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Boson stars driven to the brink of black hole formation
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We present a study of black hole threshold phenomena for a self-gravitating, massive complex scalar field in
spherical symmetry. We construct type | critical solutions dynamically by tuning a one-parameter family of
initial data consisting of a boson star and a massless real scalar field. The massless field is used to perturb the
boson star via a purely gravitational interaction which results significanttransfer of energy from the
massless field to the massive field. The resulfimgstablé critical solutions, which display great similarity
with unstable boson stars, persist for a finite time before either dispersing most of the mass to(laéinihg
a diffuse remnantor forming a black hole. To further the comparison between our critical solutions and boson
stars, we verify and extend the linear stability analysis of M. Gleiser and R. Wdtkind. Phys.B319, 733
(1989] by providing a method for calculating the radial dependence of boson star quasinormal modes of
nonzero frequency. The frequencies observed in our critical solutions coincide with the mode frequencies
obtained from perturbation theory, as do the radial profiles of many of the modes. For critical solutions with
less than 90% of the maximum boson star mdss,~=0.633V3,/m, the existence of a small halo of matter in
the tail of the solution distorts the profiles which otherwise agree very well with unstable boson stars. These
halos appear to be artifacts of the collision between the original boson star and the massless field, and do not
appear to belong to the true critical solutions, which are interior to the halos and which do in fact correspond
to unstable boson stars. It appears that unstable boson stars are unstable to digx@tsalon”) in addition
to black hole formation, and given the similarities in macroscopic stability between boson stars and neutron
stars, we suggest that those neutron star configurations at or beyond the point of instability may likewise be
unstable to explosion.

PACS numbs(s): 04.25.Dm, 04.40.Dg

[. INTRODUCTION radii at late times, ando black hole forms. For any such
family, there will exist a critical parameter valup=p*,
Over the past decade, detailed studies of models of gravivhich demarks the onset, or threshold, of black hole forma-
tational collapse have revealed that the threshold of blackion. To date at least, it has invariably turned out that the
hole formation is generically characterized by special, “criti- solutions which appear in the strongly-coupled regime of the
cal” solutions. The features of these solutions are known asalculations(i.e., the critical solutioj) are almost totallyn-
“critical phenomena,” and arise in even the simplest col-dependentf the specifics of the particular family used as a
lapse models, such as a model consisting of a single, reaenerator. In fact, the only initial-data dependence which has
massless scalar field, minimally coupled to the general relabeen observed so far in critical collapse occurs in models for
tivistic field in spherical symmetrj/1]. Although we present which there is more than one distinct black-hole-threshold
a brief overview of black hole critical phenomena here, wesolution. In this sense then, black hole critical solutions are
suggest that interested readers consult the excellent revievakin to, for example, the Schwarzschild solution, which can
by Gundlach 2,3] for many additional details. be formed through the collapse of virtually any type and/or
Black hole critical solutions can be constructed dynami-shape of spherically distributed matter. In particular, like the
cally via simulation, i.e. via solution of the full time- Schwarzschild solution, black hole critical solutions possess
dependent partial differential equatiofBDE9 describing  additional symmetrybeyond spherical symmefrwhich, to
the particular model, by considering one-parameter familieslate, has either been a time-translation symmetry, in which
of initial data which are required to have the following “in- the critical solution is static or periodic, or a scale-translation
terpolating” property: for sufficiently large values of the symmetry (hometheticity, in which the critical solution is
family parameterp, the evolved data describes a spacetimeeither continuously or discretely self-simil&€SS or DS$
containing a black hole, whereas for sufficiently small values However, in clear contrast to the Schwarzschild solution,
of p, the matter-energy in the spacetime disperses to largelack hole threshold solutions are, by constructiamstable
Indeed, after seminal work by Evans and Colerf¥firand by
Koike et al. [5], we have come to understand that critical
*Email address: shawley@physics.utexas.edu solutions are in some sengs@nimally unstable, in that they
"Email address: choptuik@physics.ubc.ca tend to have precisely one unstable mode in linear perturba-
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tion theory. Thus lettingp— p* amounts to minimizing or namical study of critical solutions of a massive real scalar
“tuning away” the initial amplitude of the unstable mode field. Those authors demonstrated scenarios in which black
present in the system. holes could be formed with arbitrarily small maggpe ||

As already suggested, two principal types of critical be-transitiong, andthose in which the black holes formed had a
havior have been seen in black hole threshold studies; whicfinite minimum masstype | transitions The boundary be-
type is observed depends, in general, upon the type of mattéween these regimes seemed to be the relative length scale of
modelandthe initial data used—as mentioned, some modelghe pulse of initial data compared to the Compton wave-
exhibit both types of behavior. Historically, one of us termedlength associated with the boson mass. Initial data which was
these type | and type Il solutions, in a loose analogy to phasékinetic energy dominated” evolved in a manner essentially
transitions in statistical mechanics, but at least at this juncsimilar to the evolution of a massless scalar field. Initial data
ture, we could equally well label the critical solutions by pulses having widths larger than the length scale set by the
their symmetriegi.e. static-periodic or CSS-D3SFor type  boson mass were “potential dominated,” providing a char-
| solutions, there is a finite minimum black hole mass whichacteristic scale for the formation of the critical solutions.
can be formed, and, in accord with their static-periodic na-Brady et al. found that the resulting type | critical solutions
ture, there is a scaling laws~ — yIn|p—p*|, relating the corresponded to a class of equilibrium solutions discovered
lifetime, 7, of a near-critical solution to the proximity of the by Seidel and Suefil9], called “oscillating soliton stars.”
solution to the critical point. Here is a model-specific ex- These soliton stars share many characteristics with the
ponent which is the reciprocal of the real part of the eigencomplex-valued boson stars, such as the relationship be-
value associated with the unstable mode. On the other hantlyeen the radius and mass of the star. Both types of “stars”
type Il critical behavior—less relevant to the current have a maximum mass, and show the same overall behavior
study—is characterized by arbitrarily small black hole massas “real” (fermion) stars in terms of the turnover in their
at threshold, and critical solutions which are genericadlif-  respective stability curves. Interestingly, although the soliton
similar. stars are not static—they are periodar quasi-periodig—

The direct construction, or simulation, of critical solu- many of the same macroscopic properties seen in fluid stars
tions, has thus far been performed almost exclusively withirare still observed.
the ansatzof spherical symmetry. In the spherical case one In this paper, we construct critical solutions of the Ein-
mustcouple to at least one matter field for non-trivial dy- stein equations coupled to a massigemplexscalar field
namics, and spherically symmetric critical solutions for adynamically, by simulating the implosion of a spherical shell
considerable variety of models have now been constructedf masslesgeal scalar field around an “enclosed” boson
and analyzed. In addition to the massless scalar case mestar. The massless field implodes toward the boson star and
tioned above, these include solutions containing a perfedhe two fields undergo gurely gravitational “collision.”
fluid [4,6], a scalar non-Abelian gauge fidld], and particu- The massless pulse then passes through the origin, explodes
larly germane to the current work,raassivereal scalar field and continues to —«, while the massive complegboson
[8]. The work of Abrahams and Evaf8], which considered stay field is compressed into a state which ultimately either
axisymmetriccritical collapse of gravitational waves, re- forms a black hole or disperses. We can thus play the “in-
mains notable for being the only instance of a reasonablyerpolation game” using initial data which result in black
well-resolved non-spherical critical soluti¢f0]. hole formation, and initial data which give rise to dispersal:

Our current interest is a critical-phenomena-inspired studgpecifically, we vary the initial amplitude of theassless
of the dynamics associated with “boson stafsll1-13, a  pulse to tune to a critical solution. We analyze the black hole
class of equilibrium solutions to the Einstein-Klein-Gordon threshold solutions obtained in this manner, and discuss the
system for massive complex fields, which are supportedimilarities between our critical solutions for the self-
against gravitational collapse by the effective pressure due tgravitating complex massive scalar field and boson stars on
the dispersive nature of a massive Klein-Gordon fiéfébr  the unstable branch. To further this discussion, we extend the
extensive reviews on the subject of boson stars, see Jetzeork of Gleiser and Watkingl6] and compare the results of
[14] or Mielke and Schunckl5].) We know from the studies the simulations with those of linear perturbation theory.
by Gleiser and Watkinfl16] and by Lee and Pand 7], that The layout of the remainder this paper is as follows: In
there exists a critical value of the central density whichSec. I, we describe the mathematical basis for our numerical
marks the transition between boson stars which are stabkmulations. In Sec. Ill, we present results from our simula-
with respect to infinitesimal radial perturbations, and thosdions, in which the type | character of the critical solutions is
which are unstable. The dynamical simulations of Seidel andlemonstrated, along with the close similarities one finds be-
Suen[18] revealed scenarios in which a boson star on th@éween the features of the critical solutions and those of boson
unstable branch would either form a black hole or radiatestars. In most of the critical solutions we find a halo of mass
scalar material and form a boson star on the stable branchear the outer edge of the solution which is not a feature of
Their study is extended in this paper, in which we considetboson star equilibrium data. Inside this halo, however, the
dynamical changes to the geometry of a boson star which aritical solutions match the boson star profiles very well. In
large enough to bring it to the threshold of black hole for-Sec. IV, we give a synopsis of our linear stability analysis of
mation. boson star quasinormal modes, from which we obtain the

