
PHYSICAL REVIEW D, VOLUME 62, 124012
Gravitational collapse in 2¿1 dimensional AdS spacetime
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We present results of numerical simulations of the formation of black holes from the gravitational collapse
of a massless, minimally coupled scalar field in 211 dimensional, axially symmetric, anti–de Sitter~AdS!
spacetime. The geometry exterior to the event horizon approaches the BTZ solution, showing no evidence of
scalar ‘‘hair.’’ To study the interior structure we implement a variant of black-hole excision, which we call
singularity excision. We find that interior to the event horizon a strong, spacelike curvature singularity devel-
ops. We study the critical behavior at the threshold of black hole formation, and find a continuously self-similar
solution and corresponding mass-scaling exponent of approximately 1.2. The critical solution is universal to
within a phase that is related to the angle deficit of the spacetime.

PACS number~s!: 04.25.Dm, 04.60.Kz, 04.70.Bw
t
tte

o

dS
a
a
e

ho

ck
re
e
th
ck

th
m
r

g

e
e

is
w

ass

ec.

ed

at
or-
t the
u-
ld in
ve

ibe
ave
dary
that
lar
the
al

ike
b-
can
is

va-
re-
ance
alar
le
ls
I. INTRODUCTION

The past several years have seen growing interest in
properties and dynamics of asymptotically anti–de Si
~AdS! spacetimes, predominantly due to the discovery
black hole solutions in 211 dimensional AdS spacetime@1#
and the AdS conformal field theory~CFT! conjecture@2#.
The existence of vacuum1 black holes@also called Ban˜ados-
Teitelboim-Zanelli~BTZ! black holes# is surprising because
the local solution to the field equations is isometric to A
spacetime, and hence has constant curvature. What m
BTZ spacetime different from AdS spacetime is its glob
structure, which can be obtained by making appropriate id
tifications within the universal covering space of AdS@3#.
The natural question that such a construction poses is:
similar are these black holes to their more familiar 311 di-
mensional~4D! counterparts? In particular, do these bla
holes have thermodynamic properties when conside
within the framework of a quantum theory, and can th
form through dynamical collapse processes? It turns out
BTZ black holesdo bear a striking resemblance to 4D bla
holes in many respects~see Ref.@4# for review articles!. In
this paper we present the results of a numerical study of
collapse and formation of nonrotating BTZ black holes fro
a massless scalar field in 211D AdS spacetime. Of particula
interest is whether critical phenomena@5# are present at the
thresholdof black hole formation—namely, if by fine-tunin
of initial data, we can make the system asymptote~at ‘‘in-
termediate times’’! to a solution which is universal in th
sense of not depending on details of the initial data. Furth
more, if the black hole transition is ‘‘type II,’’ so that there
no smallest mass of black hole which can be formed, then

*Email address: fransp@physics.ubc.ca
†Email address: choptuik@physics.ubc.ca
1With a negative cosmological constant.
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expect there to be a scaling relation for the black hole m
of the form M5K(p2p!)2g. Here p is a parameter in a
family of initial data such thatp5p! is the critical solution,
K is a family dependent constant, andg is a universal expo-
nent~see Ref.@6# for a recent review!. The ‘‘extra’’ factor of
2 in the exponent is expected for BTZ black holes—see S
III B. As we will show, it turns out that the systemdoes
exhibit a continuously self-similar~CSS! solution in the criti-
cal limit, with a scaling exponentg51.260.05.

Earlier works on black hole formation in AdS consider
disks of dust@7#, null radiation@8#, thin dust rings@9#, and
the collision of point particles@10#. In the case of dust-ring
collapse Peleg and Steif found a scaling exponent of 1/2
the transition between black hole and naked singularity f
mation. Birmingham and Sen found the same exponent a
threshold of formation in the case of colliding particles. H
sain and Olivier have also studied the massless scalar fie
211 dimensions using a double null formalism, and ha
formed black holes with their code@11#.

Our paper is organized as follows. In Sec. II we descr
the system of coordinates and numerical scheme we h
chosen to use, and the resultant field equations and boun
conditions. An interesting consequence of our analysis is
we are unable to derive boundary conditions for the sca
field at the edge of the universe that are analogous to
out-going radiation conditions often employed in numeric
relativity. In AdS spacetime the scalar field reaches timel
infinity I in finite proper time as measured by a central o
server, and the only consistent boundary conditions we
place on the scalar field confine it to the universe. This
reassuring from the standpoint of global energy conser
tion, but complicates the search for the universal scaling
lation between black hole mass and parameter-space dist
to the critical solution. The system behaves as if the sc
field is within a finite sized box, and so when a black ho
forms all of the scalar field initially present eventually fal
into the hole.M (p) is therefore trivially a function of how
©2000 The American Physical Society12-1
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FRANS PRETORIUS AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 124012
the initial energy distribution scales withp.
In Sec. III we present results from the evolution of seve

families of initial data, focusing on critical behavior. To o
tain g, we follow the work of Garfinkle and Duncan@12#,
and examine the scaling of the maximum value attained
the curvature scalarR in the subcritical regime. We als
study the effect that a central point particle~characterized by
the angle deficit of the spacetime! has on the critical solution
As expected, we find that the more massive the point p
ticle, the smaller the initial amplitude of the scalar field th
gives rise to the critical solution. One might thus expect
have a one-parameter family of critical solutions with
overall scale related to the particle mass. Itis surprising,
therefore, that the scalar field always grows to thesameam-
plitude in a near-critical evolution. A phase shift in centr
proper time is the only qualitative difference attributable
the mass of the particle. At the end of Sec. III we study
interior structure of black holes that form, giving eviden
that a ‘crushing’ spacelike curvature singularity forms with
the event horizon. Thus the interior structure is significan
different from the BTZ solution, which has constant curv
ture ~though the BTZ singularity is still crushing for ex
tended objects falling into it!.

II. THE EINSTEIN KLEIN-GORDON SYSTEM IN ADS
SPACETIME

We solve the Einstein field equations in 3 spacetime
mensions with cosmological constantL[21/l 2, coupled to
a massless Klein-Gordon~KG! field

Rab2
1

2
Rgab1Lgab5kTab , ~1!

where the stress-energy-momentum tensor for the KG fi
f is @13#

Tab5f ;af ;b2
1

2
gabf ;cf

;c. ~2!

Covariant differentiation is denoted by a semicolon, while
comma denotes partial differentiation. We only consider c
cularly symmetric configurations of a minimally couple
scalar field in this paper. Hence,f satisfies the wave equa
tion

hf5f ;a
a 50, ~3!

and in coordinates (t,r ,u) adapted to the symmetry, chara
terized by the Killing vector]/]u, f(r ,t) is only a function
of the radial coordinater and time coordinatet.

