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We present results of numerical simulations of the formation of black holes from the gravitational collapse
of a massless, minimally coupled scalar field it 2 dimensional, axially symmetric, anti—de SitigdS)
spacetime. The geometry exterior to the event horizon approaches the BTZ solution, showing no evidence of
scalar “hair.” To study the interior structure we implement a variant of black-hole excision, which we call
singularity excision. We find that interior to the event horizon a strong, spacelike curvature singularity devel-
ops. We study the critical behavior at the threshold of black hole formation, and find a continuously self-similar
solution and corresponding mass-scaling exponent of approximately 1.2. The critical solution is universal to
within a phase that is related to the angle deficit of the spacetime.

PACS numbd(s): 04.25.Dm, 04.60.Kz, 04.70.Bw

[. INTRODUCTION expect there to be a scaling relation for the black hole mass
of the form M=K(p—p*)?”. Here p is a parameter in a
The past several years have seen growing interest in thiamily of initial data such thap=p* is the critical solution,
properties and dynamics of asymptotically anti—de SitteiK is a family dependent constant, agpds a universal expo-
(AdS) spacetimes, predominantly due to the discovery ofnent(see Ref[6] for a recent review The “extra” factor of
black hole solutions in 21 dimensional AdS spacetinjé] 2 in the exponent is expected for BTZ black holes—see Sec.
and the AdS conformal field theorfCFT) conjecture[2]. IIB. As we will show, it turns out that the systemoes
The existence of vacuuhblack holeqalso called Baados-  exhibit a continuously self-simildiCSS solution in the criti-
Teitelboim-Zanelli(BTZ) black hole$ is surprising because cal limit, with a scaling exponeny=1.2+0.05.
the local solution to the field equations is isometric to AdS Earlier works on black hole formation in AdS considered
spacetime, and hence has constant curvature. What makeisks of dust7], null radiation[8], thin dust ringg9], and
BTZ spacetime different from AdS spacetime is its globalthe collision of point particle§10]. In the case of dust-ring
structure, which can be obtained by making appropriate idencollapse Peleg and Steif found a scaling exponent of 1/2 at
tifications within the universal covering space of AfE. the transition between black hole and naked singularity for-
The natural question that such a construction poses is: homation. Birmingham and Sen found the same exponent at the
similar are these black holes to their more familiar13di-  threshold of formation in the case of colliding particles. Hu-
mensional(4D) counterparts? In particular, do these blacksain and Olivier have also studied the massless scalar field in
holes have thermodynamic properties when considered+1 dimensions using a double null formalism, and have
within the framework of a quantum theory, and can theyformed black holes with their codd 1].
form through dynamical collapse processes? It turns out that Our paper is organized as follows. In Sec. Il we describe
BTZ black holesdo bear a striking resemblance to 4D black the system of coordinates and numerical scheme we have
holes in many respecitsee Ref[4] for review article$. In  chosen to use, and the resultant field equations and boundary
this paper we present the results of a numerical study of theonditions. An interesting consequence of our analysis is that
collapse and formation of nonrotating BTZ black holes fromwe are unable to derive boundary conditions for the scalar
a massless scalar field intAD AdS spacetime. Of particular field at the edge of the universe that are analogous to the
interest is whether critical phenomefts are present at the out-going radiation conditions often employed in numerical
thresholdof black hole formation—namely, if by fine-tuning relativity. In AdS spacetime the scalar field reaches timelike
of initial data, we can make the system asymptate‘in- infinity 7 in finite proper time as measured by a central ob-
termediate times)' to a solution which is universal in the server, and the only consistent boundary conditions we can
sense of not depending on details of the initial data. Furtherplace on the scalar field confine it to the universe. This is
more, if the black hole transition is “type IlI,” so that there is reassuring from the standpoint of global energy conserva-
no smallest mass of black hole which can be formed, then wéion, but complicates the search for the universal scaling re-
lation between black hole mass and parameter-space distance
to the critical solution. The system behaves as if the scalar

*Email address: fransp@physics.ubc.ca field is within a finite sized box, and so when a black hole
"Email address: choptuik@physics.ubc.ca forms all of the scalar field initially present eventually falls
with a negative cosmological constant. into the hole.M(p) is therefore trivially a function of how
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the initial energy distribution scales with causal structure of the spacetime by, for instance, placing
In Sec. lll we present results from the evolution of severalout-going radiation boundary conditions af at a finite

families of initial data, focusing on critical behavior. To ob- proper distance from the origin. For these reasons, we adopt

tain vy, we follow the work of Garfinkle and Duncari2], a coordinate system in which the metric takes the form

and examine the scaling of the maximum value attained by

the curvature scalaR in the subcritical regime. We also 2Ar.Y 5 N 2B(r 1) 4 42

study the effect that a central point parti¢eharacterized by dszzm(dr —dt?)+12tarf(r/1)e?®"Vde2. (4)

the angle deficit of the spacetipiegas on the critical solution.

As expected, we find that the more massive the point para(y ty and B(r,t) are arbitrary functions ofr(t), and it is

ticle, the smaller the initial amplitude of the scalar field thatstraightforward to show that whelk=B=0 the above met-

gives rise to the critical solution. One might thus expect toj: gescribes AdS spacetime; i.e., it is a solution to EL.

have a one-parameter family of critical solutions with anyith T_ —0. Notice that, in this metric, radial null geodesics

overall scale related to the particle massisltsurprising,  travel with constant coordinate spegddt=+1, andZ is at

therefore, that the scalar field always grows tosheneam- . — /5 The metric is singular &, but we can place regu-

plitude in a near-critical evolution. A phase shift in central |5, boundary conditions oA andB there, so that the space-
proper time is the only qualitative difference attributable to4a is asymptotically AdS. Also, if we'interpr@t as a pe-
the mass of the particle. At the end of Sec. Ill we study th&jqgic angular variable then the above metric has the correct
interior structure of bla_ck holes that form, giving eV'd?n‘?etopology to represent a BTZ black hole, as the topological
that a ‘crushing’ spacelike curvature singularity forms within consqorship theorems require that the boundary at infinity
the event horizon. Thus the interior structure is significantlysp4re the topology of any event horizon that may exist in the
different from the BTZ solution, which has constant curva-jnterior of the spacetimgl5]. However, for the nonrotating
ture (though the E_)TZ.smguIarlty is still crushing for ex- collapse described in this papéhas no dynamical signifi-
tended objects falling into )it cance.
Defining
Il. THE EINSTEIN KLEIN-GORDON SYSTEM IN ADS
SPACETIME O(rit)y=¢,, I(rit)=¢; (5)

mensions with cosmological constahit= —1/2, coupled to equations upon expanding Eq$)—(3) with the metric(4):
a massless Klein-GordaiKG) field

(1—e?A)
1 An—Ayt o——o——+2m(®*-11%)=0,  (6)
Rab~ 5 Rab+ AGab= K Tap, (1) 12 cog(r/l)
where the stress-energy-momentum tensor for the KG field _
¢ is [13] BBt BBty cos{r/l)sin(r/l))
! c S CL )
Tap= ¢;a¢;b_ Egabﬁb;cd" . (2 ( ,t) |ZCOSZ(I’/|) =V,
Covariant differentiation is denoted by a semicolon, while a 1+ co(r/l) A,
comma denotes partial differentiation. We only consider cirB +B B’r_A’r'FI cosTinsin(r/) 1 coir/l)’sin(rll)

cularly symmetric configurations of a minimally coupled
scalar field in this paper. Hencé, satisfies the wave equa- (1—e?A)
tion —AB;