As already mentioned, another paper closely related tdboson star mode frequencies as functions of the central value
this work is that of Bradyet al. [8], which described a dy- of the modulus of the complex field. Section V concerns the
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radial profiles of the perturbative modpsr se and includes ds?=—a?(t,r)dt?+a?(t,r)dr2+r2dQ?, (2.6)

a comparison of the mode shapes and frequencies obtained

from perturbation theory with our simulation data. Theand generally make use of the 43" formalism of Ar-
modes obtained by these two different methods agree wefowitt, Deser and Misn€l22] which regards spacetime as a
with each other, although the additional oscillatory mode infoliation of spacelike hypersurfaces parametrized.by

our simulation data is only shown to agree with the corre- We write the (spherically-symmetric complex field,
sponding boson star mode in terms of the oscillations in theb(t,r), in terms of its components

metric and not in the field. We believe this disagreement is .

caused by the presence of a “halo” of scalar field seen in the P(L1)=a(tr) +iga(L,r) 2.7

simulation data. In Sec. V we provide further discussion rey,nere #,(t,r) and ¢,(t,r) are each real. Again, since our

garding the properties of the halos surrounding the critical,qqe includes no self-interactiganharmonit potential for

solutions. , , ) . the complex field,¢; and ¢, are only coupled through the
Conclusions in Sec. VI are followed by Appendices giv- ; ovitational field.

ing tables of mode frequencies versus the central field valu€ \ya then define

of the boson star, details about our finite difference code, and

det_ailfs of our linear §tabi|ity a_nal_ysis, which inclu_des a de- D (t,r)=¢;, Py(t,r)=¢3, (2.9
scription of our algorithm for finding the frequencies of bo-
son star modes. a- a.
Hl(tir)Equlr Hz(t,r)E;%: (2.9
Il. SCALAR FIELD MODEL

a-
A boson star is described by a complex massive scalar Dy(t,r) = ¢3, 5(t,r)=—¢s, (210
field ¢, minimally coupled to gravity as given by general
relativity. We work solely within the context of classical where’=4/dr and "=/ st.
field theory, and choose units in whigh and ¢ are unity. With these definitions, the equations we solve are the
Furthermore, since all lengths in the problem can be scalegjamiltonian constraint,
by the boson masm [13], we choosem=1. To the usual ) 5
boson star model, we add an additional, massless real scalar a 1-a n r .24 .24+ [L24 .2
field, ¢, which is also minimally coupled to gravity. This a_ or Tl Ty
additional scalar field will be used to dynamically “perturb” 5 ) ) )
the boson star. TP+ Dz ald "+ ¢y ] (211
The equations of motion for the system are then the Ein
stein equation and Klein-Gordon equations:

[wherell;? should be read adl;)?], the slicing condition,

a' a’-1 a’

1 —= +——a’r (¢ + 4,7, (212
Gab=Ran~ 59abR=87(TG(¢) + Tan(b3)  (2.1) @« roa
and the Klein-Gordon equations,
O¢p—m?¢p=0 (2.2 . 9 Ir2a
Hk:‘?’&_rE(?q)k —aagy(l-463), (213
Oepz=0 (2.3
wherek=1,2,3 andds is a Kronecker delta used to denote
where the fact thatg, is a massless field.
We also have equations which are used to update the spa-
87 Top(B) = dacpdpd™ +dadh* b tial gradients of the scalar fields, as well as the scalar fields

themselves. These follow directly from the definitiof2s8
—Gan(dcpd°d* +m?|p|?), (2.4 and(2_9)\f w directly initioas8)

8wTH =20,¢30,h3— Qapd P3dcs, (2. . fa !
TTap( $3) a®P39pP3— Japd P3dcP3 (2.5 b= ng (2.14
and O is the D’Alembertian operator. While more general
terms in Eqs(2.2) have been employed recenf0,21], we rooo
will restrict our discussion to the simplest case, i.e. merely b= OCDkdr. (2.195

the m?¢? term. We also stress that the complex scalar field,
¢, and the massless, real scalar fiefgy, are coupledonly  Equations(2.1)—(2.15 are solved numerically using the
through gravity—in particular we do not include any inter- second order finite difference method described in Appen-
action potentiaV,( ¢, ¢3). dix B.

Restricting our attention to spherical symmetry, we write  Initial conditions for our simulations are set up as follows.
the most general spherically-symmetric metric usingFirst, initial data for the massive field are constructed from
Schwarzschild-like “polar-areal” coordinates the boson star ansatz
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d(t,r)=gho(r)e ', (2.16 their own rights. Then, by integrating the contribution of
each field to JdM/dr over some range of radius

where we letgo(r) be real. Substitution of this ansatz into (r .- - -rma). (Where there isomeregion of vacuum start-
the full set of equation$2.11)—(2.15, yields a system of ing atr ,,, and extending inward, argbmeregion of vacuum
ordinary differential equation€DES, whose solution, for a  starting ar > =r,,,and extending outwajgdand demanding
given value of the central field modulus, is found by “shoot- that none of the other type of field is present in the domain of
ing,” as described if12]. Once the boson star data is in integration, we can obtain a measure of the mass due to each
hand, we add the perturbing massless field by freely specfield.
fying @3 andIT;. At this point, all matter quantities have  Motivated by such considerations, we define an energy
been specified ; the initial geometrg(0,r) and a(0r) is  density for the complex fieldpc, as
then fixed by the constraint and slicing equati¢2<.1) and

(2.12. _ 1 2 2 2 20 220 4 2 2
In relating the simulation results which follow, it is useful pcltin)= ﬁml T O+ @+ a%( e+ 627) ],
to consider the individual contributions of the complex and (2.19

real fields to the total mass distribution of the space-time, in

order that we can meaningfully and unambiguously discussWith a corresponding mass aspect functibg(t,r), given
for example, the exchange of mass-energy from the reaby

massless field to the massive, complex field. By Birchoff's ]

theorem, in any vacuum region, the mass enclosed by a Mc(t,r)=f7 2 pedr. (2.20
sphere of radiusr at a given timet is given by the 0

Schwarzschild-like mass aspect functioW (t,r)=r(1
—1/a?)/2. However, at locations occupied by mattei(t,r)
cannot necessarily be usefully interpreted as a “physical®S
mass. In polar-areal coordinates, the mass aspect function is

Similarly, the energy density due to the real field is defined

related to the local energy densjbyt,r) by pr(t,r)= %[H32+ D42, (2.29)
a
IM(t,r) ) . . . .
T:r p(t,r), (2.17  with a corresponding mass aspect functithg(t,r) given
by

with p(t,r) given in our case by ;
L MR(t,r)=J?2de?.
p(L1)= 5[ T2 1%+ 12+ 0,7+ a2( 2+ 7)] ’
We again emphasize that in regions where the supports of
1 ) ) the different fields overlagand in non-vacuum regions in
+ ﬁ[HS +®57]. (2.18 general it may not be possible to ascribe physical meaning
to the individual mass aspect functions defined abtdew-
Here, we have explicitly separated the contributions from theever, even in such instances, these functions are still useful
complex and real fields. Sinc&M/dr is given by a linear diagnostics. Most importantly, where the supports of the
combination of the contributions from each field, we canfieldsdo overlap, and only in these regions, it is possible for
decomposeIM/dr so that, in instances where there is nomass-energy to be exchanged from one scalar field to the
overlap in the supports of the distinct fields, we can unamother—through the gravitational field-while the sumMc
biguously refer to the mass due to one field or the other. That Mg=M (measured in an exterior vacuum regias con-
is, we can refer to the individual contributions of each fieldserved. The quantities given above allow us to measure this
to the total mass as being physically meaningful masses iaxchange of mass by looking at the profilek:(t,r) and

TABLE I. Families of initial data. For both families, the initial data(0,r) = $1(0,r) +ip,(0r), for the
massive complex field is given by a boson star, obtained by solving(Ed4)—(2.13 numerically according
to the ansatZ2.16) (with the parametew found via “shooting”). The initial real massless field profile,
$3(0r), is given in closed form by the “Gaussian” and “kink” initial data. For each family, we also choose
dr3(0,r) such that the pulse is initially in-going, i.d13(0,r) =®3(0,r) + ¢d3(0r)/r.