One of the many peculiar features of AdS spacetime is
causal structure. In particular, null infinityI is timelike, and
any observer living in AdS spacetime can send and rec
lightlike signals to and fromI in finite proper time@14#.
These properties of AdS make it challenging to deal w
numerically, as the scalar field traverses the entire unive
on a local dynamical time scale. Also, as we will show
Sec. II A, the only regular boundary conditions on the fieldf
atI are Dirichlet conditions, so we cannot ignore the unus
12401
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causal structure of the spacetime by, for instance, plac
out-going radiation boundary conditions onf at a finite
proper distance from the origin. For these reasons, we a
a coordinate system in which the metric takes the form

ds25
e2A(r ,t)

cos2~r / l !
~dr22dt2!1 l 2 tan2~r / l !e2B(r ,t)du2. ~4!

A(r ,t) andB(r ,t) are arbitrary functions of (r ,t), and it is
straightforward to show that whenA5B50 the above met-
ric describes AdS spacetime; i.e., it is a solution to Eq.~1!
with Tab50. Notice that, in this metric, radial null geodesic
travel with constant coordinate speeddr/dt561, andI is at
r 5p l /2. The metric is singular atI, but we can place regu
lar boundary conditions onA andB there, so that the space
time is asymptotically AdS. Also, if we interpretu as a pe-
riodic angular variable then the above metric has the cor
topology to represent a BTZ black hole, as the topologi
censorship theorems require that the boundary at infi
share the topology of any event horizon that may exist in
interior of the spacetime@15#. However, for the nonrotating
collapse described in this paper,u has no dynamical signifi-
cance.

Defining

F~r ,t !5f ,r , P~r ,t !5f ,t ~5!

and using units wherek54p, we get the following set of
equations upon expanding Eqs.~1!–~3! with the metric~4!:

A,rr 2A,tt1
~12e2A!

l 2 cos2~r / l !
12p~F22P2!50, ~6!

B,rr 2B,tt1B,r S B,r1
2

l cos~r / l !sin~r / l ! D
2~B,t!

21
2~12e2A!

l 2cos2~r / l !
50, ~7!

B,rr 1B,r S B,r2A,r1
11cos2~r / l !

l cos~r / l !sin~r / l ! D2
A,r

l cos~r / l !sin~r / l !

2A,tB,t1
~12e2A!

l 2cos2~r / l !
12p~F21P2!50, ~8!

B,rt1B,tS B,r2A,r1
cot~r / l !

l D
2A,tS B,r1

1

l sin~r / l !cos~r / l ! D14pFP50,

~9!

and

@ tan~r / l !eBF# ,r2tan~r / l !@eBP# t50. ~10!

Within the context of the 311, or ADM, formalism, Eqs.
~8! and ~9! are the Hamiltonian and momentum constrain
2-2
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GRAVITATIONAL COLLAPSE IN 211 DIMENSIONAL . . . PHYSICAL REVIEW D 62 124012
respectively, while Eqs.~6! and ~7! are combinations of the
evolution and constraint equations. Equation~10! is the wave
equation for the scalar field. There are two unknown geom
ric variables—A(r ,t) andB(r ,t); hence one needs to use
least two of the four equations~6!–~9! to dynamically deter-
mine the geometry. In this work, we have chosen to use E
~6! and~7! to updateA andB. As is common practice in suc
a ‘‘free evolution scheme,’’ we can then use residuals of
constraints~8! and~9! as one way of estimating the level o
error in our solution.

With regards to initial conditions, we choose to free
specifyF(r ,0) andP(r ,0) ~we haveto specify two scalar-
field degrees of freedom at eachr ), as well asB(r ,0) and
B,t(r ,0). A(r ,0) andA,t(r ,0) are then fixed from the con
straint equations~see Sec. II B for more details!. This proce-
dure is clearly somewhatad hoc, but has worked very well in
our study.

The Ricci scalar of this spacetime is

R5
4p cos~r / l !2

e2Al 2
~F22P2!2

6

l 2
. ~11!

The Weyl tensor is zero, and other nonzero curvature sca
can be expressed as polynomial functions ofR.

A. Regularity conditions

We require that the solution for our dynamical variab
A(r ,t),B(r ,t),F(r ,t), and P(r ,t) be regular at the origin
r 50 and atI, r 5p l /2. The field equations then essentia
dictate the allowed boundary conditions on these variab
By inspection of Eqs.~6!–~10! we obtain the following con-
ditions. At r 50,

A,t~0,t !5B,t~0,t !, ~12!

A,r~0,t !50, ~13!

B,r~0,t !50, ~14!

F~0,t !50, ~15!

P ,r~0,t !50 ~16!

and atr 5p l /2

A~p l /2,t !5A,r~p l /2,t !5A,t~p l /2,t !50, ~17!

B,r~p l /2,t !50, ~18!

F~p l /2,t !50, ~19!

P~p l /2,t !50. ~20!

Note that condition~16! on P(0,t) is a direct consequence o
the defining relation forP(r ,t) ~5!, and the regularity con-
dition for F(0,t) ~15!. Also note that we have multiple con
ditions for B at the outer boundary, and forA and B at the
origin. We have chosen to implement the Neumann con
tions forA andB at the origin and the Dirichlet condition fo
12401
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A at I, and then to monitor the other conditions as a cons
tency check during evolution. Conditions~17!–~20! ensure
that the spacetime is asymptotically AdS.

It is interesting that the field equations enforce Dirich
boundary conditions onF andP, effectively preventing us
from implementing out-going radiation boundary conditio
at I ~if we wanted to let the field ‘‘leak out of the universe
when it reachesI). To see this more clearly, consider th
energy fluxesTabh

ahb and Tabl
al b along outgoing and in-

going null vectorsl a andha, respectively, normalized so tha
l aha521,

l a5
cos~r / l !

A2eA F ]

]t
1

]

]r G
a

, ~21!

ha5
cos~r / l !

A2eA F ]

]t
2

]

]r G
a

. ~22!

A straightforward calculation using Eq.~2! gives

E65
cos~r / l !2~F6P!2

2e2A
, ~23!

whereE1 is the influx andE2 the outflux. Thus no-outflux
and -influx boundary conditions can be obtained in the us
way by differentiatingF6P with respect tor and t in turn,
and utilizing the fact that, from Eq.~5!, F ,t5P ,r :

F ,r6F ,t50, ~24!

P ,r6P ,t50. ~25!

Here, the plus sign corresponds to no influx, and the mi
sign to no outflux. However, at the outer boundary, regul
ity forcesF(p l /2,t)5P(p l /2,t)50, and hence

F ,t~p l /2,t !5P ,t~p l /2,t !50, ~26!

so there is no distinction between the no-influx and n
outflux condition. The only situation consistent with bo
conditions is thatno flux crosses the outer boundary in eith
direction. Even when we try to derive no outflux and -influ
conditions with the asymptotic behavior off factored out,
namely lettingf5cos2(r/l)f̂ and placing boundary condi
tions on f̂, we find that the wave equation onI cannot
distinguish between no-outflux and no-influx condition
Also, in early experiments we were unable to obtain sta
numerical evolution with the no-influx boundary condition
~24! and~25! applied at a finite proper circumference, corr
sponding tor ,p l /2. The Dirichlet boundary condition atI
is also consistent with the behavior of a massive scalar fi
in an AdS background, where an infinite effective-potent
barrier prevents any of the field from reachingI, regardless
of how small the mass is. Of course, all of this does not m
that an effective outgoing radiation condition cannot
implemented for the massless field in asympotically A
spacetimes. In any case, in the context of the current stu
2-3
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we would be apt to view such a condition as a numeri
convenience, rather than being of any intrinsic physical
terest.