’ +Izcosz(rll)
O¢=¢%=0, 3

and in coordinatest(r, ) adapted to the symmetry, charac-
terized by the Killing vecton/d6, ¢(r,t) is only a function
of the radial coordinate and time coordinaté. _A (B n

One of the many peculiar features of AdS spacetime is its T sin(r/)cogr/)
causal structure. In particular, null infinif§is timelike, and
any observer living in AdS spacetime can send and receive ©)
lightlike signals to and froni in finite proper time[14].
These properties of AdS make it challenging to deal with
numerically, as the scalar field traverses the entire universe [tar(r/l)eBCD],r—tar(r/I)[eBH]tzo. (10)
on a local dynamical time scale. Also, as we will show in
Sec. Il A, the only regular boundary conditions on the figld Within the context of the 31, or ADM, formalism, Eqs.
at7Z are Dirichlet conditions, so we cannot ignore the unusual8) and (9) are the Hamiltonian and momentum constraints,

+2m(D%+11%)=0, (8)

Bi+B{B,—A,+

cot(r/l))

+47PI1=0,
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respectively, while Eqs6) and (7) are combinations of the A atZ, and then to monitor the other conditions as a consis-
evolution and constraint equations. Equatiaf) is the wave tency check during evolution. Conditiori$7)—(20) ensure
equation for the scalar field. There are two unknown geometthat the spacetime is asymptotically AdS.
ric variables—A(r,t) andB(r,t); hence one needs to use at It is interesting that the field equations enforce Dirichlet
least two of the four equatior(§)—(9) to dynamically deter- boundary conditions o andIl, effectively preventing us
mine the geometry. In this work, we have chosen to use Eqsrom implementing out-going radiation boundary conditions
(6) and(7) to updateA andB. As is common practice in such atZ (if we wanted to let the field “leak out of the universe”
a “free evolution scheme,” we can then use residuals of thavhen it reacheq). To see this more clearly, consider the
constraints8) and(9) as one way of estimating the level of energy fluxesT,,7%%" and T,,/2 " along outgoing and in-
error in our solution. going null vectord® and »?, respectively, normalized so that
With regards to initial conditions, we choose to freely 125,=—1,
specify ®(r,0) andII(r,0) (we haveto specify two scalar-

field degrees of freedom at each, as well asB(r,0) and coqr/h[ao a2
B(r,0). A(r,0) andA (r,0) are then fixed from the con- |a=ﬁ el (22)
straint equationgsee Sec. Il B for more detajlsThis proce- 2e
dure is clearly somewhaid hog but has worked very well in
our study. a_cos{r/l) g 912

The Ricci scalar of this spacetime is n= J2e? gt orl (22)

2
_ 4mcosr/l) D2—112)— 6 (1) A straightforward calculation using E¢R) gives
2A2 2"
e
coqr/)2(d=11)2

The Weyl tensor is zero, and other nonzero curvature scalars E.= ' (23

. . - 2e2A

can be expressed as polynomial functiondRof

whereE is the influx andE_ the outflux. Thus no-outflux

and -influx boundary conditions can be obtained in the usual
We require that the solution for our dynamical variablesway by differentiatingd = IT with respect ta andt in turn,

A(r,t),B(r,t),®(r,t), andll(r,t) be regular at the origin and utilizing the fact that, from Ed5), ® ;=11 ;:

r=0 and atZ, r=l/2. The field equations then essentially

A. Regularity conditions

dictate the allowed boundary conditions on these variables. ® b ,=0, (24)
By inspection of Eqs(6)—(10) we obtain the following con-
ditions. Atr=0, IT,*1II,=0. (25
A(0t)=B(0}), (12)  Here, the plus sign corresponds to no influx, and the minus
sign to no outflux. However, at the outer boundary, regular-
A (0)=0, (13) ity forces®(ml/2t)=T1(m/2t)=0, and hence
B (0t)=0, (14 O (ml/2t) =TI (7l/2t)=0, (26)
®(0t)=0, (15  so there is no distinction between the no-influx and no-
outflux condition. The only situation consistent with both
I1,(0t)=0 (16)  conditions is thaho flux crosses the outer boundary in either

direction. Even when we try to derive no outflux and -influx

conditions with the asymptotic behavior @f factored out,

A(T2)=A (ml12) = A (7 121) =0, (17) namely I?tting¢=co§(rll)¢ and placing boundary condi-
tions on ¢, we find that the wave equation dh cannot

and atr ==l/2

B, (ml/2t)=0, (18 distinguish between no-outflux and no-influx conditions.
Also, in early experiments we were unable to obtain stable

d(ml/21)=0, (199  numerical evolution with the no-influx boundary conditions
(24) and(25) applied at a finite proper circumference, corre-

II(ml/2t)=0. (20) sponding tor <rl/2. The Dirichlet boundary condition &t

is also consistent with the behavior of a massive scalar field
Note that conditior{16) on11(0,t) is a direct consequence of in an AdS background, where an infinite effective-potential
the defining relation foll(r,t) (5), and the regularity con- barrier prevents any of the field from reachifgregardless
dition for ®(0;t) (15). Also note that we have multiple con- of how small the mass is. Of course, all of this does not mean
ditions for B at the outer boundary, and férandB at the that an effective outgoing radiation condition cannot be
origin. We have chosen to implement the Neumann condiimplemented for the massless field in asympotically AdS
tions for A andB at the origin and the Dirichlet condition for spacetimes. In any case, in the context of the current study,
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we would be apt to view such a condition as a numericalnitial data, which is regular and free of trapped surfaces, for
convenience, rather than being of any intrinsic physical inthe minimally coupled scalar field in asymptotically AdS
terest. spacetimdin 2+1 dimensions The presence of trapped sur-
faces att=0 is incompatible with the conditions dB(r,0)
B. Initial conditions and B ((r,0)—in our coordinate systemr/dt=1 along an

For initial conditions at=0, we are free to specify the °utgoing null curve, and hence a nonzei¢r,0) and/or
scalar field gradient®(r,0) andlI(r,0), the metric function B,t(r,_O) is required to de§cr|be nonpositive outvyard null €x-
B(r,0) and its time derivativ® ,(r,0). We then numerically Pansion. However, in this study we are only interested in
solve forA(r,0) andA ((r,0) using the Hamiltonian and mo- initial data thatis free of trapped surfaces, so the conditions
mentum constraint&8) and(9). The freedom that we have to on B(r,0) andB ((r,0) are not restrictive.
specify B(r,0) amounts to a choice of what the proper cir- For the initial scalar field profileg(r,0), we consider
cumferencd| tan(r/1)ef] and its initial time derivative are, three families of functions—a Gaussian curve raised to the
as a function of the radial coordinateThat we do not have nth power
the freedom to choos® for all time is a consequence of the

gauge condition that radial lightlike signals travel with unit b(r,0)=Pel 01" (27
coordinate velocity. For simplicity we sé&(r,0)=B (r,0)
=0.