Complex fieldg,+i¢s Real field ¢5
Family Name Parameters Profile Name Parameters Profile
. r—ro\?
| Boson star bo(0) do(r) Gaussian Arg,A Aexd — -
. A r—ro
I Boson star $o(0) bo(r) Kink Arg,A 5 1+tan ~

104024-4



BOSON STARS DRIVEN TO THE BRINK OF BLACK . .. PHYSICAL REVIEW D 62 104024

Mg(t,r) before and after a time when the fields are interact-The corresponding conserved charge or “particle number”
ing. This is shown in the next section. N is
As a further consideration, we point out that thi1)
symmetry of the complex field implies that there is a con- %
served Noether curreni’, given by N= fo r2y—gdt.

i
He MV * _ % ]
J 87-rg (49, 8" = ¢ d,¢). (222 We may also wish to regar as a function ot andr by

t=0 16 31

47 63 78

-

94 109 281

dM /dr
)
)
l/
)
)

350 400 475

0 0.10.2

| ] | 1 | I
0O 10 20 30 40

r

FIG. 1. Evolution of a perturbed boson star with(0)=0.04x J4m and masi C=0.59\/I,2,|/m. This shows contributions t@M/Jr due
to the massive fieldsolid line) and massless fieltdashed ling We start with a stable boson star centered at the origin, and a pulse of
massless field given by family | withy=30 andA =8.[We see two peaks idM/dr of the massless field because it is only the gradients
of ¢, not ¢4 itself, which contribute tdV x(r,t) for a massless fielflin the evolution shown above, the pulse of massless field enters the
region containing the bulk of the boson star=(1L5), implodes through the origirt£30) and leaves the region of the boson star 50).
Shortly after the massless pulse passes through the origin, the boson star collapses into a more compact configuration, about which it
oscillates for a long time before either forming a black hole or disper§itige case of dispersal is shown hegote that the perturbing field
¢4 passes through the boson star and exits the region containing most of the star, even before the massive field reaches its denser, critical
state. Thus the massless fielchist part of the critical solutiorper se Black hole formationalways with a finite black hole ADM mass in
our study can take place at times long after the massless pulse has left the neighborhood of the boson star.

104024-5



SCOTT H. HAWLEY AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 104024

@ C ]
of ] 2F max[a] -
= . L ]
o 7 - = ]
—~ l\ — — —
g ° b Covo i1 I T A =
\_. : : T T
o ﬂ-l [~ |
E - - P - |
= £ 5 =T ]
8 °[ N ] [ ]
= | // \ - ©r ]
~r b C | | | I T T | | L1 11 | L1 -

~ \ | L L1
d . /\J/ \ - 8 [T T 17T | T 17T | 1T 17T | T 17T | T 1T 1]
lq\>. i 1 1 1 I 1 1 1 | 1 1 1 I\l" } ] 4 4 + ] @ :_ _:
<0 20 40 60 80 100 - ]
t <+ B -
FIG. 2. Exchange of energy between the real and complex scalar OI e b Lo L L

fields. For this simulation, initial data from family | was used, with
r?\(;(sos) O?'(,z:]b; \/:?T’]prlgx llf?elﬁ?dﬁ]mga Tuhswzch(ljld ;lr:letsgog\;\;z;ﬂeby FIG_. 3. _Quar_wtities describing a near-critigal s_olution. Here we
0.2IM32,/m. The long-dashed line shows the mass of the real field.f’hhOW tlme!lke .sllces through the Qata shown in Fig. 1, an evolut.lon
shifted upward by O.EIﬂéllm. The massAM exchanged from the at ends in dlsper_sal. Top: Maximum value of_ the metric function
massless field to the massive field in this simulation is nearlya (fqr each spacel!ke hypersurface parameterized)byrhe local
0.0053, or about 2.5% of the mass of the real fi@l#h of the boson maximum at.t:4o Is due to the presence of th.e pu_Ise of mass!ess
field. Middle: Central value(t,0)| of the massive field. Bottom:
star mask The amountand percentageof mass transfer goes to RadiusRys which contains 95% of the mass energy in the complex
zero as we consider boson star initial data approaching the trans]ji—eld Agzsin we see evidence that after remaining in the critical
tion to instability (see, e.g. Fig. )7 The dotted line near the top of - T . N . .
the graph shows the total mass enclosed with#100. Throughout regime for a while, the star can "explode,” leaving a diffuse rem-
the simulation, both the total mas4é=M .+ Mg and the particle nant with low mass.
numberN (of the complex field are conserved to within a few
hundredths of a percent. constant using a bisection search, until the resulting solution
is arbitrarily close(i.e. within some specified precisipmo
integrating the above function from zero to some finite ra-the point of unstable equilibrium between dispersal and
dius, in which case black hole formation.

Figure 1 shows a series of snapshots from a typical simu-
lation in which the parametgr (p=A), is slightly below the
critical valuep*, for a boson star on the stable branch with a
mass ofM=0.59M3,/m (where Mp, is the Planck mags

Some authors have considered the differeMge-mNto  The shell of massless field, a member of initial data family |,
be a sort of “binding energy” of the complex fieldl4],  implodes through the boson star and explodes back out from
however this quantity does not correspond to any transitiorthe origin, and the gravitational interaction between the fields
in the stability of boson stars, and we have not found it to beforces the boson star into a new state, a “critical solution.”
very useful in understanding the dynamics of our simula\We see from this animation, and from Fig. 3, that dispersal
tions. from the critical state does not mean that the boson star re-

Finally, following Seidel and Suefil8], we define a ra- turns to its original stable configuration, but rather that the
dius Rgs(t,r) for the boson star implicity byM CIR95 star becomes strongly disrupted and “explodes.” That is to

=0.95M¢|,_.. . Alternatively, we will also consider a ra- say, if we were to follow the evolution beyone-475, the

100 200 300 400 500
t

IN(t,r)

ar :rZ(H1¢2_H2¢1)- (2.23

dius Reg(t,r) which encloses (+e 1)~63% of M¢|,_..., massive field would continue to spread toward spatial infin-
and which will include the “bulk” of a boson star but will ity. At some late time, after a large amount of scalar radia-
neglect the “tail.” tion has been emitted, the end state would probably be a
stable boson star with very low mass.
IIl. SIMULATION RESULTS The gravitational interaction between the two fields re-

sults in an exchange of energy from the massless field to the
We choose the initial data for the complex field to be amassive field, as shown in Fig. 2. Figure 3 shows some time-
boson star at the origin, with a given central denghy(0).  like slices through the simulation data, giving a plot of the
For the massless field;(0,r), we choose one of the families maximum value ofa, the value ofl ¢| at the origin, and the
in Table . We generate critical solutions by tuning the am-radiusRgs as functions of time. These are given to help elu-
plitude A of ¢3(0r) (holding the positiorry and width A cidate the point that the critical solution oscillates about
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FIG. 4. Lifetime 7 vs Inp—p*| for a typical set of near-critical Radius containing 0.95 M
solutions. Using super-critical solutions for familywith r,=30,
A=8), we measurer to be the time fromt=0 until black hole L L
formation. Assuming the near-critical solutions &a@proximately ol (b) -
static and one-mode unstable, we expeet— y In|p—p*|, and for o — Boson Stars T
the data shown in this graph we haye-9.2. The value ofy can be B s Tnitial Data |
related to the |mag||[1ary part of the Lyapunov e>_<ponentbf the L s Crit. Solution
unstable mode €¢e'”") by Im(¢g)=1/y=0.109. This value com- = i ]
pares favorably with the value obtained from a linear perturbation S0 |
analysis of the specific boson star to which we believe this configu- o i
ration is asymptotingsee Sec. V A ‘Vj L i
0 - _
some local equilibrium, before dispersing or forming a black g N i
hole. The lifetime of the critical solution increases monotoni- <L _
* : . o
cally asp—p*. Figure 4 shows that the scaling law expected - .
for type | transitions is exhibited by these solutions. - b
Figure 5 shows the mass vs radius for some critical solu- i 7
tions along with the equilibrium curve for boson stars. We el ]
o

notice that there are great similarities, at least for relatively 0 5 10 15
high mass configurations, between the critical solutions and
unstable boson stars in the ground stéfée do not perform
studies involving boson stars with much lower masses, be- FIG. 5. Mass vs radius for equilibrium configurations of boson
cause of the dynamic range required for the spatial resolutioft@rs(solid line), initial data for the complex fieldtriangles, and

of the finite difference code. Also, for a given numerical critical solutions(squares Arrows are given to help match initial

error tolerance, the time-averaged properties of such |0Wgata with the resulting critical solutions. Points on the solid line to
' the left of the maximum mashk! maxzo.633\/|§,|/m correspond to

mass critical solutions are more difficult to compute aCcu_unstable boson stars, whereas those to the right of the maximum
rately, since they have much shorter lifetimes than larger- ' i 9 :