B. Initial conditions

For initial conditions att50, we are free to specify the
scalar field gradientsF(r ,0) andP(r ,0), the metric function
B(r ,0) and its time derivativeB,t(r ,0). We then numerically
solve forA(r ,0) andA,t(r ,0) using the Hamiltonian and mo
mentum constraints~8! and~9!. The freedom that we have t
specify B(r ,0) amounts to a choice of what the proper c
cumference@ l tan(r / l )eB# and its initial time derivative are
as a function of the radial coordinater. That we do not have
the freedom to chooseB for all time is a consequence of th
gauge condition that radial lightlike signals travel with un
coordinate velocity. For simplicity we setB(r ,0)5B,t(r ,0)
50.

We believe~though are unable to prove so!, that the set of
conditions just described is capable of generating all poss
e
g,

s
—

a-
p

in

r
S

g
th
cit

k-
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initial data, which is regular and free of trapped surfaces,
the minimally coupled scalar field in asymptotically Ad
spacetime~in 211 dimensions!. The presence of trapped su
faces att50 is incompatible with the conditions onB(r ,0)
and B,t(r ,0)—in our coordinate systemdr/dt51 along an
outgoing null curve, and hence a nonzeroB(r ,0) and/or
B,t(r ,0) is required to describe nonpositive outward null e
pansion. However, in this study we are only interested
initial data thatis free of trapped surfaces, so the conditio
on B(r ,0) andB,t(r ,0) are not restrictive.

For the initial scalar field profile,f(r ,0), we consider
three families of functions—a Gaussian curve raised to
nth power

f~r ,0!5Pe[( r 2r 0)/s] 2n
, ~27!

a ‘‘kink’’ ~based on an arctan function! for which F
5]f/]r is
F~r ,0!5
22PAs cos~r / l !sin~r / l !$2 l sin~r / l !cos~r / l !12~r 2r 0!@122 sin~r / l !2#%e2(r 2r 0)2/s2

p l @s sin~r / l !4 cos~r / l !41~r 2r 0!2#
~28!
-
ss

t

e

,
s,
and a family of harmonic functions2

f~r ,0!5P cos2~rn/ l !, ~29!

whereP, r 0 , s, andn are constant parameters. Then, d
pending upon whether we want to model initially ingoin
outgoing or static fields, we setP(r ,0)5F(r ,0), P(r ,0)
52F(r ,0) or P(r ,0)50, respectively. Note that thi
method cannot give purely ingoing or outgoing pulses
P(r ,t)56F(r ,t) is not an exact solution to the wave equ
tion, and a little bit of energy always propagates in the o
posite direction to that desired.

As noted previously, we setB(r ,0)5B,t(r ,0)50. The re-
maining geometric variables,A(r ,0) andA,t(r ,0) are then
computed from the Hamiltonian and momentum constra
~8! and ~9!. We integrate the constraints outwards fromr
50, settingA,t(0,0)50. For the most part we will conside
the collapse of a scalar field initially exterior to empty Ad
space. This corresponds to settingA(0,0)50. However, in
Sec. III B 2, we will briefly consider the effect of collapsin
the field in the presence of a point particle at the origin,
calculation of which involves introducing an angle defi
into the spacetime. From the metric~or by examining the
parallel transport of a vector aboutr 50 in an infinitesimal

2We call these functions ‘‘harmonic’’ because without bac
reaction and for initially static configurations@P(r ,0)50# the exact
solution to the wave equation is periodic in time.
-

-

ts

e

loop!, the angle deficitv at t50 is related toA(0,0) as
follows:

v52p~12eA(0,0)!. ~30!

Of more interest is the relationship betweenA(0,0) and the
mass of the point particleM pp . The remainder of this sec
tion is devoted to finding this relationship, and in the proce
we will define a general mass aspect functionM (r ,t) for the
spacetime.

When the scalar field gradients identically vanish~which
they do atI, and, to an excellent approximation, atr 50 for
the initial data that we consider!, the Hamiltonian constrain
has the simple solution

e2A5
k

k2cos2~r / l !
, ~31!

wherek is a constant of integration. We can relatek to the
BTZ mass parameterM of the spacetime by appealing to th
usual form in which the BTZ solution is expressed:

ds252~2M1 r̄ 2/ l 2!d t̄21
1

2M1 r̄ 2/ l 2
dr̄21 r̄ 2du2.

~32!

M521 is AdS spacetime,M>0 are black hole solutions
andM,0,MÞ21 are spacetimes with conical singularitie
2-4
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GRAVITATIONAL COLLAPSE IN 211 DIMENSIONAL . . . PHYSICAL REVIEW D 62 124012
or point particles at the origin~the range ofr̄ is from 0 to`).
For general~nonvacuum! solutions let us define the mas
aspectM ( r̄ , t̄ ) as follows:

u¹ r̄ u2[2M ~ r̄ , t̄ !1 r̄ 2/ l 2. ~33!

Then, in our coordinate system~4!, M (r ,t) takes the follow-
ing form:

M ~r ,t !5e2(B2A)$e2A tan2~r / l !1 l 2 sin2~r / l !@~B,t!
2

2~B,r !
2#22l tan~r / l !B,r2sec2~r / l !%. ~34!

Using the field equations~6!–~9! it is straightforward to
show thatM is a conserved quantity in regions of the spa
time whereF andP are zero~in particular atI). At t50,
whereB5B,t50, we can substitute Eq.~31! into Eq.~34! to
find k:

k5
1

11M
. ~35!

WhenM>0 our metric~4! with the chosen initial conditions
is singular at the horizon of an empty BTZ spacetime, but
metric turns out to be well behaved att50 for initial data
that does not contain trapped surfaces.3 Finally, from Eqs.
~31! and~35! the contributionMPPof the point particle to the
mass of the spacetime is

MPP512e22A(0,0). ~36!

C. Numerical scheme

We solve the set of equations~6!, ~7!, and ~10! by con-
verting them to a system of finite difference equations o
uniform coordinate grid using a two-time level Cran
Nicholson scheme. We also add Kreiss-Oliger style diss
tion @16# to control high-frequency solution components; th
is crucial for the stability of our method.

