subcritical paths and the vertic
dashed lines are supercritical paths. The two thin, diagonal lin
represent the bounds of the ingoing pulse of scalar field. A supe
critical pulse moves inward until it crosses its gravitational radius
Once this happens, the apparent horizon jumps from its initial p
sition to this new position where it remains. A subcritical pulse
moves inward until it encounters the horizon. If the field is very
weak, the horizon is unaffected. For stronger fields, the horizo
moves out until the pulse is entirely inside. For a critical pulse, th
horizon moves out at the speed of light. Note however, that unle
the energy density is a square wave, the horizon will not mov
along the straight lines as shown in the diagram, but will mov
along a curve with gradually increasing and then decreasing slop
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more slowly than it otherwise would.
However, with the outer boundary atrmax5162, it takes at

least 300M for reflections from the scattered pulse to trav
in from the outer boundary and interfere with measureme
at r530, and still longer for reflections to interfere with
measurements at the horizon. This should provide enou
time to accurately measure the rate of falloff of the sca
field. Figure 13 shows the evolution off at r530 and at the
horizon up untilt5300M . A fit to the r530 curve between
200M and 300M showsf falling off as t23.38. A fit to the
horizon curve over the same range showsf falling off as
t23.06.

FIG. 10. A log-log plot of the final black hole mass vs th
amplitude of the scalar field pulse for initial data withd52,
s52, andc510. The squares represent data with amplitude le
than the critical value, while the crosses represent data with am
tude greater than the critical value. The slope of this line is 2.
showing that the black hole mass depends on the square of
scalar field amplitude.

FIG. 11. A log-log plot of the final black hole mass vs th
amplitude of the scalar field pulse for initial data withd54,
s52, andc510. The slope of this line is 1.99 indicating again tha
the black hole mass depends on the square of the scalar field
plitude.
el
nts
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Linearized perturbation theory predicts these expone
should both be23 @18#. We note that previous evolutions
carried out by Gundlach, Price, and Pullin gave exponen
between22.63 and22.74 forf at constantr @19#.

IX. RINGING

Figures 14–17 show the waveforms generated by the sc
tering of packets of various widths and amplitudes. The sc
lar field is measured both at the horizon and atr530M . The
oscillation period in each of these figures is approximate
53M , and is independent of initial amplitude and puls
width. Gundlachet al.measured an oscillation period of ap
proximately 47M @19# during collapse of Gaussian wave
packets.

X. COORDINATE EFFECTS

Certain evolutions exhibit interesting effects which resu
from the use of MMIEF coordinates. Recall that the shi
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FIG. 12. The absolute value of the scalar field atr530M vs
time for various spatial domains. Notice the differences in late tim
falloff caused by the different positions of the outer boundary. Th
vertical axis is logarithmic.

FIG. 13. A log-log plot of the absolute value of the scalar fiel
at the horizon~solid line! and atr530M ~dotted line! vs time for an
evolution with the outer boundary atr5162M .
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component,b satisfies Eq.~2.6!. At the apparent horizon
Eq. ~2.19! holds so we have

b~r h ,t !5
f (̇t)

2
1
1

2
. ~10.1!

From this we can see that when no matter is crossing
horizon,b51/2, so the outgoing characteristic speed~2.9! is
zero, as it must be since the tracked surface is margin
trapped. However, ifḟ51, thenb51 and the outgoing char
acteristic speed is21. In this case, the light cone is dege
erate. In fact, from Eq.~2.6! we can see that ifḟ51, then
b51 everywhere. Does ḟ ever equal one? The most likel
place for this to happen is the critical solution because tha
when the ‘‘maximum’’ amount of energy is crossing the h

FIG. 14. logufu at the horizon vs time for various pulse width
(A52.031028). While the curves match well for about 100M ,
there are differences in late-time behavior exhibited by the wi
pulses, particularly those withs55 ands56. This is an outer
boundary effect. As the width becomes larger, less and less of
initial pulse is absorbed by the black hole. This means there is m
scalar field available to be reflected from the outer boundary
this causes differences in the late-time evolution.

FIG. 15. logufu at r530 vs time for various pulse widths
(A52.031028).
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rizon for a given pulse shape. The values ofb at the horizon
and at the outer boundary are plotted in Fig. 18 for a nea
critical solution.b gets as large as 0.95, but never reaches
A near-critical solution from a family of pulses withd54
gives a slightly higher maximumb, but still less than 1. It
may be possible that a narrow enough pulse could causeḟ to
reach 1 for an instant, but this has not been verified. Furth
more, it may be that such a narrow pulse would collapse
form a new horizon before crossing the existing horizon.