. . correspond to stable stars. If one takes time averages of properties
mass solutiony When we include nearly all of the complex-

| . . h in Fig), 9 such as mass, central densji(t,0)] and radiusRgs during the
scalar mass in our comparisons, as shown in Hi, S/ see critical regime, one finds values which match the profile of a boson

th_at the time-averaged properties of the critical Sqlgtion%tar on the unstable branch. The squares show the time average of
with lower masses, i.e. those further from the transition t0,4ch critical solution during the oscillatory phase. Gréghshows

instability, deviate from the curve of equilibrium configura- massm versusRs the radius containing 95% ofl, whereas graph
tions, and that the deviation increases as mass decreasgs. showsM versus the radius containing le~1) M. The agree-
When we consider only the bulk of the boson star, howeverment between the critical solutions and boson stars shown in graph
we see very good agreement between the dynamically gena) deteriorates with decreasing mass, however the comparison
erated critical solutions and the unstable boson stars, conghown in graphb), which neglects the “tail” of the critical solu-
puted from the statiansatz as shown in Fig. ®). The com-  tions and boson stars, shows much better agreement for all masses.
parison between low-mass critical solutions and boson stargyWe show the tail region in Fig. .
shown in Fig. 5, can be further illuminated by looking at a
profile of the mass distribution as shown in Fig. 6. measurement of the radibys of the star, we can still obtain
We see that there is a small halo near the outer edge of thee good fit of a boson star to the interior of the critical solu-
solution (=8), and it is this which throws off our measure- tion in the low-mass regime. We provide further discussion
ment ofRys used for Fig. 5. Despite the effect this has on theof these halos in Sec. V in the context of critical solutions

Radius containing (1-e ) M

104024-7
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FIG. 6. Comparison of highly unstab{lvw-mas$ critical solu-
tion and boson star. Squares show a critical solution resulting fro
a boson star havingy(0)=0.26X y47. (The data has been re-

duced for graphing purposes; the actual spatial resolution in the

simulation is four times finer than that shown in the figurEhe
solid line shows a “best fit"(unstablé boson star we constructed
by finding the time average df4(t,0)| in the critical solution and
using this as the value fapy(0) in the ordinary differential equa-
tion (ODE) integration routine which solves for the equilibrium
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mode with the unstable mode. In the next section, we attempt
to confirm these hypotheses by means of perturbation theory.

IV. BOSON STAR STABILITY STUDY VIA LINEAR
PERTURBATION THEORY

We follow the work of Gleiser and Watkir{4d.6]. For the
perturbation calculations, we find it helpful to define the fol-
lowing metric functions:

ev(t,l’)EaZ
Mt =42
and to rewrite the complex fieleg(t,r) as

() =[g(t,r) +ign(t,r)]e ",

where ¢, and ¢, are real.[Note that this is a different de-
composition of the fieldp than Eq.(2.7), the one used in the

4.9

"Brevious section.

In these variables, the equilibrium quantities are

(boson star solutions. We see that there is a small halo near the

outer edge of the solutiorr €8). The halo has the same relative

N(t,r)=No(r) 4.2
v(t,r)=wo(r) 4.3
the(t,1)= gho(r) (4.9
Po(t,r)=0. (4.5

magnitude when viewed in terms of the particle number distribution

dN/dr. We discuss the halo phenomena further in Sec. V.

with higher total mass.
It is also worth noting that the critical solution best cor-

responds to a boson star in the “ground state,” i.e., without

any nodes in the distribution of the fields, or ¢,. Boson
stars in excited statége., havingnodes in¢; and ¢,) have
mass distributions which differ significantly from the critical
solutions we obtaif20].

We wish to explain these simulation results in terms of

For the perturbation, we expand about the equilibrium
quantities by first introducing four perturbation fields—
ON(t,r), Sv(t,r), Syn(t,r) and Si,(t,r)—and then setting

Nt r)=No(r)+oN(t,r) (4.9
w(t,r) = vo(r)+ w(t,r) .7
Pa(t,1) = o(r) (1+ Sy (t,r)) (4.9
(1) = bo(r) S¢hp(t,1). (4.9

the quasi-normal modes of boson stars. Previous work in

critical phenomen§l-8,24 leads us to surmise that there is

These expressions are substituted into the relevant evolu-

a single unstable mode present in the system which is exciteiibn and constraint equationgetails in Appendix ¢ after

when the boson star moves into the critical regime. The oswhich the resulting system can be reduced to the following
cillatory behavior during the critical regime may be explain- system of two coupled second-order ordinary differential
able in terms of the superposition of a stable oscillatoryequations ford¢, and o\:

2 u(g—x(')) S\’ . ¢5(V5—>\5 1) ( 6)2 1-r1)\)
Sl=—|=+ S — — +edorogyy —| 2| 204 T 4| 22 +eh0" 02— gho| S\
T A T L P R R P AR
A\ —vg,.,2 -\ ¢6 : ’
+2eM| 1+ e o2+ e Mo . 1 dodpg| 091 (4.10

b 2 (NP 2wt
4¢02+>\0+r—2— -

2
o 2vht+ N’
—4[2%2— re*oq)g( P OTO) } Sy

bo
104024-8
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To perform the stability analysi:iormal-mode analysjiswe 0.002 A L .
assume a harmonic time dependence, i.e., -

Sy (t,r) =Sy (r) € i

SN(t,r)=4SN(r) e, |

©
o
s}
g

Note that Eqs(4.10 and(4.11) contain only second deriva- ao
tives with respect to time, and because there are good rea- °
5 -0.002
sons to assume* is purely real[14,16, we only need to 0
determine whethet? is positive or negative to determine |
stability or instability, respectively. —0.0005
. U_sing the method described in Appendix C, we find the 0004 L —0.001 |
distribution for the squared frequenaﬁ of the fundamental ’ 026 028
mode, with respect tgy, which is shown in Fig. 7. Ll
Superposed with the fundamental mode, we may have 0 0.1 0.2 0.3
other modes at higher frequencies. Figure 8 shows the rela- $,(0)
. . . . 4]
tion between first harmonic frequencies apgl(0).

FIG. 7. Mode frequencies of boson stars: fundamental mode.
This plot shows a graph afZ, the squared frequency of the funda-
V. COMPARISON OF PERTURBATION ANALYSIS AND mental mode, versus the value ¢f at the origin. Note that, as the
SIMULATION DATA inset showsaé crosses zero whegy(0)=0.27, which corresponds
to a boson star with the maximum possible m&$ke circles show
We wish to compare the results of our perturbation theoryactual values obtained, and the solid line simply connects these
calculation with the oscillations of stable boson stars. Twopoints)
differences exist between the conventions used in the pertur-

bation theory calculation and those used in the boson stagayssian pulse, and can tune down the initial magnitude of
simulation data. The first difference is in the choice of thethe unstable mode. By subtracting these slightly different
time coordinate. In the perturbation theory code, we choose fear-critical solutions, we obtain a direct measurement of the
lapse of unity at the origin, whereas in the simulations we se{jnstable mode.

the lapse to unity at spatial infinity. Thus we have the fol-  considering a specific example, we start with a stable
lowing mapping from the perturbation theory calculations topgson star which has at the origin an initial field value of
the simulations: $0(0)=0.04x 4. By driving it with a Gaussian pulse
tuned to within the machine precision of 1 part in*40we