At first, we used standard 2nd order accurate 3-point fin
difference stencils for the spatial derivatives at each ti
level—centered-difference operators at interior points
forward-difference operator at the inner boundary, and
backward-difference operator at the outer boundary. Ho
ever, we found that these operators excited a small instab
in the metric variables in the vicinity of the outer bounda
The resultant ripples would propagate inwards and ca
problems in situations where black hole formation was i
minent. The primary source of these ripples was trunca
error in the solutionA exciting small oscillations inB. Spe-
cifically, A acts as a source term in the evolution equation
B ~7!, andB happens to be very sensitive to small errors inA

3However, because of our choice of gauge, we know that
coordinate system must become singular within one light-cros
time ~LCT! of the formation of a black hole. The event horizon is
null hypersurface traveling outward with unit coordinate veloci
thus the coordinate distance between the event horizon andI will
go to zero within a timet5p l /2.
12401
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near the outer boundary@essentially since the leading term o
A, when considered as a power series in cos2(r/l), cancels
with the spatial derivatives ofB in Eq. ~7! initially, and so
higher order, less accurately known terms ofA are respon-
sible for B’s ‘‘acceleration’’#. To reduce these problems w
now use a 5-point, 4th order accurate spatial derivative
erator at interior grid points, and 6-point 4th order backwa
and forward operators near boundaries that have the s
truncation error as the interior operator. Also, we find th
using the momentum constraint~9! to solve forA at the next
to last grid point is necessary to obtain convergence of
solution as we go to finer spatial resolution~for some as yet
unknown reason the evolution equation was exciting a gro
ing mode on finer grids at that point!. The program to per-
form the evolution was written inFORTRAN 77 and RNPL

~Rapid Numerical Prototyping Language@17#!; animations
and pictures from several evolutions can be obtained fr
our website@18#.

D. Detecting black holes and excising singularities

To detect black hole formation we search for trapped s
faces, defined to be surfaces where the expansion of outg
null curves normal to the surface is negative. If cosmic c
sorship holds, then trapped surfaces are always found wi
the event horizon of a black hole, though at the end of
simulation we can trace null rays backwards fromI to con-
firm this. In our coordinate system the condition for a surfa
to be trapped is

11 l cos~r / l !sin~r / l !~B,r1B,t!,0. ~37!

We estimate the mass of the black hole by monitoring
proper circumference 2p l tan(r AH / l )eB(r AH ,t) of the appar-
ent horizon~the outermost trapped surface!, and use the re-
lationship between BTZ black hole mass and event hori
circumference@Eq. ~32!—the horizon is atr̄ 5AMl #:

M'tan2~r AH / l !e2B(r AH ,t). ~38!

If all of the scalar field is absorbed by the black hole duri
evolution, then the estimated mass should eventually bec
equal to the initial, asymptotic mass of the spacetime
given by Eq.~34! in the limit r→p l /2.

As we will show in Sec. III C, shortly after an appare
horizon~AH! forms, we find what appears to be a spacel
curvature singularity forming within the AH. If we use
straightforward evolution scheme, the metric and scalar fi
variables quickly diverge, and any given simulation just
quickly breaks down. At the same time, we would like
probe the structure of the spacetime approaching the sin
larity, as well as to continue to follow the evolution outsid
the AH as long as our coordinate system allows~approxi-
mately one light-crossing time!. To accomplish this, we have
implementedsingularity excision, a technique fundamentally
motivated by the black-hole-excision strategy first propos
by Unruh @19#.

Our excision strategy is as follows. We monitor the ma
nitude of the metric variables, and when they grow beyon

e
g

,

2-5
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certain threshold4 at any point we excise that point plus
small buffer zone~of 4 to 6 grid points! on either side of it.
~Note that the nonexcised region of the grid will no longer
contiguous if the excised point is further away from t
original grid boundaries than the size of the buffer zone!. At
the new grid boundaries exterior to the excised region,
continue to solve for the metric and field variables using
evolution equations, but replace all centered-difference
erators with forward and backward-difference operators
appropriate, so that the solution is not ‘‘numerically infl
enced’’ by the excised grid points. Physically, the soluti
that one would obtain within the causal future of the excis
zone is meaningless, so we also remove this region of
grid during subsequent evolution. In our coordinate syst
this is easy to implement, as radial null curves travel at c
stant, unit coordinate velocity. Thus, if our grid spacing
Dr , after an amount of timeDt5Dr we expand the excise
region by 1 grid point on either side. Also, we continue
monitor the metric variables on the remainder of the gr
and when they grow beyond the threshold at any other po
we expand the excised region to include those points~and a
buffer!. Thus the excised piece of the grid is always contig
ous. In principle, it would not be difficult to keep track o
multiple excised zones, though we did not find it necess
to do so for the interior solution shown in Sec. III C—
single zone is sufficient to obtain a good view of all of t
interior up to the putative spacetime singularity. We ha
tested the singularity excision scheme by excising a li
cone from a solution that remains regular, and verifying t
the excised solutiondoesconverge to the regular solution a
Dr decreases.

In summary, we briefly clarify the difference between s
gularity and black hole excision. First, notice that we ne
use trapped surfaces to trigger the excision of a region of
grid. Thus, our code could, without modification, excise n
ked and coordinate singularities. The boundary of the
cised region is always null or spacelike, so the scheme m
not be able to distinguish between timelike and null cur
ture singularities. However, if a timelike singularity was e
countered, it may still be possible to deduce its nature
examining the curvature invariants just exterior to the
cised surface. For example, suppose during evolution a li
like region was excised, and curvature invariants started
verging as one approached the initial excised point,
remained relatively ‘‘small’’ and finite just outside the futu
light cone of the excised point, then one would have reas
able evidence for a timelike singularity. Second, with t
singularity excision scheme, we excise only the region of
grid to the causal future of the singularity. In the case o
black hole spacetime, this results in a more complete view
the spacetime than what one would obtain with the stand
black hole excision strategy~which would have in Fig. 19,
for example, excised the region of the spacetime labeled ‘
gion of trapped surfaces,’’ and everything to the left of it!.

4For a threshold we choose a number that is sufficiently large
we are fairly certain~from past experiments! that if any variable
grows beyond the threshold then a crash is imminent.
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III. RESULTS

In this section we discuss results from the evolution
several sets of initial data, focusing on the threshold of bla
hole formation. For convenience we setl 52/p so thatI is at
r 51, though the results presented here are valid for
nonzero, finitel, through an appropriate rescaling of the me
ric variables and scalar field gradients. Specifically, consi
the following coordinate transformation:

r̃ 5
r

l
, t̃ 5

t

l
, ~39!

with r̃ defined on the range@0,p/2#. Then it is easy to see
that the l dependence cancels from all equations~6!–~10!

when expressed in terms ofr̃ and t̃ . So, given a solution
A( r̃ , t̃ ), B( r̃ , t̃ ), F( r̃ , t̃ ), and P( r̃ , t̃ ) to the rescaled field
equations we can find a corresponding solution for anyl by
inverting the transformation~39! @see also Eq.~5!#:

A~ r̃ , t̃ !→A~r / l ,t/ l !,

B~ r̃ , t̃ !→B~r / l ,t/ l !,

F~ r̃ , t̃ !→ lF~r / l ,t/ l !,

P~ r̃ , t̃ !→ lP~r / l ,t/ l !, ~40!

with r ranging from 0 top l /2. Notice that the initial energy
density, being proportional to (F21P2), scales asl 2, so
there is no straightforward method to extrapolate a solut
to the limit of zero cosmological constant, wherel→`.