We believe(though are unable to prove)sthat the setof a “kink” (based on an arctan functiprfor which ®
conditions just described is capable of generating all possibles d¢/dr is

o0 —2P o cogr/1)sin(r/1){ 1 sin(r/l)cogr/l)+2(r —ro)[1—2 sin(r/1)2]}e~ (" ~T0*/o* 28
r =
(r, o sin(r/)*cogr/)*+(r—rg)?]

and a family of harmonic functiofs loop), the angle deficitw at t=0 is related toA(0,0) as
follows:

¢(r,0)=P cog(rn/l), (29 w=2m(1—e00), (30)

whereP, 1o, o, andn are constant parameters. Then, de-of more interest is the relationship betwe&(0,0) and the
pending upon whether we want to model initially ingoing, mass of the point particlé ,,. The remainder of this sec-
outgoing or static fields, we sdi(r,0)=®(r,0), II(r,0)  tion is devoted to finding this relationship, and in the process
=—®(r,0) or II(r,0)=0, respectively. Note that this e will define a general mass aspect functhfr,t) for the
method cannot give purely ingoing or outgoing pulses—gpacetime.

H(r,t)==d(r,t) is notan exact solution to the wave equa-  when the scalar field gradients identically vanigich
tion, and a little bit of energy always propagates in the opthey do atz, and, to an excellent approximation,rat 0 for

posite direction to that desired. the initial data that we considerthe Hamiltonian constraint
As noted previously, we s&(r,0)=B (r,0)0=0. The re-  pas the simple solution

maining geometric variableg\(r,0) andA (r,0) are then

computed from the Hamiltonian and momentum constraints

(8) and (9). We integrate the constraints outwards fram eZA:L (31)
=0, settingA {(0,0)=0. For the most part we will consider k—co(r/l)’

the collapse of a scalar field initially exterior to empty AdS

space. This corresponds to setting0,0)=0. However, in \herek is a constant of integration. We can rel&téo the

Sec. 111B 2, we will briefly consider the effect of collapsing gT7 mass parametéV of the spacetime by appealing to the
the field in the presence of a point particle at the origin, the,gal form in which the BTZ solution is expressed:
calculation of which involves introducing an angle deficit

into the spacetime. From the metrior by examining the 1
parallel transport of a vector about=0 in an infinitesimal ds2= — (— M +r2/12)d 2+  dr2+r2deR
+r2/12
(32)
2We call these functions “harmonic” because without back- _ ) )
reaction and for initially static configuratiop#l (r,0)=0] the exact M= —1 is AdS spacetimeM =0 are black hole solutions,
solution to the wave equation is periodic in time. andM <0,M # —1 are spacetimes with conical singularities,

124012-4



GRAVITATIONAL COLLAPSE IN 2+1 DIMENSIONAL . . . PHYSICAL REVIEW D 62124012

or point partides at the origi(‘the range Of_is from O tooc) . near the outer bOUndaEﬁssentia”y since the Ieading term of

For general(nonvacuum solutions let us define the mass A, when considered as a power series in*gd3, cancels
aspectM (r—t) as follows: with the spatial derivatives dB in Eq. (7) initially, and so

higher order, less accurately known termsAo&re respon-
IVr[2=—M(r,0)+r2/2, (33 sible forB’s “acc;eleration”]. To reduce these problems we
now use a 5-point, 4th order accurate spatial derivative op-

Then, in our coordinate systefd), M(r,t) takes the follow-  €rator at interior grid points, and 6-point 4th order backward

ing form: and forward operators near boundaries that have the same
truncation error as the interior operator. Also, we find that
M(r,t)=e*B=Ale?Atar?(r/1)+1%sir(r/1)[(B )2 using the momentum constraif®) to solve forA at the next

5 2 to last grid point is necessary to obtain convergence of the
—(B)*]-2ltanr/)B —sec(r/l)}. (34  gojution as we go to finer spatial resolutitior some as yet

. ) . on i . unknown reason the evolution equation was exciting a grow-
Using the field equation$6)—(9) it is straightforward to ing mode on finer grids at that pojntrhe program to per-

show thatM is a conserved quantity in regions of the space-

; - . - form the evolution was written iIFORTRAN 77 and RNPL
time where® and1I are zerofin particular atZ). At t=0, (Rapid Numerical Prototyping Languad#7]); animations
whereB=B ;=0, we can substitute E¢31) into Eq.(34) to P ypIng 9 ’

' i and pictures from several evolutions can be obtained from
find k: )
our websiteg/18].

1

k=T m

(39 D. Detecting black holes and excising singularities

To detect black hole formation we search for trapped sur-

WhenM=0 our metric(4) with the chosen initial conditions  faces, defined to be surfaces where the expansion of outgoing
is singular at the horizon of an empty BTZ spacetime, but theyull curves normal to the surface is negative. If cosmic cen-
metric turns out to be well behaved &t 0 for initial data  sorship holds, then trapped surfaces are always found within
that does not contain trapped surfade@inally, from Eqs.  the event horizon of a black hole, though at the end of the
(31) and(35) the contributionM pp of the point particle to the  simulation we can trace null rays backwards fr@no con-
mass of the spacetime is firm this. In our coordinate system the condition for a surface
Mppe1— e 2A00) 36 to be trapped is

1+1cogr/l)sin(r/1)(B,+B;)<O0. (37)

C. Numerical scheme
We estimate the mass of the black hole by monitoring the

Jerting them (o a system of finte diférence equaions on 40P CIrcuference 2 tan( sy /1)e2C+ of the appar-
9 y q nt horizon(the outermost trapped surfacand use the re-

ur_uform coordinate grid using a two-time level Cr_an_k- lationship between BTZ black hole mass and event horizon
Nicholson scheme. We also add Kreiss-Oliger style dissipa- ¢ dEq. (32—the hori s at= JMI]
erencd Eq. (32—the horizon is at = :

tion [16] to control high-frequency solution components; this ¢/"'¢uMm
is crucial for the stability of our method.
At first, we used standard 2nd order accurate 3-point finite M~ tarf(r a /1)e?B(an 0, (39
difference stencils for the spatial derivatives at each time
level—centered-difference operators at interior points, af all of the scalar field is absorbed by the black hole during
forward-difference operator at the inner boundary, and @volution, then the estimated mass should eventually become
backward-difference operator at the outer boundary. Howequal to the initial, asymptotic mass of the spacetime as
ever, we found that these operators excited a small instabilitgiven by Eq.(34) in the limit r— l/2.
in the metric variables in the vicinity of the outer boundary.  As we will show in Sec. Il C, shortly after an apparent
The resultant ripples would propagate inwards and causRorizon(AH) forms, we find what appears to be a spacelike
problems in situations where black hole formation was im-Curvature Singu|arity forming within the AH. If we use a
minent. The primary source of these ripples was truncatioitraightforward evolution scheme, the metric and scalar field
error in the solutiorA exciting small oscillations iB. Spe-  variables quickly diverge, and any given simulation just as
cifically, A acts as a source term in the evolution equation forguickly breaks down. At the same time, we would like to
B (7), andB happens to be very sensitive to small error&in  probe the structure of the spacetime approaching the singu-
larity, as well as to continue to follow the evolution outside
the AH as long as our coordinate system allol@pproxi-
SHowever, because of our choice of gauge, we know that thdhately one light-crossing timeTo accomplish this, we have
coordinate system must become singular within one light-crossingmplementedsingularity excisiona technique fundamentally
time (LCT) of the formation of a black hole. The event horizon is a Motivated by the black-hole-excision strategy first proposed
null hypersurface traveling outward with unit coordinate velocity, by Unruh[19].
thus the coordinate distance between the event horizorZamidl Our excision strategy is as follows. We monitor the mag-
go to zero within a time= 71/2. nitude of the metric variables, and when they grow beyond a
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certain threshoftiat any point we excise that point plus a . RESULTS

small buffer zondof 4 to 6 grid point$ on either side of it.