2
A
perturbative simulation ol "~ T 7 LN E— LI B
The other significant difference is in the way the complex i ]
field ¢(t,r) is decomposed into constituent real fields. Thus 04 —
we cannot directly compare; and ¢, for example. We i ]
can, however, compare the modulgg of the field. For the .
simulation data, the perturbation fih| can be taken directly 0R - B ]
from (¢7+ ¢3)Y2 For the data obtained from perturbation e - 3 :
theory, the perturbation ify| will be, to first order,¢y 5. o ] ]
Before proceeding to the comparisqmer se we wish to N 0 =
point out that determining the unstable mode via numerical i _0.05 3
simulation of the fullnonlinearsystem was very easy to do -0.2 E 3
in comparison to thdinear perturbation theory calculations. i —0.11 14 L 1 '15' —
704 N 1 1 L | I 1 I | 1 L 1
A. Unstable modes 0.6 0.8 1 L2

. . 0
To measure the unstable mode, we again perform a series %o(0)
of simulations in which we allow a Gaussian pulse from an g g Mode frequencies of boson stars: first harmonic mode.

addition real, massless Klein-Gordon field to impinge on arpjs plot shows a graph af?, the squared frequency of the first
stable boson star. harmonic mode, versus the value ¢f at the origin. Note that, as

By tuning the amplitude of this pulsgnolding constant the inset showsg? crosses zero whethy(0)=1.15, which corre-
the width of the pulse and its initial distance from the bosonsponds to the first local minimum on the unstable branch of the
stap, we can generate a family of slightly different near- mass vs radius curvésee Fig. 5. (The circles show actual values
critical solutions depending on the amplitude of the initial obtained, and the solid line simply connects these pgints.

104024-9
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FIG. 9. Fundamental mode of unstable boson s&arThe solid

line shows¢ydy; from the perturbation theory calculations. The

squares shows the difference betwée for two simulations for solid line shows the perturbation to the metric functaras found
which the control parametgr differs by 1014 (The data has been from the perturbation theory calculations. The squares shows the

reduced for graphing purposes; the actual spatial resolution in théifférence between the metric functimfolr4two simulations for
simulation is four times finer than what is shown in the figure. Which the control parametgrdiffers by 10" (In the simulations,

Differences between the simulation data and perturbation theor§'® SPatial resolution was four times that shown in the figuie A
results are below 121075, If a line were drawn connecting the plot of the difference between the mode obtained from the simula-

squares, it would be indistinguishable, to the eye, from the pertur;ion and the mode obtained via perturbation theory, where the scale

bation theory line. The second gragh), shows the actual differ- IS refative to the maximum value dfa.

ences between the two data sets, normalized by the maximum value 0 o ) )
of 8| ¢|. pute o“/a“ in order to compare with the perturbation

calculations. We find the average value of(it/,0)? for the

can cause this stable star to become a critical solution whictimes listed above to bgl/a(t,0)%)=3.80, and thus we find
persists for very long times, oscillating about a local equilib-o?/ a?= —0.0450. We choose to compare the perturbation
rium. The average value di(t,0)| is (|#(t,0)|)=0.463. theory results with data from a time in the simulation for
We measure the unstable mode by subtracting data of a rumhich the difference in field value§or the two evolutions
which contained a Gaussian pulse with an amplitude thatuned slightly differentlyis A|¢(t,0)|=8.4x 10 3 We use
differed by 10 % from that of the pulse tuned to machine this value in the perturbation theory solver and arriverat
precision. We can then measure the growth factor of the= —0.045, in good agreement with the value from the simu-
unstable mode by taking the, norm of this difference at lation. In Figs. 9 and 10, we compare the graphs of the so-
various times, taking the logarithm, and fitting a straight linelutions for the unstable mode. In Fig. 11 we show a compari-
to it. From this, we obtaimr=0.109i, or o°=—0.0118. Be- son between the squared frequency values obtained from the
cause of the differences in time coordinate between the simuinear perturbative analysis and those as measured in our
lations and perturbation theory calculations, we need to comsimulations.

FIG. 10. Fundamental mode of unstable boson d@r.The

104024-10
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FIG. 11. Comparison of squared frequenciegapunov expo-
nents for unstable modes. The circles show a subset of the pertur-
bation theory data displayed in Fig. 7. The squares show the mea- 0.0015
surements obtained from our simulatiort$he solid line simply
connects the circlesWe note that the agreement between the two
sets is good even for the more unstable, low-mass solutions. We
also point out that the measurements of our simulations were per-
formed alongr=0, i.e., in the interior of the halo found in the
low-mass solutions, which seems to strengthen the remarks at the
end of Sec. Ill, namely that, aside from the halo at the exterior of
the critical solution, the critical solution®f all masses seem to
correspond to unstable boson stars.

W)‘Sim

0.001

( 6‘¢)‘pTgé‘¢)|Sim ) &

B. Oscillatory modes

We can also look at the oscillatory mode during the criti-
cal regime. We study the behavior of such a mode using the
same technique we used to examine the fundamental mode r
of the unstable boson star: we subtract the data at one instant
of time from the data at all other instants. Again, as a specifiT
example, we use the same initial boson star as that used
the previous section. During the critical portion of the evo-
lution, we notice an oscillation period of abolit=38.4, and

— I BRI B TR R

FIG. 12. First harmonic of an unstable boson star.The solid

e shows ¢ydy, from the perturbation theory calculations. To
obtain the squares, we took the simulation data and subtracted the
Klein-Gordon field at=438 (a local equilibrium point of the os-

T N ; . . cillation) from the data at=512 (a local maximum of the oscilla-
thus we obtaino=27/T=0.0261. During this period, the tion). (The data in the simulations had a spatial resolution four

a\éera;ge value of Mz(t,O) is about 3.80, a”O_' thus we find times finer than what is shown in the figuréb) The squares show
0°/a*=0.102. We take data from a moment in the middle ofy,e gifference between the mode obtained via simulation and the
the oscillation period, and subtract it from the data at othefnode obtained via perturbation theory. The lack of agreement be-
times. We can then compare the perturbation theory resultgondr =6 is directly correlated to the presence of a halo sedd|in
with simulation data at a local peak of the oscillation. For thefrom the simulation, shown by triangles.
local peak we chose at time=t,, the difference in the
modulus of the field Wa$|¢(tp,0)|:0.0197. Inserting this shape, and location. It is our contention that the halo is not
value into the perturbation theory code, we fimd=0.102  part of the critical solution, which appears to correspond to
for this configuration. Thus we again find excellent agree-an unstable boson star. Thus the fields in the region contain-
ment between the squared oscillation frequencies computddg the halo are not well described in terms of oscillation
in perturbation theory and via simulation. modes of a boson star. In the following section, we will
In Figs. 12 and 13, we compare the functions obtainedliscuss the halos further.
from the perturbation theory calculation with those from the Finally, we must remark that we have been unable, using
simulation. The agreement between the perturbation theorthe fundamental and first harmonic modes of an unstable
and the simulation data is good at smaller radii, but agreeboson star, to construct a solution possessing a halo similar
ment deteriorates beyonmd=6, a region occupied by a halo. to that shown in Fig. 6. We doot expect higher modes to be
In this region, the difference between the two data setspf any use here, because the halo is observed to oscillate with
shown in Fig. 12b), is similar to the halo in terms of size, the samgsingle frequency as the rest of the star. Since, as

104024-11
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FIG. 14. Evolution ofr2dMc /dr for two different sets of initial
data. Both sets contain the same initial boson star, but the massless
field ¢4 for one set is given by a “Gaussian” of family (solid
line) with r,=30, andA =8 whereas for the other sét; is given
by a “kink” of family Il (dashed lingwith r;=35 andA=3. The
variableA is varied (independently for each familyto obtain the
critical solution.(Note that aftet=60, the massless field has com-
pletely left the domain shown in the figureie have multiplied
dMc/dr by r2 to highlight the dynamics of the halo; thus the main
body of the solution appears to decrease in size as it moves to lower
values ofr. The kink data produces a larger and much more dy-
namical halo, but interior to the halo, the two critical solutions
match closely—and also match the profile of an unstable boson star.

Thus, the portion of the solution which is “universal” corresponds
to an unstable boson star.