We present results from 4 families of initial data: an i
going Gaussian@~27! with n51#, an ingoing squared Gauss
ian @~27! with n52], an ingoing kink ~28!, and a time-
symmetric,n51, harmonic function~29!. In each case we
vary the amplitudeP when tuning to the black hole
threshold,5 and for the first three families we have chos
s50.05 andr 050.2. Except in Sec. III B 2 where we briefl
study collapse onto a point particle, we have setA(0,0)50
in all cases, corresponding to angle deficit-free spacetim
The 3 ingoing families were simulated using a finest nume
cal grid of size 4096 points, with a Courant factor of 0.
thus 40960 time steps are required per light-crossing t
~for some of the critical solutions presented in the next s
tion a grid size of 8192 points was used with a Coura
factor of 0.2! For the time-symmetric cos2 function we do
not need as many points to get good convergence res
~because of the milder field gradients!, so that the highes
resolution required for that family was a 1024-point grid.
fact, we get acceptable results even after 50 light-cross
times with 1024 points for the cos2 data, whereas the mor
compact ingoing families start having noticeable errors~es-

o 5Though we did check~for the Gaussian! that we get the same
critical solution when tuning the width, keeping the amplitu
fixed.
2-6
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GRAVITATIONAL COLLAPSE IN 211 DIMENSIONAL . . . PHYSICAL REVIEW D 62 124012
timated from convergence tests! in near-critical evolution af-
ter 3–4 LCT’s with 4096 points.

Figure 1 shows the initial scalar field gradientF(r ,0) of
typical amplitude for each of the families. Figure 2 shows
metric function A(r ,0) for a Gaussian~the other families
have similar shapes forA), and for later reference we sho
how A(r ,t) and B(r ,t) have evolved att50.6. In order to
provide the reader with some feeling for the dynamics o
‘‘typical’’ evolution, Fig. 3 shows a ‘‘space-time’’ plot of
the evolution of a sample Gaussian withP50.1302 that does
not form a black hole within 4 LCT’s~and it should not, as
the asymptotic mass of the spacetime is21.06231022).

A. Parameter space survey, varyingP

Figures 4 and 5 show plots of the asymptotic massM (P)
of the spacetime, as a function of the amplitudeP, about the
region M50 of parameter space, for the guassian and h

FIG. 1. F(r ,0)5f ,r(r ,0) for each family of initial data studied
The three compact families are initially ingoing, thusP(r ,0)
5F(r ,0), while the harmonic function is time symmetric wit
P(r ,0)50 (l 52/p, soI is at r 51).

FIG. 2. A(r ,0) ~left-most figure! for a Gaussian withP
50.133051, as obtained by solving the Hamiltonian constraint w
B(r ,0)50. This amplitude is used as an example in Sec. III C wh
we discuss the singularity structure, so for reference we also s
A(r ,0.6) andB(r ,0.6). Notice in particular how large and negativ
B is towards the origin, indicating that in this region of the grid w
are looking at very small scales in the problem@the proper circum-

ference element isr̄ 5 l tan(r / l )eB#.
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monic families. The second curve on each plot shows
initial mass estimate of a black hole~if one formed during
the 2 LCTs of the Gaussian evolution, or 50 LCTs of t
harmonic evolution! at the time an apparent horizon is fir
detected. For these amplitudes, Figs. 6 and 7 show the tit
and coordinate positionr of apparent horizon formation
Qualitatively, the features of corresponding plots for the ki
and squared Guassian~also evolved for 2 LCT’s! are very
similar to those for the Gaussian, so for brevity we do n
show them. To within the resolution of our simulation, th
final black hole mass always approaches the asympt
mass—in other words, we donot detect any remnant scala
field ~black hole ‘‘hair’’!. See Fig. 8 for typical examples
Due to the ‘‘reflecting’’ boundary conditions at timelikeI,
this is not too surprising, although one might have expec
something similar to a low amplitude, long wavelength, p
riodic scalar remnant. The scalar field also tends to zero
late times along the event horizon, though in that region
the spacetime our results are not good enough to obtain
ful decay exponents.

h
n
w

FIG. 3. A plot ofF(r ,t), the spatial gradient of the scalar field
for sample Gaussian initial data withP50.1302. In this case, a
black hole isnot formed. This plot clearly demonstrates the natu
of the Dirichlet boundary conditions onf at I (r 51 in these
coordinates!. Even though a black hole does not form, back react
is significant here—notice the nonlinear interaction between in
ing and outgoing components of the field: when the ingoing a
outgoing pulses cross, the ingoing component is amplified, whil
the same time the outgoing component is supressed. The effe
most apparent on this plot at aroundt53 near the outer boundary
and note that the initial outgoing component of the field is qu
small and not visible in the picture.
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FRANS PRETORIUS AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 124012
Figure 7 for the harmonic family shows almost chao
dependence of the time of AH formation as a function
amplitude, asM (P) decreases towardsM50. There is evi-
dence that this behavior is also present for the other fam
of initial data, but we have not run those simulations at
necessary resolution to giveconvincingevidence. What ap-
pears to be happening is the following. First of all, it is mo
‘‘difficult’’ for a distribution of the scalar field correspond
ing to M*0 to form a black hole—the distribution needs

FIG. 4. Asymptotic mass as a function of pulse amplitude for
initially ingoing Gaussian~27! of width 0.05, centered atr 50.2 in
a cosmology withl 52/p. For the amplitudes that formed an appa
ent horizon within the simulation time oft52, the mass estimate a
time of AH formation is also shown~it is not clear in the figure but
this curve does not touch the asymptotic mass curve!. The dashed
vertical line, labeled byP!, is the critical amplitude—see Sec
III B.

FIG. 5. Asymptotic mass as a function of pulse amplitude
the time-symmetricn51 harmonic function~29!. For the ampli-
tudes that formed an apparent horizon within the simulation time
t550, the mass estimate at time of AH formation is also sho
The dashed vertical line, labeled byP!, is the critical amplitude as
discussed in Sec. III B. Notice the discontinuity of the initial ma
estimate curve just to the right ofP!, and compare the Gaussia
case in Fig. 4. The reason for the sudden jump, and difference f
the Gaussian case, is that aroundt51 for those amplitudes nearP!

an apparent horizon is close to forming in two locations; to the
of the discontinuity it first forms at larger radii, to the right
smaller~see Fig. 7!.
12401
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be compact and centrally condensed. Thus, when we
plode a relatively ‘‘space-filling’’ distribution withM small
~and positive! a black hole will not form on the first bounc
through the origin. However, because of the boundary c
ditions at infinity, the scalar field will reflect offI, and, as
the field has evolved through a strong field~nonlinear! re-
gime in the interior, the distribution of energy will be differ
ent on the subsequent implosion. Moreover, because of
strong gravitational field, the scalar field has a tendency
spend more time in the vicinity of the origin on averag
preventing it from dispersing throughout the spacetime.
one may expect that if the asymptotic massM is positive, a
region of phase space will eventually be traversed dur
evolution, where it is favorable for a black hole to form, n
matter how near zero isM. However, due to the chaoti
nature of the curve in Fig. 7, we cannot extrapolatet0(M ) to
t05` in order to directly test this conjecture.