Nevertheless, wheneverb.0.5, the outgoing characteris-
tic speed is negative. Thus, outgoing pulses will appear
move inward when plotted in the radial coordinate,r . Figure
19 shows an evolution ofm8 for the critical solution de-
scribed above. There are two periods of backwards motio
one at about 7M and the other at about 10M . These are the
times when each of the ‘‘bumps’’ crosses the horizon. Th
retrograde motion is easier to see in Fig. 20 which show
contours ofm8 on a spacetime plot for the same evolution
Figure 21 shows a fairly weak-field evolution ofm8 for com-
parison. There is no retrograde motion in this case.

To completely remove these coordinate motion effec
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der
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FIG. 16. logufu at the horizon vs time for various pulse ampli
tudes (s52.0, amplitudes are31028).

FIG. 17. logufu at r530 vs time for various pulse amplitudes
(s52.0, amplitudes are31028).
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FIG. 18. b at the horizon~solid line! and the outer boundary
~dotted line! for a near-critical solution withs52, d52, and
c510. The outer boundary is atr542M . Outgoing pulses of scalar
radiation will exhibit retrograde motion wheneverb.0.5.

FIG. 19. Evolution ofm8 for a near-critical solution with
s52, d52, and c510. Retrograde motion is apparent nea
t57M and t510M . The frames are spaced 1M apart in time. The
vertical scale changes att55M so that the small outgoing pulse ca
be observed. The thin vertical lines passing through the fram
provide a common horizontal reference to aid detection of the r
rograde motion.
we can abandon the shifted areal coordinates and use the
usual IEF coordinates. In this case,r is areal again sob51
instead of 11 f /r . The evolution and constraint equations are
trivially derived from Eqs.~2.10!–~2.16! with the substitu-

r
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FIG. 20. Contour plot ofm8 for a near-critical solution with
s52, d52, andc510. The small pulse moves out between the
first and second arrows then moves back in between the second a
third arrows. It then moves out briefly between the third and fourth
arrows and then moves back in between the fourth and fifth arrow
before renewing its outward motion.

FIG. 21. Evolution of m8 for a weak-field solution with
A50.001,s52, d52, andc510. The frames are spaced 1M apart
in time. The vertical scale changes att55M so the small outgoing
pulses can be observed. There is no retrograde motion apparent
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tions s→r and ṡ→0. Note that the functionf (t) no longer
appears.

Such a coordinate choice has the additional benefit
slightly simplifying the equations. However, the inne
boundary of the grid will not be tied to the apparent horizo
as it is in MMIEF coordinates. This causes no problems
practice. As matter crosses the horizon and the black h
grows, some of the inner grid points are ‘‘lost’’ into the
black hole and we simply stop applying our difference equ
tions there. Since the radial coordinate is areal, the growth
the black hole is bounded by the total mass of the spaceti
so there is no danger of having a large fraction of the g
fall into the hole. The previous one-dimensional black-ho
excising calculations@4,5,7,8# used horizon-locked radial co-
ordinates so that once the apparent horizon formed, no
ther grid points would fall into the hole. Thus, they should b
expected to exhibit similar coordinate motion effects to tho
seen in the calculations using MMIEF coordinates.

Figure 22 shows a comparison off evolved in IEF coor-
dinates withf evolved in MMIEF coordinates for a strong
field case. The two match closely with differences caused
small differences in the positions of the inner boundary.

XI. NONLINEAR EFFECTS

There is a sharp ‘‘bump’’ at the front of the outgoing
pulse in Fig. 19. This feature is absent from the weak-fie
evolution of Fig. 21 and is certainly amplitude dependen
Figure 23 shows a series of initial pulse shapes for data w
various amplitudes all centered atr510. Figure 24 shows
the corresponding pulse shapes after scattering.

Although this bump occurs at the front of the scattere
pulse, it is not caused by interactions with the black hole.
see this more clearly, we can start the pulse further out a
see what happens. Figures 25 and 26 show pulse shape
t50 andt58 for data withc520. The outgoing bump de-
velops for large amplitude data without any help from th

FIG. 22. A comparison off computed in IEF coordinates~solid
line! compared withf computed in MMIEF coordinates~dotted
line!. The frames are spaced 2M in time. The horizontal axis ex-
tends from 0 to 45M in areal radius. Differences between the tw
computations are caused by small differences in the position of
inner boundary.
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black hole. A similar bump develops for initial data with
d54. These bumps always have the same characteris
shape, though their widths may vary.