FIG. 13. First harmonic of an unstable boson star.The solid
line shows the perturbation @as found from perturbative calcu- jon that this halo is not part of the true critical solution, but
lations. To plot Fhe squares, we t9°k the S”?"“'a“o” data and SUt1"ather, is an artifact of the collision with the massless field.
tracted the metric functioa at one instant of time from the data at In particular, the halo seems to be a remnant of the origi-
another instant(The spatial resolution in the simulation was four nal (stablg bos’on star which is not induced to collapse with
times finer than what is shown in the figuréh) The squares show e rest of the star to form the true critical solution. We find
the difference between the simulation data and the results of Iineahq t h halo i b ble | | I b t.th t
perturbation theory, scaled relative to the maximum valueSaf a S_uc(l a tao ![S bcl;e Se.tr.val € Imt.neary ah u € _rgos
The close fit between these results indicates that the oscillationd12SSIvVe(leas _uns_a criuca _SO uuons we have Co_nS| -
observed in the critical solutions correspond to stable oscillatorye"€d, and that its size tends to increase as less méassore

unstablé solutions are generated. The fact that the halo thus

decreasesas we approach the turning point only makes

we described at the end of Sec. Ill, the halo seems to b&ense—a stable boson star very close to the turning point

radiated away over time, we might not expect it to be denéeds very little in the way of a perturbation from the mass-
less field to be “popped” over to the unstable branch, and

the final, unstable configuration, will, of course, be very
close to the initial state.
Additionally, we note that in all cases we have examined,
VI. HALOS the field comprising the halo oscillates with nearly the same
' (single frequency as the rest of the solution. This indicates

We have strong evidence that the critical solutions correthat the halo is not explainable in terms of additional higher-

spond to unstable boson stars, but the principal point of disfrequency modes.
agreement is the existence of a “halo” of massive field As one might expect, the properties of the halo are not

which resides in the “tail” of the solution. It is our conten- universal, i.e., they are quite dependent on the type of initial

modes in an unstable boson star.

scribed by the quasinormal modéshich conserve particle
numbej we have constructed.
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FIG. 15. M vs time for the two evolutions shown in Fig. 14. FIG. 16. Mass v<|¢(t,0)]), the time average of the central
Mass transfer from the real to the complex field occurs from value of the field for equilibrium configurations of boson stars
=30 tot=60, i.e., while the supports of the fields overlap. There is(solid line), initial data (triangleg and critical solutiongopen and
more mass transferred using the kink data, and yet the mass falls difled squares Arrows are given to help match initial data with the
rapidly. The mass of the kink data acquires a value very close to theorresponding critical solution. Points on the solid line to the left of
mass of the Gaussian data, which is itself decreasing slowly witlihe maximum mash .= 0.633M2,/m correspond to stable boson
time. We see that, beyorte=250, the difference in mass between stars, whereas those to the right of the maximum correspond to
the two solutions is very small compared with the amount of massinstable stars. The data is the same as that used for Fig. 5, with data
transferred from the real field. from one further evolution added at the bottom of the mass range.

. o . The open squares show the time average of the mass/gh@)| of
data used. In contrast, the critical solution interior to the halasome critical solutions, and the filled squares show the same quan-
is largely independent of the form of the initial data. To tities evaluated between=0 and the inner edge of the halo, de-
demonstrate this, we use two families of initial data, givenfined to be the point wherdl ¢|/dr =0 for finite r. The mass of the
by a “Gaussian” of family | in Table | and a “kink” of critical solution is in general greater than the mass of the initial
family I1. A series of snapshots from one such pair of evo-data, however the mass inside the halo of the critical solution is less
lutions is shown in Fig. 14. We find different amounts of than the mass of the initial data.
mass transferred from the massless to the massive field for
the kink and Gaussian data, as shown in Fig. 15, yet thé indeed radiating, we are not able to demonstrate this con-
central values of the field oscillate about nearly the samelusively for a variety of scenarios. With higher numerical
value at nearly the same frequency. Both calculations stafirecision, one might be able to more finely tune out the
with identical boson stars withp(0,0)|=0.04x 4. Inthe  unstable mode, allowing more time to observe the behavior
critical regimes, this become$¢(t,0)|)=0.130x 4= for  of the halo before dispersal or black hole formation occur.
the solution obtained from the Gaussian data, and
{|#(t,0)|y=0.135x /47 for the kink data. As already noted, VII. CONCLUSIONS
the oscillation periods are also quite similar, differing by
about 3%, and the masses interior to the halo are also quite We have shown that it is possible to induce gravitational
comparable. In particular, it seems quite remarkable that theollapse and, in particular, type | critical phenomena in
differences in mass interior to the halo for the two familiesspherically-symmetric boson stars in the ground state, by
are much smaller than the mass transferred from the real fieleans of “perturbations” resulting from gravitational inter-
in either case. action with an in-going pulse from a massless real scalar

If we consider the inner edge of the halo to be wherefield. Through this interaction, energy is transferred from the
d|l¢|lor=0 at some finite radiuge.g.,r=5 in Fig. 6§, and real to the complex field, and complex field is “driven” and
look at the data betwean=0 and the inner edge of the halo, “squeezed” to form a critical solution. The massless field is
we find good agreement between this data and the profile dgfot directly involved in the critical behavior observed in the
a boson star. This can be seen in both Figs. 6 and 16. complex massive field; the critical solution itself appears to

We suspect that the halo is radiated over tifvia scalar ~ correspond to a boson star, which, at any finite distance from
radiation, or “gravitational cooling'{23]) for all critical so- ~ Criticality in parameter space, exhibits a superposition of
lutions. We find, however, that the time scale for radiation ofstable and unstable modes.
the halo is comparable to the time scale for dispersal or black Specifically, for initial data consisting of a boson star with
hole formation for eachnearly critical solution we con- nearly the maximum possible mass Mf,,=~0.633V;,/m,
sider. Thus, while we see trends which indicate that the halthe resulting critical solution oscillates about a state which
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has all the features of the corresponding unstable boson star TABLE Il. Shooting parameters: Fundamental mode. The val-
in the ground state, having the same mass as the initial states 0f¢o(0) are exact. Other quantities are given within an uncer-
This result is reminiscent of the study by Bradyal.[8],  tainty of =1 in the last significant digit.

who found that the type | critical solutions for a real massive

scalar field corresponded to the oscillating soliton stars of ¢o(0) @ ON"(0)/6y1(0) o

Seidel and Suefil8]. For boson stars with a mass somewhat 6.0ex10°2  1.0417< 10° 1.68x10°1 0.28x1073
less tharnM .y, €.9., 0.M ., Or less, however, we find less  1.0x10°!  1.0727 10° 0.29x 10° 0.67x10 3
than complete agreement between the simulation data and an4x 10 * 1.1067x 10° 0.43x10° 1.11x10°3
unstable boson star of comparable mass. This is evidenced gx 10! 1.1440< 10° 0.59x 10° 1.41x10°3
by the presence of an additional spherical shell or “halo” of 2.2x 10! 1.1849< 10° 0.77x 1¢° 1.31x10°8
matter in the simulation data, located in what would be the 2 6x 10! 1.2299< 1¢° 0.98x 10° 0.45x 1072
tail of the corresponding boson star. Interior to this halo, we 2. 7x10°* 1.2419<10° 1.04x 1¢° 0.05x 102
find that the critical solution compares favorably with the 2.8x10°! 1.2542¢ 10° 1.10x 1° —0.43x10°3
profile of an unstable boson star. Additionally, we have 3.0x10! 1.2796x 1¢° 1.24x10° —-1.71x10°8
shown that the halo details depend on the specifics of thes ox 107! 1.4281x 1¢° 2.08x10° —1.84x 1072
perturbing massless field, and we conjecture that, in the in-5.0x 1072 1.6215<1¢° 3.45x<10° —7.09x10 2
finite time limit, the halo would be radiated away. 6.0x10°1! 1.8777<10° 5.79x 10° —-2.11x10°1

In order to extend the comparison between the critical
solutions and boson stars, we have verified and applied the
linear perturbation analysis presented by Gleiser angimilar to the perturbations of boson stars we have consid-
Watkins [16], extending their work by providing an algo- ered in this paper.
rithm to obtain modes with nonzero frequency. We have
used this algorithm to give quantitative distributions of mode ACKNOWLEDGMENTS

frequency vs central density of the boson star for the first two ,
modes, as well as to solve for the modes to compare with our | IS _research was supported by NSERC and by NSF

simulation results. We have found that the unstable mode irﬁ)HY9722068' Some computations were carried out on the

the critical solutions have the same growth rate as the un\{n.phy_sics.ubc.ca _Beowulf cIuster which was fund_ed by the
stable mode of boson stars, and that the mode shapes alggnaman Foundation for Innovation. Other calculations were

compare quite favorably. We noted that the unstable mode €rformed using the Cray T3E at the Texas Advanced Com-