B. The critical regime

To search for critical behavior in the gravitational co
lapse of the four families of initial data introduced in th
previous section, we vary the amplitudeP in each case to

n

r

f
.

m

ft

FIG. 6. The initial coordinate position~r! and time~t! of AH
formation for the same set of amplitudes as in Fig. 4 for the Gau
ian family ~if an AH formed within t52).

FIG. 7. The initial coordinate position~r! and time~t! of AH
formation for the same set of amplitudes as in Fig. 5 for the h
monic family ~if an AH formed within t550).
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GRAVITATIONAL COLLAPSE IN 211 DIMENSIONAL . . . PHYSICAL REVIEW D 62 124012
find the threshold of black hole formation. Ideally, we wou
simply seek the amplitudeP! where a black hole forms fo
P.P!, while for P,P! the scalar field bounces aroun
forever without collapse. Unfortunately, such a search is
practical; as mentioned in the previous section we do
have the computational resources to follow compact ini
data for numerous LCT’s, and, even with the cos2 data, we
do not see any trends that would allow us to conclude tha
a black hole has not formed after, say,n LCT’s, then it
probably will not form at all. Thus, what we do instead
tune to the threshold of black hole formation on the init
implosion; i.e., we base our search on whether or not a b
hole formsbefore any initially out-going radiation reflects
off I and then falls in, contributing to the collapse. Th
point of parameter space is labeled asP! in Figs. 4 and 5,
and coincides with the place where the initial mass estim
dips to near zero~though for the harmonic data—as me
tioned in the caption of Fig. 5—for amplitudes a little larg
thanP! an apparent horizon first forms further out, engulfi
the one that is about to form at the smaller radius; see
Fig. 7!.

FIG. 8. Black hole mass estimates as a function of time
Gaussians withP50.133051~left! andP50.1340~right!. The hori-
zontal dashed lines denote the asymptotic masses of the space
For the less massive pulse on the left, the apparent horizon fo
after the initial implosion when the field is mostly outgoing, and t
energy gradually accretes onto the black hole. The more mas
pulse on the right forms a black hole on the initial implosion, ca
turing almost all of the scalar field energy except for a small pi
that initially traveled outwards fromt50. This piece eventually
bounces offI then falls into the black hole. Note that the small
amplitude is less than the critical valueP! as defined in Sec. III B,
while the larger amplitude is supercritical.

FIG. 9. f ,Z(Z,T) @see Eq.~42! for the definition ofZ and T
coordinates#, for Gaussian initial ~27! data with P
50.133059219,s50.05, n51, and r 050.2 in an l 52/p cos-
mology. This function off is scale invariant in the critical regime
which unfolds roughly betweenT'8 andT'19 ~though, interest-
ingly, the scale invariance seems to persist for longer in the sc
field than the geometric quantities—see Figs. 11 and 12!.
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Near this threshold, it turns out that shortly after the init
implosion, the scalar field and geometry close to the ori
evolve towards a universal, continuously self-similar~CSS!
form. We remind the reader that a function which is CS
depends only on a single scale-invariant variablex. Now, the
coordinates (r ,t) in which we solve the equations of motio
arenot well-adapted to self-similarity. However, after som
experimentation we found that a natural scale-invariant in
pendent variable in our system is

x5
r̄

tc
, ~41!

where r̄ 5 l tan(r / l )eB is proportional to the proper circum
ference of anr 5constant ring, andtc is proper time as mea
sured by the central (r 50) observer. By convention,tc is
negative and increases to the accumulation pointtc

![0. To
better visualize the CSS behavior, we also transform to lo
rithmic coordinates

Z[ ln~ r̄ !, T[2 ln~ tc!. ~42!

A CSS function f (x)5 f (eZ1T) then looks identical to a
wave propagating to the left with unit velocity asT increases
to `.

Figures 9–12 show scale-invariant functio
f ,Z(Z,T), f ,ZZ(Z,T) ~the second derivative better demo
strates the ‘‘wave nature’’ of the critical solution!, the mass
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FIG. 10. f ,ZZ(Z,T), i.e., the derivative of the function plotted i
Fig. 9.

FIG. 11. The mass aspectM (Z,T) for the same solution shown
in Fig. 9. ThatM becomes slightly nonmonotonic at late times
probably due to numerical error—this is a supercritical evolutio
and the metric variables are already growing rapidly aroundT
519.
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FRANS PRETORIUS AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D62 124012
aspectM (Z,T), and (r̄ 2R)(Z,T), for a Gaussian evolution
with P50.133059219, which is ‘‘close’’ to the critical solu
tion @ ln(P2P!)5217.5; see Sec. III B 1#. In principle, the
closer to criticality we tune the initial pulse, the longer t
scale-invariant behavior should persist in logarithmic spa
In practice, of course, finite computational precision and g
resolution prohibits fine-tuning to arbitrary accuracy—t
figures plotted here show data which is about as close
criticality as we can get with 8192 grid points. In terms
the mass aspect in Fig. 11, one can surmise that the cri
solution is~locally! a kinklike transition from the AdS value
M521 to a zero mass state; though, interestingly enou
the value of the curvature scalarR at the origin diverges as
1/tc

2 as one approaches the accumulation point~we will dis-
cuss this in more detail below; also, bear in mind that in F
12 we are plottingr̄ 2R, not R itself!. This behavior of the
mass aspectsuggeststhat the transition at the critical
point is type II—in other words, there is no lower, positiv
bound on the mass of black holes that can be formed by
scalar field.

Figure 13 demonstrates the universality of the solution
the critical regime. Here we plotf ,ZZ ~as in Fig. 10 for the
Gaussian! at the same timeT for each family in a near-
critical evolution. The harmonic function appears to hav

FIG. 12. The Ricci scalar multiplied byr̄ 2 ~a scale-invariant
combination in the critical regime! for the same solution shown in
Fig. 9.

FIG. 13. A composite of the scale-invariant functionf ,ZZ(Z,T)
for the near critical solutions of the four families of initial da
considered, demonstrating universality of the solution in the crit
limit. The data is plotted atT513 ~compare Fig. 10!. The harmonic
profile appears somewhat different than the others due to a sli
effect, as explained in the text~also see Figs. 14 and 15!. See Fig.
16 for the values ofP! for each family.
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slightly larger amplitude, but, as we shall now argue, this
apparently just a slicing effect. As mentioned in Sec. II
because of the gauge that we use, and since we choo
solve forA(r ,0) andA,t(r ,0) using the constraint equation
~8! and~9!, the only slicing freedom we have remaining is
the initial conditions forB(r ,0) andB,t(r ,0). OnceB(r ,0)
andB,t(r ,0) are specified, we have no control over the ma
ner in which the slice evolves. For the three compact, in
ing families, the critical behavior develops at times rangi
from t50.25 to t50.30, and because of the similar initia
spatial distribution of the energy densities, the evolution h
proceeded along very similar slices. On the other hand,
harmonic data approaches the critical solution at about
51.25, at which time the slice has evolved quite differen
from the other three families near their respective criti
times ~we note, however, that by plotting as a function ofT
we do ‘‘match’’ the slices at the origin!. To demonstrate tha
the slices have evolved differently, we plot in Fig. 14 t
normalized inner product between]/]tc ~in an r̄ ,tc coordi-
nate basis! and¹tc for the 4 families, at the same time use
in Fig. 13. This inner product is the Lorentz gamma factorW

~assuming the vectors are timelike!, betweenr̄ 5constant ob-
servers, and those moving normal to the hypersurfacetc
5constant

W5
u~]/]tc!

a¹atcu
u]/]tcuu¹tcu

. ~43!