(Note that the nonexcised region of the grid will no longer be In this section we discuss results from the evolution of
contiguous if the excised point is further away from theseveral sets of initial data, focusing on the threshold of black
original grid boundaries than the size of the buffer 2JoM¢  hole formation. For convenience we $et2/7 so thatZ is at

the new grid boundaries exterior to the excised region, wg =1, though the results presented here are valid for any
continue to solve for the metric and field variables using thenonzero, finitd, through an appropriate rescaling of the met-
evolution equations, but replace all centered-difference opric variables and scalar field gradients. Specifically, consider
erators with forward and backward-difference operators, aghe following coordinate transformation:

appropriate, so that the solution is not “numerically influ-

enced” by the excised grid points. Physically, the solution r -t

that one would obtain within the causal future of the excised =1 (39
zone is meaningless, so we also remove this region of the

grid during subsequent evolution. In our coordinate systemyith T defined on the rangg0,m/2]. Then it is easy to see
this is easy to implement, as radial null curves travel at conthat thel dependence cancels from all equatid6s—(10)

stant, unit coordinate vglocity. Thus, if our grid spacing IS\when expressed in terms ofand. So, given a solution
Ar, after an amount of tim&t=Ar we expand the excised AGT), BET), ®FT), andII(F) to the rescaled field

region by 1 grid point on either side. Also, we continue to i find di lution for Bb
monitor the metric variables on the remainder of the grid,gquat_lonst;vet canfln at_corrges[pon 'Tg SE ugo]r.] or &y
and when they grow beyond the threshold at any other point$'VeM!Ng the transtorma io(B9) [see also Eq(5)]:
we expand the excised region to include those pdiatsl a ~~
buffer). Thus the excised piece of the grid is always contigu- A(r, = AL,
ous. In principle, it would not be difficult to keep track of ~

multiple excised zones, though we did not find it necessary B(r,t)—B(r/l,t/),

to do so for the interior solution shown in Sec. llIC—a .

single zone is sufficient to obtain a good view of all of the O(r,t) =1 D(r/1,t/),

interior up to the putative spacetime singularity. We have s

tested the singularity excision scheme by excising a light II(r,t)—ITI(r/I1,t/1), (40)

cone from a solution that remains regular, and verifying that
the excised solutiodoesconverge to the regular solution as with r ranging from 0 torrl/2. Notice that the initial energy
Ar decreases. density, being proportional tod{?>+11?), scales ad?, so

In summary, we briefly clarify the difference between sin-there is no straightforward method to extrapolate a solution
gularity and black hole excision. First, notice that we neverto the limit of zero cosmological constant, where .
use trapped surfaces to trigger the excision of a region of the We present results from 4 families of initial data: an in-
grid. Thus, our code could, without modification, excise na-going Gaussiaf(27) with n=1], an ingoing squared Gauss-
ked and coordinate singularities. The boundary of the exian [(27) with n=2], an ingoing kink(28), and a time-
cised region is always null or spacelike, so the scheme migrgymmetric,n=1, harmonic function29). In each case we
not be able to distinguish between timelike and null curvavary the amplitudeP when tuning to the black hole
ture singularities. However, if a timelike singularity was en-threshold] and for the first three families we have chosen
countered, it may still be possible to deduce its nature byr=0.05 andry=0.2. Except in Sec. Il B 2 where we briefly
examining the curvature invariants just exterior to the ex-study collapse onto a point particle, we have A€9,0)=0
cised surface. For example, suppose during evolution a lighin all cases, corresponding to angle deficit-free spacetimes.
like region was excised, and curvature invariants started diThe 3 ingoing families were simulated using a finest numeri-
verging as one approached the initial excised point, yetal grid of size 4096 points, with a Courant factor of 0.1;
remained relatively “small” and finite just outside the future thus 40960 time steps are required per light-crossing time
light cone of the excised point, then one would have reasonfor some of the critical solutions presented in the next sec-
able evidence for a timelike singularity. Second, with thetion a grid size of 8192 points was used with a Courant
singularity excision scheme, we excise only the region of thdactor of 0.3 For the time-symmetric céunction we do
grid to the causal future of the singularity. In the case of anot need as many points to get good convergence results
black hole spacetime, this results in a more complete view ofbecause of the milder field gradientso that the highest
the spacetime than what one would obtain with the standarcesolution required for that family was a 1024-point grid. In
black hole excision strategfwhich would have in Fig. 19, fact, we get acceptable results even after 50 light-crossing
for example, excised the region of the spacetime labeled “retimes with 1024 points for the cbslata, whereas the more
gion of trapped surfaces,” and everything to the left of it compact ingoing families start having noticeable errf@s

“4For a threshold we choose a number that is sufficiently large so *Though we did checkfor the Gaussianthat we get the same
we are fairly certain(from past experimentsthat if any variable critical solution when tuning the width, keeping the amplitude
grows beyond the threshold then a crash is imminent. fixed.
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FIG. 1. ®(r,0)= ¢ ,(r,0) for each family of initial data studied.
The three compact families are initially ingoing, thds(r,0)
=®d(r,0), while the harmonic function is time symmetric with 1 -89
T(r,00=0 (I=2/m, soTis atr=1). 00 1 gale (linear)
r
timated from convergence tg}ste near-critical evolution af- FIG. 3. A plot of ®(r,t), the spatial gradient of the scalar field,
ter 3—4 LCT’s with 4096 points. for sample Gaussian initial data with=0.1302. In this case, a

Figure 1 shows the initial scalar field gradieh{r,0) of  black hole isnot formed. This plot clearly demonstrates the nature
typical amplitude for each of the families. Figure 2 shows theof the Dirichlet boundary conditions og at Z (r=1 in these
metric functionA(r,0) for a Gaussiarithe other families coordinates Even though a black hole does not form, back reaction
have similar shapes fdgk), and for later reference we show is significant here—notice the nonlinear interaction between ingo-
how A(r,t) and B(r,t) have evolved at=0.6. In order to ing and outgoing components of the field: when the ingoing and
provide the reader with some feeling for the dynamics of aoutgoing pulses cross, the ingoing component is amplified, while at
“typical” evolution, Fig. 3 shows a “space-time” plot of the same time the outgoing component is supressed. The effect is
the evolution of a sample Gaussian with=0.1302 that does Most apparent on this plot at around 3 near the outer boundary;
not form a black hole within 4 LCT’¢and it should not, as and note that the initial outgoing component of the field is quite
the asymptotic mass of the spacetime-i4.062x 1072). small and not visible in the picture.

monic families. The second curve on each plot shows the
initial mass estimate of a black holé one formed during
Figures 4 and 5 show plots of the asymptotic msl{$®)  the 2 LCTs of the Gaussian evolution, or 50 LCTs of the
of the spacetime, as a function of the amplitijeabout the  harmonic evolutionat the time an apparent horizon is first
regionM =0 of parameter space, for the guassian and hardetected. For these amplitudes, Figs. 6 and 7 show thettime
and coordinate positiom of apparent horizon formation.