. : uting Center. S.H.H. wishes to thank E.W. Hirschmann and
these boson stars was determimadch more easilpy solv- S.L. Liebling for helpful discussions
ing the full nonlinear set of evolution equations, rather than™ " '
via linear perturbation theory. The oscillations observed in

the critical solution also indicated agreement with first har- APPENDIX A: BOSON STAR MODE FREQUENCIES
monic mode obtained via perturbation theory, for the region |, this appendix we have tabulated some sample values

interior to the halo observed in the simulation data. from the perturbation theory calculations. The values and
Future work may include simulations of the critical solu- ,\certainties expressed in the table captitee Tables I

tions of low mass using higher numerical precision to furthery, I1l) were determined by integrating.10 and (4.11) to
tune away the initial amplitude of the unstable mode, thus

allowing more time to observe the the small halice., TABLE IIl. Shooting parameters: First harmonic mode. The
whether it is in fact being radiated awayVe would also  \ajyes ofp,(0) are exactw is given within an uncertainty of 1

hope to obtain better agreement between simulation and pejy the last significant digit, and the other quantities are given within
turbation theory for the first harmonic mode of the flw, an uncertainty of= 2 in the last significant digit.

perhaps using a more sophisticated method of extracting
modes from the simulation. Another direction worthy of note  ¢,(0) w SN"(0)/8¢,(0) a?
would be to begin the simulation with a pulse of the complex

field (instead of specifically a boson skdune the height of 6.00<10°!  1.877%10° 0.63x 10" 0.22<10°
the pulse to find the critical solutions via interpolation, and 7-00<10°*  2.2230<1¢° 1.18x10* 0.32¢10°
then compare the resulting critical solutions with our results 8:00<10°*  2.6963<1(° 2.09x10" 0.43x10°
obtained by perturbing boson stars. 9.00<10°*  3.3536<10° 4.11x 10" 0.53<10°
Finally, we find it worthwhile to investigate similar sce- 1.00<10°  4.2714x10° 0.84x10° 0.54x10°
narios for neutron stars. While there have been studies red.10x1¢°  5.5471x10° 1.77x10° 0.42x10°
garding the explosion of neutron stars near the minimum1.12x10° 5.8555x 10° 2.07x 107 3.05x10 !
mass(e.g.,[33,34)), we would like to see whether neutron 1.14x 10° 6.1842< 10° 2.41x< 107 1.46x10°¢
stars ofnon-minimal massan be driven to explode via dis- 1.15x10° 6.3566x 10° 2.59x 107 4.30x 10 2
persal from a critical solution. This may take the form of a 1.16x10°  6.5346x<1C° 2.80x 107 —8.11x102
neutron star approaching the onset of instability via slow 1.17x 1 6.7184x 1(° 3.02x< 1% —2.28x10°1
accretion, or by being driven across the stability graph via 1.18x1¢° 6.9083x 1¢° 3.26X 107 —4.01x10°!

violent heating from some other matter source, in a mannet
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various maximum radii, for a range of error tolerances in the The evolution equations, which are applied to each field
integration routines. The values and uncertainties given if®; ,I1;,i=1,2,3 can then be written as
the tables were chosen to express the variation in our results. .
o
Agcp?zAg(—H) (B1)
APPENDIX B: FINITE DIFFERENCE ALGORITHM a j
We approximate the continuum field quantities
{a,a,111,I1,,I15,®,,®,,P5, 01,5, ¢35} by a set ofgrid ABH?:A%
functions quantities which are obtained via the solution of
finite difference approximations to the partial differential ) _ ) )
equations(2.8), (2.11)—(2.14 on a domain which has been where the last term in the evolution equation fdris not
discretized into a regular meshe. lattice with mesh spac- aPplied to the massless field. _
ing Ar in space and\t in time. For a grid functioru, we Our boundary conditions are as follows: First, by regular-
denote the value of the grid function in the mesh locatipn 1Y @t the origin, we have
space and in time by u}', e.g, P"=0
=

r2q \" \
0 J—2(cya¢>)j (B2)

n__ HE
aj=a(nAt,(j—1)Ar), for all n. To obtainIT]"* we employ a “quadratic fit” at the

where a(nAt,(j—1)Ar) is the corresponding value for the advanced time,

continuum solution. ATt
The initial data is obtained via “shooting,” a standard mri=-—2_35 (B3)
method of solving ordinary differential equations, in a way 3

essentially the same as that found[&2]. The numerical
method used for evolving the system of equations lisag-
frog schemewhich is an explicit scheme requiring data at
two previous time steps) andn—1, to compute a value at
the next time stem+ 1. Given a discretization of scale of
order h in time and space, the leapfrog scheme(igh?)

which is based on the regularity condition, JinylI(t,r)

A significant challenge in the numerical solution of these
equations is the problem of the outer boundary condition for
the massive field. Numerous authors have proposed methods

accurate. Throughout the mesh, the ratige, = At/AT is to handle this. Having tried various methods including first

. . order expansions of the dispersion relat[d8], sponge fil-
kept at a constant value, which must be less than unity due tf)ers[27] pand operator splittiﬁdj28] we wgre]ungblegto ob-
the stability requirements of the leapfrog scheme, and ou ' '

. ! . . - fain a scheme which produced results superior to the simple
ggg;ﬁagjgordmates in which the local light spaed a/a Sommerfeld condition one uses for massless fig2).

To aid in the presentation of the differen tion WSince, however, the Sommerfeld condition is still inadequate
defi 0 ath foll € presenta ? r[$206]' € difference equations, Wg, - massive fields, we have chosen to run our simulations on
efine the foflowing operato : a grid large enough that the outer boundary is out of causal

gntiogn-1 contact with the region of interest for the time the simulation
Agu?:; runs. So, for example, if we are interested in a regicar0
2At =50 and times &t=<400, then we place the outer boundary
N N r ;=450. (While unbounded phase velocities are a feature of
AT n Yjr1—Uja the Klein-Gordon equation, we can argue on physical
05T 2Ar grounds as well as see quite clearly in simulations that it is
the group velocity which is the important quantity in the
u, - ul numerical evolutions, and this is sub-lumindRecent work
Aiu?:f using a shifted coordinate system, with a shift vector that is
vanishing in some region near0 but increases to unity as
N N r—r;, shows promise as a means of handling the challenge
ALuT=3 Ujs1—Uj—1 of the boundary condition for the massive fi¢80D], and this

(r,—+1)3—(rj,1)3' method may be employed in future work. Thus the outer
boundary condition we employ [81]
We also define the averaging operator

ol 3.3.2 -1 4@3—@5“1+4®3ii—®3i%
. unzl(u” ) J At Ar 1y At Ar
et IR R R R (B4)

which takes precedence over other algebraic operations, e g1d an analogous equation is used for eicariable.
After these evolved variables are obtained at ithel

fg?|  u’f"(u'gM? time step, we apply a form of numerical dissipation advo-
“L<T> 0t ; *n 17 cated by Kreiss and Olig¢5]. This is applied to botlti)}‘+l
M and HJn+l in the same manner. So, for instance we set
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and decompose the complex massive figld,r) via

(L) =[a(t,r) +igo(t,r)]e ', (C1

where ¢, and ¢, are real.
wheree (0< e< ]_) is an adjustab|e parameter: typica”y, we In these variables, the Hamiltonian constraint and slicing

CI)n+l q)n+l__(q)]+2 q)r;]:!.+6q)]rl—l

—4P] T+ D77, (B5)

usee=0.5. condition can be written as
The preceding equations describe the “evolution” aspect \
of the code. The other variables are evolved in a “con- , —€ —vry :
= +r (@ (p1+ i)+ (o~ wipy)?]

strained” manner, i.e. they are obtained on the spacelike
hypersurface+ 1 after the fieldsb|“* andI1** have been

12 12 A 2 2
calculated. The field value$n+l are obtained by updating e (YT Y) €2
the value at the outer boundaych according to N
n p'=\"+2 —2reM(yi+ ¢d) (C3

(B6)
J where a prime () denotess/dr and an overdot’) denotes

alat.
The Klein Gordon equation yields

A= 5

and then integratingnward from j=J to j=1 along the
spatial hypersurface at+ 1:

AL p=u, D, (B7) i+ §+

! !

2

yrreNe w1y —er iy
The Hamiltonian constraini2.11) can be solved at each o

time step once all the field variables have been computed for VTN Nyt

the advanced time step. We use the varigbteln a to avoid te T(‘/’l+ wip) — 28" "wip=0 (C4

loss of precision near the origin in the following finite dif-

ference approximation, which is evaluated at the advancegnd

time stepn+1:

! !