This quantity will be the same along identical slices of
spacetime~since such slices will have the same normal ve
tors!; thus the harmonic solution slice is clearly different
one moves away from the origin. Another interesting feat
of this plot for the harmonic data is that it shows gravit
tional collapse occurring a short distance away from the
folding critical behavior, since, to the right of the peak, t
vector]/]tc has become spacelike~equivalently the surface

l

ng

FIG. 14. The Lorentz gamma factor W~43! between r̄
5constant observer worldlines and those traveling normal to
hypersurfacetc5constant, atT513 for the 4 near-critical solutions
as in Fig. 13. The difference between the three initially ingoi
families and the harmonic one indicates that we are looking at
fering slices of spacetime as we move away fromr 50. In fact, the
discontinuous peak ing for the harmonic solution at aroundZ5

210.2 shows that ther̄ 5constant surface has become spacelike
the right of this point, indicating a region undergoing gravitation
collapse.
2-10
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GRAVITATIONAL COLLAPSE IN 211 DIMENSIONAL . . . PHYSICAL REVIEW D 62 124012
r̄ 5constant has become spacelike—see the discussion o
singularity structure in Sec. III C, and in particular Fig. 20!.
At this point in parameter space for the harmonic funct
there is a lot more mass in the spacetime than that invo
in the critical evolution, and this is causing an apparent
rizon to form at a larger radius~see Figs. 5 and 7!. Presum-
ably, for smaller amplitudes one could tune to a thresh
solution after several light-crossing times, and perhaps t
one would more cleanly uncover the critical solution.

To give more evidence that all the solutions are inde
approaching a universal one in the critical regime, we n
to compare them on a common spacetime slice. In Fig. 15
show the same function of the scalar field as in Fig. 13 tra
formed to a Christodoulou type coordinate system (r̄ ,v),
where av5constant curve is an ingoing null geodesic@20#.
We normalizedv so thatdv5dtc at the origin; i.e.,v also
measures central proper time. Thus comparing solutions
the same v5constant surface removes any slicin
ambiguity.6 As can be seen from the figure, the transform
solutions are all quite similar, though we lose some accur
in the transformation~which is why we have elected not t
use these coordinates in all of the plots in Figs. 9–13!.

1. The scaling exponentg

Another characteristic feature of type II critical behavi
in gravitational collapse is the universal scaling exponeng

6We are grateful to David Garfinkle for suggesting this proced
to us.

FIG. 15. The functionf ,ZZ(Z,v) for the same solutions show
in Fig. 13.v5constant is an ingoing null geodesic, chosen here
intersect the origin atT52 ln tc513 in all cases, and along thi

hypersurface we plot as a function ofZ5 ln r̄. This coordinate sys-
tem completely fixes the spacetime slice along which we are c
paring solutions~at the expense of some loss of accuracy during
transformation!, and gives additional evidence that thereis a uni-
versal critical solution.
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in the relationM5K(p2p!)2g. To measure this relationshi
in the current context, one needs to wait for the system
settle down to a steady-state to ensure that the apparen
rizon is coincident with the event horizon, and hence that
mass estimate~38! gives the correct mass. In AdS, th
boundary conditions atI prevent us from performing this
measurement—initially outgoing radiation that did not co
tribute to the near-critical black hole formation will event
ally reflect off I and pollute our measurement. However,
discussed by Garfinkle and Duncan@12#, in the near-critical
regime~above or belowp!) any quantity with dimensionLq,
whereL is a length scale, should exhibit a scaling relati
with an exponent ofqg. Thus, following those authors, w
find the maximum value attained by the Ricci scalarR at r
50 in subcritical evolution for tc,0. Plots of
maxt,tc

lnuR(0,t)u vs ln(P!2P) for the four families studied is
shown in Fig. 16. SinceR}L22, these figures show that th
scaling exponentg of the 211D AdS Klein-Gordon system
is about 1.260.05.

Notice that the mass aspectM as defined in Eq.~33! is
dimensionless~which is consistent with the scale-invarianc
of M as plotted in Fig. 11!. On the other hand, when we kee
l fixed and varyP, the resulting black hole mass~being pro-
portional tor ah

2 ) has a length scale of 2, so one would expe
the mass-parameter scaling relationship for BTZ black ho
to go asM5K(P2P!)2g, whereg is the same value 1.15
21.25 found above for the scaling ofR. The initial-mass
estimate curves as shown in Figs. 4 and 5do roughly exhibit
this scaling behavior forP.P!.

2. Critical behavior in the presence of a point particle

Here we briefly show how the presence of a point parti
~angle deficit! alters the critical solution. The particle con

e

o

-
e

FIG. 16. The maximum of lnuR(0,t,tc)u as a function of ln(P!

2P) for subcritical (P,P!) evolutions of the 4 families of initial
data considered. These plots indicate that the maximum ofR(0,t
,tc) attained during evolution is proportional to (P!2P)22g, with
g'1.1521.25.
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tributes to the mass of the spacetime~36!, so the more mas
sive the particle~up to the maximumMPP51 in our units!
the less scalar field energy is needed to form a black h
and consequently we have smaller amplitudesP! at thresh-
old. Interestingly, we find thesamecritical solution in all
cases~see Fig. 17 for 3 examples!, the only noticeable dif-
ferences being a systematic phase shift inT related to the
mass of the particle. The kinklike transition in the mass
pect has the same shape as well, but it ranges from the
ticle mass atr 50 to M50. To within the resolution of our
simulations~which was at 2048 grid points in this case! the
critical exponent is also the same, namely, within the ra
g51.15 to 1.25.

3. The critical solution from a CSS ansatz?

Given that we have self-similar behavior in the critic
regime, it would be useful to find the exact solution assu
ing a CSS ansatz. Traditionally this is done by assuming
existence of a homothetic Killing vector.j ~see Ref.@6#!.

Ljgab52gab . ~44!

This implies that in coordinates adapted to the homothetic
so thatj5]/]t, each component ofgab has the forme2t f ,
for some functionf independent oft. Furthermore,LjRab
50, so thatRab and hence the Einstein tensorGab are inde-
pendent oft. This ansatz is not consistent with the fie
equations~1! in the presence of the cosmological constan
we assume that the scalar field is self-similar~see Ref.@25#!,
as we observe in the collapse simulations. Essentially,
scalar field stress-energy tensor~2! would need to decouple
into a piece that exactly cancels the cosmological cons
term plus a scale-invariant term, but we do not think that t
is possible for a minimally coupled scalar field.