A. Parameter space survey, varying®

:; = Qualitatively, the features of corresponding plots for the kink
3 _ t=os_§ and squared Guassidnlso evolved for 2 LCT’s are very
RS = similar to those for the Gaussian, so for brevity we do not

—2 3 . E show them. To within the resolution of our simulation, the

o 05 1 final black hole mass always approaches the asymptotic
mass—in other words, we duot detect any remnant scalar

FIG. 2. A(r,0) (left-most figur¢ for a Gaussian withp  field (black hole “hair”). See Fig. 8 for typical examples.
=0.133051, as obtained by solving the Hamiltonian constraint withDue to the “reflecting” boundary conditions at timelikg
B(r,0)=0. This amplitude is used as an example in Sec. Il C wherthis is not too surprising, although one might have expected
we discuss the singularity structure, so for reference we also showomething similar to a low amplitude, long wavelength, pe-
A(r,0.6) andB(r,0.6). Notice in particular how large and negative riodic scalar remnant. The scalar field also tends to zero at
B is towards the origin, indicating that in this region of the grid we late times along the event horizon, though in that region of
are looking at very small scales in the problgtine proper circum-  the spacetime our results are not good enough to obtain use-
ference element is=1 tan(r/1)ef]. ful decay exponents.
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P 0.133 0.1335

P

FIG. 4. Asymptotic mass as a function of pulse amplitude for an
initially ingoing Gaussiar{27) of width 0.05, centered at=0.2 in
a cosmology witH = 2/7r. For the amplitudes that formed an appar-
ent horizon within the simulation time of= 2, the mass estimate at
time of AH formation is also showfit is not clear in the figure but
this curve does not touch the asymptotic mass gQuike dashed
vertical line, labeled byP*, is the critical amplitude—see Sec.
I B.

FIG. 6. The initial coordinate positiofr) and time(t) of AH
formation for the same set of amplitudes as in Fig. 4 for the Gauss-
ian family (if an AH formed withint=2).

be compact and centrally condensed. Thus, when we im-
plode a relatively “space-filling” distribution witivi small
(and positive a black hole will not form on the first bounce
through the origin. However, because of the boundary con-
) ) ) _ ditions at infinity, the scalar field will reflect off, and, as
Figure 7 for the harmonic family shows almost chaoticine field has evolved through a strong figltbnlineay re-
dependence of the time of AH formation as a function ofgime in the interior, the distribution of energy will be differ-
amplitude, asM(P) decreases towardd =0. There is evi- ant on the subsequent implosion. Moreover, because of the
dence that this behavior is also present for the other familie§trong gravitational field, the scalar field has a tendency to
of initial data, but we have not run those simulations at thespend more time in the vicinity of the origin on average,
necessary resolution to gienvincingevidence. What ap- preventing it from dispersing throughout the spacetime. So,
pears to be happening is the following. First of all, it is moregpe may expect that if the asymptotic madss positive, a
“difficult” for a distribution of the scalar field correspond- region of phase space will eventually be traversed during
ing to M=0 to form a black hole—the distribution needs to eyglution, where it is favorable for a black hole to form, no
matter how near zero i8M. However, due to the chaotic
] nature of the curve in Fig. 7, we cannot extrapolg{é) to
1 to=c0 in order to directly test this conjecture.

\

0.2 - 503

i B. The critical regime

To search for critical behavior in the gravitational col-
“ lapse of the four families of initial data introduced in the
1 previous section, we vary the amplituékein each case to

T
°©
)
=

ARsma

I R R B
0.3025 0.303

Mass
Q
=
T

* Asymptotic mass

0 : I
_// —Initial mass estimate iP* J |
A RS RS MU SR | 1 F

0.29 03 0.31 0.32 0.33 0.34 2

P

-

FIG. 5. Asymptotic mass as a function of pulse amplitude for < |
the time-symmetrim=1 harmonic function(29). For the ampli- .
tudes that formed an apparent horizon within the simulation time of 1 - .,
t=50, the mass estimate at time of AH formation is also shown. r LT
The dashed vertical line, labeled BY, is the critical amplitude as I Mn:of AH forma:o:*.—hN\é |
discussed in Sec. Il B. Notice the discontinuity of the initial mass | - Tnitial position, r, of AH /:,,.———
estimate curve just to the right &*, and compare the Gaussian pl— e L L I A
case in Fig. 4. The reason for the sudden jump, and difference frorr 03 03t ng 0.33 0.34
the Gaussian case, is that arourdl for those amplitudes ne&*
an apparent horizon is close to forming in two locations; to the left FIG. 7. The initial coordinate positiofr) and time(t) of AH
of the discontinuity it first forms at larger radii, to the right at formation for the same set of amplitudes as in Fig. 5 for the har-
smaller(see Fig. 7. monic family (if an AH formed withint=50).
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FIG. 8. Black hole mass estimates as a function of time for
Gaussians witt? = 0.133051(left) andP = 0.1340(right). The hori- L
zontal dashed lines denote the asymptotic masses of the spacetime Y U S
For the less massive pulse on the left, the apparent horizon form: =0 i 7 10 -
after the initial implosion when the field is mostly outgoing, and the
energy gradually accretes onto the black hole. The more massive FIG. 10. ¢ ;,(Z,T), i.e., the derivative of the function plotted in
pulse on the right forms a black hole on the initial implosion, cap-Fig. 9.
turing almost all of the scalar field energy except for a small piece
that initially traveled outwards front=0. This piece eventually Near this threshold, it turns out that shortly after the initial
bounces offZ then falls into the black hole. Note that the smaller implosion, the scalar field and geometry close to the origin
amplitude is less than the critical vali® as defined in Sec. llIB,  eyolve towards a universal, continuously self-simil&S9
while the larger amplitude is supercritical. form. We remind the reader that a function which is CSS

depends only on a single scale-invariant variabldow, the
find the threshold of black hole formation. |dea"y, we would coordinates I(,t) in which we solve the equations of motion
simply seek the amplitud®* where a black hole forms for are not well-adapted to self-similarity. However, after some