It is clear from Fig. 24 that the amplitude of this outgoing
feature does not depend linearly on the initial amplitude o
the pulse. For instance, from Fig. 23, the height of the high
est peak is about 1.5 times the height of the next highe
peak, while their widths are the same. However, the amp
tude of the outgoing feature in the first case is about 2
times the amplitude of the outgoing feature in the secon
case, while their widths are the same. Figures 25 and
show similar nonlinear behavior for the pulses centered
r520. It is difficult to tell whether this feature is caused by
the nonlinear interaction of an outgoing piece of the initia
data with the rest of the pulse, or if it is caused by back
scattering from the effective self-potential of the ingoing
pulse. Further study is needed.

o
the

FIG. 23.m8 at t50 for s52, d52, c510, and various ampli-
tudes, including near-critical (A* ).

FIG. 24. m8 at t540M for s52, d52, c510, and various
amplitudes. The inset shows 1000 times fraction of mass scatter
For instance, the near-critical solution has 0.243% of its mass sc
tered.
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XII. CONCLUSIONS

We have shown that anull based slicing works well with
an apparent horizon boundary condition, and results in a p
gram which is stable and convergent and will run foreve
Further, we have examined the coordinate motion effe
which result from this coordinate system and ways to avo
them. We have also seen an interesting nonlinear featur
the self-gravitating scalar field.

While the calculations presented in this paper were c
ried out in spherical symmetry, the coordinate system can
generalized to multidimensions. We have worked out an e
tension to the case of a Kerr black hole in three dimensio
~see@11#!, the details of which will be presented elsewher

Unfortunately, this coordinate system cannot be appli
globally to spacetimes which contain more than one bla
hole since it depends on the notion of an areal coordina
Nevertheless, this technique is useful for problems involvi

FIG. 25.m8 at t50 for s52, d52, c520, and various ampli-
tudes (31024).

FIG. 26.M 8 at t58 for s52, d52, c520, and various ampli-
tudes (31024). The small outgoing pulse appears before scatteri
with the black hole.
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various matter fields and single black holes. For instance
could be used to investigate the stability properties of t
solution found by Bechmann and Lechtenfeld@20# in their
investigation of the scalar no-hair theorem~see@11# for work
in this direction!.
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APPENDIX: SPHERICALLY SYMMETRIC EINSTEIN-
KLEIN-GORDON EQUATIONS

In spherical symmetry@using the usual spherical coordi-
nate names (t,r ,u,f)], the three-metrichi j and the extrinsic
curvature tensorKi

j are diagonal. We have

hi j5diag„a2~ t,r !,r 2b2~ t,r !,r 2b2sin2u…, ~A1!

Ki
j5diag„Kr

r~ t,r !,Ku
u~ t,r !,Ku

u…, ~A2!

b i5„b~ t,r !,0,0…, a5a~ t,r !, f5f~ t,r !, ~A3!

ds25~2a21a2b2!dt212a2bdtdr1a2dr21r 2b2dV2.
~A4!

The nonzero components of the Christoffel symbols are

G r
rr5

] ra

a
, G r

uu52
rb] r~rb !

a2
, Gu

ru5
] r~rb !

rb
,

~A5!

G r
ff52sin2u

rb] r~rb !

a2
, Gf

rf5
] r~rb !

rb
, ~A6!

Gu
ff52sinucosu, Gf

fu52cotu. ~A7!

The two nonzero components of the Ricci tensor are

Rr
r52

2

arb
] r

] r~rb !

a
, ~A8!

Ru
u5

1

ar2b2 Fa2] r S rba ] r~rb ! D G . ~A9!

The evolution equations for the metric components are

ȧ52aaKr
r1~ab!8, ~A10!

ḃ52abKu
u1

b

r
~rb !8. ~A11!

The evolution equations for the components of the extrins
curvature are

ng
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K̇r
r5bKr

r81aKr
rK2

1

a S a8

a D 8
2
2a

arb F ~rb !8

a G82pa
F2

a2
,

~A12!

K̇u
u5bKu

u81aKu
uK1

a

~rb !2
2

1

a~rb !2 S arb

a
~rb !8D 8

.

~A13!

The massless Klein-Gordon equation is formulated in ter
of the two auxiliary fieldsF andP which are defined by

F[f8, P[
a

a
~ḟ2bf8!. ~A14!

With these variables, the Klein-Gordon equation is

Ḟ5S bF1
a

a
P D 8

, ~A15!
ms

Ṗ5
1

r 2b2 F r 2b2S bP1
a

a
F D G822P

ḃ

b
. ~A16!

The Hamiltonian constraint is

2
2

arb F S ~rb !8

a D 8
1
1

rb S S rba ~rb !8D 8
2aD G14Kr

rK
u

u

12Ku
u
258pS F21P2

a2 D ~A17!

and the momentum constraint is

~rb !8

rb
~Ku

u2Kr
r !2Ku

u8524p
FP

a
. ~A18!
.
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