2

1-e* r Pot| — Prtere wl= 1)Y= ey
A:_AJ-Z,LL:_ T‘f‘ E[H%'FH%‘FH%'F@% 2 2 &

711;}_).\ ) N—v,
+ D2+ D3+ eA( P2+ ¢D)]] . (89) Fe T (em et 26N M0y =0 (CY

j
Another equation we will find useful i€5=87GT/,

This equation is solved using @ointwise Newton itera- which evaluates to

tion, i.e., given a value oA]"* (such asA]"*=0 at the

origin), we find the next valueiA"Il outward along the spa- INERS 1,1
+_V”+_V’ __Vr)\,

tial hypersurface by solving EajB8) via Newton’s method. e o > 2 2
The slicing condition can be solved once the field vari-
ables and the metric functioa have been obtained at the (1. 1. ) 1..
advanced time step, using the following linear algebraic re- —e ”( 5)\4' Z)\ - Zv)\
lation:
— v 42 2 j _ 2 2 2
i (AN +Z i e "(P1+ P+ 20(P1iho— hothy) + @ (Y11 43))
NS4 (WAn -2 (B9) —e N2 D) — (U + ). (o)
where We use Eqs(C2) through(C4) to obtain the equilibrium
solutions, by setting
. a’-1 Aial’ r 220 42 42
Z=p| | T T eelratmi(git 4a)l; N(t,r)=No(r) (C7)
i M8
v(t,r)=wq(r) (C8)
APPENDIX C: DETAILS OF LINEAR STABILITY
ANALYSIS Y (tr) = o(r) (C9)
Following Gleiser and Watkingl6], we write the most
general time-dependent, spherically-symmetric metric as Po(t,r)=0. (C10
ds?=—e’tNd 2+ ertdr2+r2dQ, The equilibrium equations are then given by
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1—eto N(t,r)=No(r)+ oN(t,r C14
No= +rlero(w?e "0+ 1) p5+ ph?] (C1) (L1)=holr) (Lr) (14
v(t,r)=wvo(r)+ ov(t,r) (C1H5
eto—1 - 2 2
Vo= +rleto(w?e"0—1) g+ ¢i?] (C12
Pa(t,1) = o(r) (1 + Sy (t,1)) (C16)
, 2 vo—N\o| , N
$o=—|+—5—| g0 =1, (C13 Yalt.1) = o(1) Sa(t,1). (€17
We now introduce four perturbation fieldssx(t,r), These last expressions are substituted into EGR),
Sv(t,r), Sy(t,r) and S¢,(t,r)—and expand about the (C3), (C4) and(C6) to obtain the following equations for the
equilibrium configuration by writing perturbed quantities:
|
(re ™08N) =r2[ 23y, —e 0w iov+2e” w5 yn — 28" 0w o,
+2e 206 ( oS+ podir) — e 0o oM ] (C18
’ ’ ’ ' 2 Ao 42
o' = ON'=| vo—No+ | ON—drerogioy, (C19
Vo= N\¢ b6 o Ov' — SN’ . .
S+ =+ = °+2—0>5¢1+@( —— | +e(w?e 0—1) O\ — e 0w Sy — et 05y, — 28" V0w Sifr,=0
r 2 bo ®o 2
(C20
5R *}\0 V(,)_)\(’)+1 H+1 /2 1 !xl + 7)\0 51}’_5A,+16N+1 ’5 ’ 1 /5)\! 1A’5 ! 1 7V05X
IR R T L R R R e LSRG GRS L e
= —[e "w?piov—e (= 2w di i+ 20> pGSi) — e Mod? N
+e70(2¢0? 51+ 2oy Sun) + 2501 ]. (C21

The four equations above can be manipulated such that two vari@bi@sd 5y, are eliminated, leaving us with only two
equations in two unknowns. To obtain the first of these two equations, we sul@igtfrom (C20) to get

oU=~

+elo 0?2 —eho| SN

u6—>\5> SN’

2 .
_ I )\0*1/0 _
; + 5 oY > +e oY

’ V,—)\/ 1 1\ 2 1_r)\/
¢o\ 2 r $o r2eg

!

¢
+2eho| 1+ e "ow?+ e‘xo( (?0
0

2
+r ¢>o¢6} Sy (C22)

To obtain the other equation, we differentiate BEg19 with respect ta, and substitute the resulting expression, along with
Egs.(C18 and(C19), into Eq.(C21) to get

(rg=Xp)?  2vp+Ng
-

3 2 .
ON'= =S (15— NG)ON' + | 4dg7+ N g+ 5= SN+ €M 05K — 4(2poph—reogd) Sy

-4

6 2Vt N\
2662 rqusg( 2? > 0) Y
0

where, differentiating Eq(C11) with respect tar we have

1, (C23

eho—1 e}\O)\é _ , ' — - ' ’ ron
7 TleN(0’e gt pp’]+ T - vhw?eh "ogg+eM(we 0+ 1) (oot 2dhogbg) + 2o 5]

A=
r
(C29
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[Note that Eq.(C22) omits a factor of exp(;) which one , 1,

finds in the~ o\/(r?¢3) term of Eq.(34) in [16].] For the $o=—3z(0"~1)¢o (C28

stability analysis, we assume a harmonic time dependence,

- S = L3 +Q2(w2+1)— 0?6y (C29
SU1(t1) = Sy (1)el™ B g T
S\(t,r)=4N(r)e't S\=0

Note that Eqs(C23) and(C24) contain only second deriva- O\ =0.

tives with respect to time. There are good arguments for
2

assumingo? is purely real[14,16], so we can determine AST—®:
instability by simply looking for instances where€<0. SN—0
As a further consideration, we note that the boson star
system admits a conserved Noether current, Sip—0
1
FegmgH (b0, — A, (C29 o\—0.

To solve the systerlC23) and(C24) subject to the above
for which the corresponding charge or “particle number” is boundary conditions, for a given value ¢§(0), weresort to
the method of “shooting,” first for the equilibrium solutions,
N:f d3x\/__th then for the perturbed quantities. Specifically, we choose a
value forw and solve the equilibrium equations numerically
. by integrating outward fromr=0. We do this repeatedly,
:f drr2e® 20y g, — b + 0(Ya+ §2)). performing a “binary search” orw (as described ii12])
0 until the boundary conditions for the equilibrium quantities
(C26) are satisfied.
Due to the linearity of the problem, we can choose
Conventional stability analysitsee, e.g.[32]) demands d#1(0) arbitrarily. We then have two parameters left,
that we consider only perturbations for which the totalnamelyo?® and 5\"(0). To make matters easy at first, we
charge is conserved. Thus we compute the variation in theéonsider perturbations very close to the transition between
charge 6N, and work to ensuréN=0. In practice, since we Stability and instability. At the transition poin? is zero.
cut off the grid at finite radius, it makes sense to consider thdhus for boson stars near the transition point, we choose

function SN(r), the total charge enclosed in a sphere witho>=0 and shoot on the paramet®x”(0) until the boundary
surface area #r2. This quantity is conditions are satisfied. As Gleiser and Watkit$] note,

the transition point occurs at the maximum boson star mass;
SN1 so we can take two slightly different equilibrium solutions
——+ > near the maximum mass and subtract them to generate solu-
2r ¢g tions which should agree with those obtained from the per-
, turbation problem. We use this method to obtain a trial value
SN — @&V of §\"(0), andalso as a way of checking the final solution
do * we obtain from the perturbation analysis.
For more general configurationsr{+0), we choose a
value of o2 and shoot ond\"”(0) until we find N at the
5’#1)* (C27) outer boundary of the grid to be less than some tolerance
value. Then we use the fa@leaned from experiengé¢hat if
a2 is too large(too positive, SN will have a local minimum,
the value of which will be less than zefice., SN(r) will dip
below zero and then turn back up at larger radifi o is too
low there will be no such local minimum. We use these two
criteria to select the value of? via a binary search. Thus our

1(r
SN(r)= ZL dr r2e(Vvo>/2¢3{

eho 0%+

1\ 2 PN
1-rx
% O) 0

% T

0 r

2

0

2
+eho

!

0

—ehom 02+

where primes denoté/ar. [Note that EqC27) contains a
term involving 8¢, which was not included in Eq35) of
[16].] We then demand thaiN—0 asr— .

The boundary conditions are as follows:

-0 two-dimensional eigenvalue-finding algorithm consists sim-
At r=0: ) : "
ply of two (nestedl binary searches, one in each direction:
Ao=0 For each value ob? tried, a full binary search on the pa-

rameterS\"(0) is performed to driveSN(r .0 —0. Then
the solution of6N(r) is examined for the behavior described

vo=0 above, and a new value @f? is selected, and so on until
, both 50" (0) ando? have been found to some desired preci-
$o=0 sion.
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