P>P*, while for P<P* the scalar field bounces around experimentation we found that a natural scale-invariant inde-
forever without collapse. Unfortunately, such a search is nopendent variable in our system is

practical; as mentioned in the previous section we do not —

have the computational resources to follow compact initial X= r (41)
data for numerous LCT’s, and, even with the Tdata, we te’

do not see any trends that would allow us to conclude that if o

a black hole has not formed after, say,LCT’s, then it wherer=Itan(r/1)e® is proportional to the proper circum-
probably will not form at all. Thus, what we do instead is ference of am = constant ring, antl, is proper time as mea-
tune to the threshold of black hole formation on the initial sured by the centralr&0) observer. By conventiort, is
implosion; i.e., we base our search on whether or not a blackegative and increases to the accumulation pgist0. To

hole formsbefore any initially out-going radiation reflects petter visualize the CSS behavior, we also transform to loga-
off Z and then falls in, contributing to the collapse. This rithmic coordinates

point of parameter space is labeledRsin Figs. 4 and 5, —

and coincides with the place where the initial mass estimate Z=In(r), T=-In(te). (42
dips to near zerdthough for the harmonic data—as men-

tioned in the caption of Fig. 5—for amplitudes a little larger A CSS functionf(x)=f(e**") then looks identical to a
thanP* an apparent horizon first forms further out, engulfingwave propagating to the left with unit velocity &sncreases

the one that is about to form at the smaller radius; see alst .
Fig. 7). Figures 9-12 show scale-invariant  functions

¢ (2, T), ¢72(Z,T) (the second derivative better demon-
strates the “wave nature” of the critical solutiprthe mass

0.4

FIG. 9. ¢ 7(Z,T) [see Eq.(42) for the definition ofZ and T
coordinate§ for Gaussian initial (27) data with P
=0.133059219,0=0.05, n=1, andry=0.2 in anl=2/7 cos- FIG. 11. The mass aspelt(Z,T) for the same solution shown
mology. This function of¢ is scale invariant in the critical regime, in Fig. 9. ThatM becomes slightly nonmonotonic at late times is
which unfolds roughly betweefi~8 andT= 19 (though, interest- probably due to numerical error—this is a supercritical evolution,
ingly, the scale invariance seems to persist for longer in the scalaand the metric variables are already growing rapidly arodnd
field than the geometric quantities—see Figs. 11 and 12 =19.
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8 [ e gaussian
o gaussian squared
o kink .
s — harmonic
=
A
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FIG. 12. The Ricci scalar multiplied by? (a scale-invariant FIG. 14. The Lorentz gamma factor W43) betweenr
combination in the critical regimefor the same solution shown in = constant observer worldlines and those traveling normal to the
Fig. 9. hypersurface.= constant, al =13 for the 4 near-critical solutions

as in Fig. 13. The difference between the three initially ingoing
aspectM(Z,T), and (r_ZR)(Z,T), for a Gaussian evolution families and the harmonic one indicates that we are looking at dif-
with P=0.133059219, which is “close” to the critical solu- féring slices of spacetime as we move away from0. In fact, the
tion [IN(P—P*)=—17.5; see Sec. IlIBIL In principle, the discontinuous peak iry for the harmonic solution at arourd=
closer to criticality we tune the initial pulse, the longer the ~10.2 shows that the=constant surface has become spacelike to
scale-invariant behavior should persist in logarithmic spacetne right of this point, indicating a region undergoing gravitational
In practice, of course, finite computational precision and griccollapse-
resolution prohibits fine-tuning to arbitrary accuracy—the . o
figures plotted here show data which is about as close t§!9htly larger amplitude, but, as we shall now argue, this is
criticality as we can get with 8192 grid points. In terms of @PParently just a slicing effect. As mentioned in Sec. IIB,

the mass aspect in Fig. 11, one can surmise that the criticR€cause of the gauge that we use, and since we choose to
solution is(locally) a kinklike transition from the AdS value SOIve forA(r,0) andA (r,0) using the constraint equations

M=—1 to a zero mass state; though, interestingly enough(8) @nd(9), the only slicing freedom we have remaining is in
the value of the curvature scalBrat the origin diverges as (h€ initial conditions forB(r,0) andB (r,0). OnceB(r,0)

1/t§ as one approaches the accumulation p6ire will dis- andB't(r,(_)) are sp(_ecmed, we have no control over the man-
cuss this in more detail below; also, bear in mind that in Fig.e" in which the slice evolves. For the three compact, ingo-
12 we are plotting 2R, not R itself). This behavior of the ing families, the critical behavior develops at times ranging

o6 tsthat the t i t th itical from t=0.25 tot=0.30, and because of the similar initial
mass aspecsuggeststnat the transition at the critical spatial distribution of the energy densities, the evolution has
point is type ll—in other words, there is no lower, positive

roceeded along very similar slices. On the other hand, the
gg:lr;? f?gk;he mass of black holes that can be formed by th armonic data approaches the critical solution at aliout

Figure 13 demonstrates the universality of the solution in,_ 1.25, at which time the slice has evolved quite differently
h g't' [ redi H | . yF' 10 for th "from the other three families near their respective critical
€ critical regime. Here we plap 2, (as in Fig. Or e times (we note, however, that by plotting as a functionTof

Gg_ussmin at Fhe same imer f_or each family in a near- we do “match” the slices at the origin To demonstrate that
critical evolution. The harmonic function appears to have 3he slices have evolved differently, we plot in Fig. 14 the

0.16 T normalized inner product betweeidt. (in anr,t. coordi-
i » gaussian, In(P-P)=-175_ nate basisand Vt, for the 4 families, at the same time used
I ~_ - %?ﬁ‘f?'ﬁ’}ps-jé"?l}e-ﬁég(P;;;)?w'? #1  inFig. 13. This inner product is the Lorentz gamma fattor
. . N ' (assuming the vectors are timellkéetweerr = constant ob-
] servers, and those moving normal to the hypersurfiace
o5 | =constant
a
e N _|alate) Vatcl_ 43
| | L . | L | |(9/(9t0||VtC|
-16 -14 -12 -10 -8 -6
Z This quantity will be the same along identical slices of a

FIG. 13. A composite of the scale-invariant functigry ,(Z,T) spacetimgsince such slices will have the same normal vec-
for the near critical solutions of the four families of initial data tOrS); thus the harmonic solution slice is clearly different as
considered, demonstrating universality of the solution in the critica®@N€ moves away from the origin. A["'Other interesting feature
limit. The data is plotted &F = 13 (compare Fig. 10 The harmonic ~ Of this plot for the harmonic data is that it shows gravita-
profile appears somewhat different than the others due to a slicinonal collapse occurring a short distance away from the un-
effect, as explained in the tekalso see Figs. 14 and 1%ee Fig.  folding critical behavior, since, to the right of the peak, the
16 for the values oP* for each family. vector d/ dt, has become spaceliKequivalently the surface
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FIG. 15. The functionp ,-(Z,v) for the same solutions shown
in Fig. 13.v = constant is an ingoing null geodesic, chosen here to  FIG. 16. The maximum of IR(0,t<t.)| as a function of InP*
intersect the origin af=—Int.=13 in all cases, and along this —P) for subcritical P<P*) evolutions of the 4 families of initial
hypersurface we plot as a function Bf=Inr. This coordinate sys- data considered. These plots indicate that the maximurR(0ft
tem completely fixes the spacetime slice along which we are com=t,) attained during evolution is proportional t&{—P) ~2?, with
paring solutiongat the expense of some loss of accuracy during they~1.15-1.25.
transformatiol, and gives additional evidence that thésea uni-

. . _ _ * 2,y . . .
versal critical solution. in the relationM =K (p—p*)“?. To measure this relationship

in the current context, one needs to wait for the system to
ﬁgttle down to a steady-state to ensure that the apparent ho-
riZon is coincident with the event horizon, and hence that the
mass estimatg38) gives the correct mass. In AdS, the

T =constant has become spacelike—see the discussion on t
singularity structure in Sec. Ill C, and in particular Fig.)20

At this point in parameter space for the harmonic function d dit af i p forming thi
there is a lot more mass in the spacetime than that invoIveBoun ary conditions prevent us Irom periorming this
measurement—initially outgoing radiation that did not con-

in the critical evolution, and this is causing an apparent hos . . . .
rizon to form at a larger radiusee Figs. 5 and)7 Presum- tribute to the near-critical black hole formation will eventu-
ably, for smaller amplitudes one could tune to a threshold"‘!Iy reflec(:jt gﬁéar;q IEIOHUtijE;” measurerphent. Howg;(er,l as
solution after several light-crossing times, and perhaps theﬂ'S(?usse y Lartinkie fm “”C@‘”?]- In the near-cri |qca
one would more cleanly uncover the critical solution. reglme(qbove or belowp*) any quantlty.vv_|th dlmepsmn -
To give more evidence that all the solutions are indeedN.hereL is a length scale, should e>.<h|b|t a scaling relation
approaching a universal one in the critical regime, we nee 't(? :an exponent OtHI’- Thus,' fo(ljlok\)/vm% thlg'se'authors, we
to compare them on a common spacetime slice. In Fig. 15 wind the max'g““.m vla ue a}ta!ne fy the Riccl Sfdlaﬂt rf
show the same function of the scalar field as in Fig. 13 trans= 0 N subcritical _evolution — for t.<0. Plots o
formed to a Christodoulou type coordinate system] ma< IN[RO.1)]| vs In(P"—P) for the four families studied is
where av = constant curve is an ingoing null geodef@g]. ~ Shown in Fig. 16. Sinc&eL "2, these figures show that the
We normalizedv so thatdv =dt. at the origin; i.e.p also  Scaling exponeny of the 2+1D AdS Klein-Gordon system

measures central proper time. Thus comparing solutions of§ @Pout 1.2-0.05. _ _ _
the same v=constant surface removes any slicing . Notice that the mass aspeldt as defined in Eq(33) is

ambiguity® As can be seen from the figure, the transformead'mens'onleS$Wh'Ch is consistent with the scale-invariance

solutions are all quite similar, though we lose some accurac?f M as plotted in Fig. 11 On the other hand, when we keep

in the transformatiorfwhich is why we have elected not to f|x§d and vzaryP, the resulting black hole magbeing pro-
use these coordinates in all of the plots in Figs. 9-13 portional tor;,) has a length scale of 2, so one would expect

the mass-parameter scaling relationship for BTZ black holes
1. The scaling exponenty to go asM=K(P—P*)2?, wherey is the same value 1.15
—1.25 found above for the scaling & The initial-mass

Another characteristic feature of type Il critical behavior gstimate curves as shown in Figs. 4 andofoughly exhibit
in gravitational collapse is the universal scaling exponent tnis scaling behavior foP> P*.

2. Critical behavior in the presence of a point particle

5We are grateful to David Garfinkle for suggesting this procedure  Here we briefly show how the presence of a point particle
to us. (angle deficit alters the critical solution. The particle con-
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] of the spacetime. Nevertheless, we have not yet found a
e symmetry-reduced system that reproduces the observed criti-
35 4 cal behavior.

WN=S

¢‘ZZ

005 | C. Singularity structure

I } 1 In all of the solutions that we have studied so far we find
o e ) that after an apparent horizon forms what appears to be a
i e R R T spacelike curvature singularity develops within the horizon.
18 1o -5 Specifically, the surface of excision along which the metric
variablesA andB and, consequently, the curvature invariants
FIG. 17. A composite of the scale-invariant functigry,(Z,T) begin to diverge, is spacelike. By itself, demonstrating a
at T=13 for the near critical solutions of the Gaussian famity ( Spacelike surface of arbitrarily large curvature is not suffi-
=0.05r,=0.2) with 4 different initial values foA(0,00—0, 1, 2  cient to prove that the singularity is spacelike—a counterex-
and 3, corresponding to the presence of point particles at the origiample would be the mass-inflation null singularitg2].2
with masses 0, 0.864665, 0.981684, and 0.997521, respectively-However, if we extrapolate to the surface of infinite curva-
see Eq(36). Itis striking that these solutions only differ by a phase ture, based upon the growth of the Ricci scalar prior to ex-
in T related to the particle masses; they have evolved to the samgision, we still find a spacelike surfa¢m fact, R grows so
amplitude after starting with quite different initial amplitudes rapidly prior to excision—roughly as tf/ along anr
(namely,P~0.13,0.078,0.034,0.013 fax=0 to 3). =constant surface if we translaté to zero at the

) ) singularity—that the surface of infinite curvature essentially
tributes to the mass of the spacetili6), so the more mas- cgincides with the excision surface at the resolution of Fig.

sive the particlgup to the maximunMpp=1 in our unit3 19 pelow. In addition,B(t,r)— — o along this surface, in-
the less scalar field energy is needed to form a black h°|9dicating that the proper circumference meadun(r/l)e®
and consequently we have smaller amplitudésat thresh- goes to zero thergsee Fig. 20 beloy Thus, as with vacuum
old. Interestingly, we find theamecritical solution in all  BT7 plack holes, this singularity is crushifigany extended
cases(see Fig. 17 for 3 examplgsthe only noticeable dif-  gpject reaching the singularity is forced to zero proper cir-
ferences being a systematic phase shiffTinelated to the  cymference, regardless of any angular momentum or internal
mass of the particle. The kinklike transition in the mass aSpressures that the object might have.
pect has the same shape as well, but it ranges from the par- Figures 18 and 19 are spacetime pi@ssentially Penrose
ticle mass at =0 to M=0. To within the resolution of our diagramg of ®(r,t) and the Ricci scalaR(r,t), respec-
simulations(which was at 2048 grid points in this cadte  {jyely, for a Gaussian initial pulse witR=0.133051. On the
critical exponent is also the same, namely, within the rang@ictures we have superimposed the region of trapped sur-
y=11510 1.25. faces and the inferred event horizon of the space time, found
by tracing a null ray backwards in time from the place where
the AH meetsZ on the coordinate grid. Figure 20 show con-
Given that we have self-similar behavior in the critical tours of proper circumference for the same solution. The
regime, it would be useful to find the exact solution assum+yoint P=0.133051 in parameter space is slightly subcritical
ing a CSS ansatz. Traditionally this is done by assuming the
existence of a homothetic Killing vectof. (see Ref[6]).

3. The critical solution from a CSS ansatz?

B "Note added in preparation: David Garfinkle has very recently
L:9ab=2Yap- (44) found a CSS solution in the limit where the cosmological constant

L. . . . .. vanishes that appears to quite accurately describe the critical solu-
This implies that in coordinates adapted to the homotheticityyion that we have found21]. His result is quite intriguing—the

so that¢é=d/dr, each component d,, has the forme®’f, cosmological constant igssentialfor black holes to form, yet ap-

for some functionf independent ofr. Furthermore,L;R,,  parently it plays very little role in the solution at thleresholdof

=0, so thatR,, and hence the Einstein tendBg, are inde-  formation.

pendent ofr. This ansatz is not consistent with the field 8we are grateful to Lior Burko for pointing this out to us.

equationg1) in the presence of the cosmological constant if °Or deformationally strongsee Ref[23]. It is straight-forward

we assume that the scalar field is self-simisge Ref[25]), (though tediousto see thatr =0 in the non-rotatingd TZ black

as we observe in the collapse simulations. Essentially, theole is a strong singularity as defined by Tiplémough it is not a

scalar field stress-energy teng@j would need to decouple curvature singularity We have not repeated the formal calculations

into a piece that exactly cancels the cosmological constani terms of Jacobi fields in our collapse simulations, but because of

term plus a scale-invariant term, but we do not think that thighe central, spacelike nature of the singularity back-reaction is not

is possible for a minimally coupled scalar field. likely to weaken it. Note added in revision: shortly after this paper
It may be that in the 21D AdS system a different sym- was first published, Lior Burko studied the structure of the singu-

metry, such as a conformal Killing vector, would be neededarity in 2+1D AdS spacetime using a “quasihomogeneous” ap-

to generate the critical solution. Or perhaps the critical soluproximation, and did find the singularity to be strong and spacelike

tion is only approximately homothetic over a limited region [24].
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Contours of constant proper circumference
— 12x10*

Ty, s 1.25
/////cxc1$ed region / surface of
¢ ' //// 2 excision
t
0.0
1 -22x103
o} 1 scale (log)
T
FIG. 18. The gradient of the scalar fiedl(r,t) on the entire 14
solution domain for a Gaussian with=0.133051. On this picture /inﬁnity
we have also outlined the region of spacetime containing trappec

surfaces, and drawn in the event horizon with a dashed({ownd -6
by tracing a null ray backwards in time from the place where the

AH reaches = 1—which is alsdZ, so our coordinate system breaks

down therg. We stop the simulation at points where the metric  FIG. 20. A contour plot of proper circumferencdivided by
variables begin to divergé&he lower boundary of the excised re- 2m) r=Itan(r/I)eB for the same solution as shown in Fig. @Be
gion), which presumably is just before a spacetime singularitythickness of each contour line is constant in units of proper circum-
forms (see Fig. 19 for a similar plot of the curvature scalar ference. This plot demonstrates the central nature of the singular-
ity. Along the excised surface approach'[ﬁgr_also tends towards
zero, though it is not clear with the limited resolution of this figure
there. The event horizon asymptotesrte0.037, i.e., just outside
ther=0.03 contour.

Ll |
r

(as we have defined criticality, see Sec. I}HBa black hole
forms because the bit of outgoing energy present=ad
bounces offf and falls back onto the nearly collapsed scalar
field, pushing it over the limit. This gives us a very clear

Ricci scalar view of the interior structure; for a more massive pulse the
////////// T L6x10% singularity forms shortly after the initial implosion, resulting
, in a thin sliver of an interior in(,t) coordinates.

From Fig. 19 one can see a striking peak that formRin
after the scalar field has bounced through the origin and is
traveling outwards. In this particular ca&has a value of
order— 10" in the interior, it then grows to order 1% over
a very short distance before decreasing to the AdS value of
0.0 —6/12~—15. This near-discontinuous behaviorRris char-

acteristic of sub-critical evolutions, and becomes more ex-
treme as one nears the critical solution.
As one approaches the excised spacelike surface in Fig.
-1.0x1013 19, R starts to grow very rapidly, reaching values ug16’
before excision(this may not be clear on the figure—we
chose the gray scale to highlight the near-discontinuous be-
havior inR). R actually oscillates between large positive and
L1x1028 negative values along this surface, but our calculations are
1 scale (log) not sufficiently accurate to conclude that the oscillation is
genuine. In particularR is extremely sensitive to the differ-

FIG. 19. A plot of the Ricci scalaR(r t) for the same solution €ncell?’—®? [see Eq.(11)], andI1? is usually around the
as shown in Fig. 18. During most of the evolutitR| is bounded ~Same order of magnitude &&° there. We also note that the
above by~10", but shortly before reaching the excision boundary maximum value attained b along the excised surface be-

R starts to diverge rapidly, signaling the formation of a spacelikecomes smaller towards This is to be expected, since in the
singularity. 2+1D system,somescalar field is necessary to produce a

— 1.0x1013

o

T
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value ofR differing from the AdS valug¢again, see Eq11)], tually do so if one waits long enoughecause of the Dirich-
and as we move towardsalong the excised surface there is let boundary conditions imposed on the scalar field)& A

progressively less scalar field energy remaining. third question, related to the first two, is whether the critical
solution we have found is a true black-hole-formation
IV. CONCLUDING REMARKS thresholdsolution. In other words, that we have a found a

universal, CSS solution via a fine-tuning process indicates

We have studied black hole formation from the collapsethat this critical solution is one-mode unstable; so, does per-
of a minimally coupled massless scalar field it 2dimen-  turbing the critical solution “one way” result in a black
sional AdS spacetime. Outside of the event horizon théiole, and perturbing it the “other way” cause the scalar field
spacetime settles down to a BTZ form; in the interior a cento remain regular, never forming a black hole? The
tral, spacelike curvature singularity develops. At the threshasymptotic nature of AdS spacetime, which is ultimately re-
old of black hole formation we find that the scalar field andsponsible for the boundary conditions of the scalar field, at
spacetime geometry evolve towards a universal, continuprevent us from answering this question in our collapse
ously self-similar form. When a point particle is present atSimulations.
the origin the critical solution is shifted in central proper  With regards to future work, it would be useful to extend

time by an amount related to the mass of the particle. these results to different scalar-field—geometry couplings, in-
By examining the behavior of the curvature scalar during®/Ude @ mass and potential terms in the Lagrangian, and to
subcritical evolution we deduced that the universal scalin dadtig:%?lgrtargggggglinhé?e;heltTVICJUSII dd;t; tk;)esi:]lfcg?egtﬁ gfotg
exponenty for this system is roughly 1:20.05. This value = S
is quite different from the scaling exponent 1/2 derived byunderstand the critical behavior in light gf the AdS-CFT cor-
Peleg and Steif9] for the collapse of thin rings of dust and respondence. Even thpugh our calculation IS purely cI.ass!caI,
there should be a regime where the classical evolution is a

by Birmingham and Seih10] for particle collisions. How- L
ever, those works considered different forms of matter, an ood approximation to the full bulk theory, and consequently
' ' here should be a dual CFT description of the critical phe-

the phase transition was between black hole and naked si

gularity formation. Thus one would not expect the same exl1omena.
ponent. Also, the local spacetime geometry about a dust ring

or point particles is necessarikempty AdS, hence such ACKNOWLEDGMENTS
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