It may be that in the 211D AdS system a different sym
metry, such as a conformal Killing vector, would be need
to generate the critical solution. Or perhaps the critical so
tion is only approximately homothetic over a limited regio

FIG. 17. A composite of the scale-invariant functionf ,ZZ(Z,T)
at T513 for the near critical solutions of the Gaussian familys
50.05,r 050.2) with 4 different initial values forA(0,0)—0, 1, 2
and 3, corresponding to the presence of point particles at the o
with masses 0, 0.864665, 0.981684, and 0.997521, respective
see Eq.~36!. It is striking that these solutions only differ by a pha
in T related to the particle masses; they have evolved to the s
amplitude after starting with quite different initial amplitude
~namely,P'0.13,0.078,0.034,0.013 forA50 to 3).
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of the spacetime. Nevertheless, we have not yet foun
symmetry-reduced system that reproduces the observed
cal behavior.7

C. Singularity structure

In all of the solutions that we have studied so far we fi
that after an apparent horizon forms what appears to b
spacelike curvature singularity develops within the horizo
Specifically, the surface of excision along which the met
variablesA andB and, consequently, the curvature invarian
begin to diverge, is spacelike. By itself, demonstrating
spacelike surface of arbitrarily large curvature is not su
cient to prove that the singularity is spacelike—a counter
ample would be the mass-inflation null singularity@22#.8

However, if we extrapolate to the surface of infinite curv
ture, based upon the growth of the Ricci scalar prior to
cision, we still find a spacelike surface~in fact, R grows so
rapidly prior to excision—roughly as 1/t4 along an r
5constant surface if we translatet to zero at the
singularity—that the surface of infinite curvature essentia
coincides with the excision surface at the resolution of F
19 below!. In addition,B(t,r )→2` along this surface, in-
dicating that the proper circumference measurel tan(r / l )eB

goes to zero there~see Fig. 20 below!. Thus, as with vacuum
BTZ black holes, this singularity is crushing:9 any extended
object reaching the singularity is forced to zero proper c
cumference, regardless of any angular momentum or inte
pressures that the object might have.

Figures 18 and 19 are spacetime plots~essentially Penrose
diagrams! of F(r ,t) and the Ricci scalarR(r ,t), respec-
tively, for a Gaussian initial pulse withP50.133051. On the
pictures we have superimposed the region of trapped
faces and the inferred event horizon of the space time, fo
by tracing a null ray backwards in time from the place whe
the AH meetsI on the coordinate grid. Figure 20 show co
tours of proper circumference for the same solution. T
point P50.133051 in parameter space is slightly subcritic

7Note added in preparation: David Garfinkle has very recen
found a CSS solution in the limit where the cosmological const
vanishes that appears to quite accurately describe the critical s
tion that we have found@21#. His result is quite intriguing—the
cosmological constant isessentialfor black holes to form, yet ap-
parently it plays very little role in the solution at thethresholdof
formation.

8We are grateful to Lior Burko for pointing this out to us.
9Or deformationally strong, see Ref.@23#. It is straight-forward

~though tedious! to see thatr 50 in the non-rotatingBTZ black
hole is a strong singularity as defined by Tipler~though it is not a
curvature singularity!. We have not repeated the formal calculatio
in terms of Jacobi fields in our collapse simulations, but becaus
the central, spacelike nature of the singularity back-reaction is
likely to weaken it. Note added in revision: shortly after this pap
was first published, Lior Burko studied the structure of the sing
larity in 211D AdS spacetime using a ‘‘quasihomogeneous’’ a
proximation, and did find the singularity to be strong and space
@24#.
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~as we have defined criticality, see Sec. III B!—a black hole
forms because the bit of outgoing energy present att50
bounces offI and falls back onto the nearly collapsed sca
field, pushing it over the limit. This gives us a very cle

FIG. 18. The gradient of the scalar fieldF(r ,t) on the entire
solution domain for a Gaussian withP50.133051. On this picture
we have also outlined the region of spacetime containing trap
surfaces, and drawn in the event horizon with a dashed line~found
by tracing a null ray backwards in time from the place where
AH reachesr 51—which is alsoI, so our coordinate system break
down there!. We stop the simulation at points where the met
variables begin to diverge~the lower boundary of the excised re
gion!, which presumably is just before a spacetime singula
forms ~see Fig. 19 for a similar plot of the curvature scalar!.

FIG. 19. A plot of the Ricci scalarR(r ,t) for the same solution
as shown in Fig. 18. During most of the evolutionuRu is bounded
above by'1013, but shortly before reaching the excision bounda
R starts to diverge rapidly, signaling the formation of a spacel
singularity.
12401
r

view of the interior structure; for a more massive pulse
singularity forms shortly after the initial implosion, resultin
in a thin sliver of an interior in (r ,t) coordinates.

From Fig. 19 one can see a striking peak that forms inR
after the scalar field has bounced through the origin an
traveling outwards. In this particular caseR has a value of
order21010 in the interior, it then grows to order1108 over
a very short distance before decreasing to the AdS valu
26/l 2'215. This near-discontinuous behavior inR is char-
acteristic of sub-critical evolutions, and becomes more
treme as one nears the critical solution.

As one approaches the excised spacelike surface in
19,R starts to grow very rapidly, reaching values up tou1028u
before excision~this may not be clear on the figure—w
chose the gray scale to highlight the near-discontinuous
havior inR). R actually oscillates between large positive a
negative values along this surface, but our calculations
not sufficiently accurate to conclude that the oscillation
genuine. In particular,R is extremely sensitive to the differ
enceP22F2 @see Eq.~11!#, andP2 is usually around the
same order of magnitude asF2 there. We also note that th
maximum value attained byR along the excised surface be
comes smaller towardsI. This is to be expected, since in th
211D system,somescalar field is necessary to produce

d

e

y

e

FIG. 20. A contour plot of proper circumference~divided by

2p) r̄ 5 l tan(r / l )eB for the same solution as shown in Fig. 18~the
thickness of each contour line is constant in units of proper circu
ference!. This plot demonstrates the central nature of the singu

ity. Along the excised surface approachingI r̄ also tends towards
zero, though it is not clear with the limited resolution of this figu

there. The event horizon asymptotes tor̄ 50.037, i.e., just outside

the r̄ 50.03 contour.
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value ofRdiffering from the AdS value@again, see Eq.~11!#,
and as we move towardsI along the excised surface there
progressively less scalar field energy remaining.

IV. CONCLUDING REMARKS

We have studied black hole formation from the collap
of a minimally coupled massless scalar field in 211 dimen-
sional AdS spacetime. Outside of the event horizon
spacetime settles down to a BTZ form; in the interior a c
tral, spacelike curvature singularity develops. At the thre
old of black hole formation we find that the scalar field a
spacetime geometry evolve towards a universal, cont
ously self-similar form. When a point particle is present
the origin the critical solution is shifted in central prop
time by an amount related to the mass of the particle.

By examining the behavior of the curvature scalar dur
subcritical evolution we deduced that the universal sca
exponentg for this system is roughly 1.260.05. This value
is quite different from the scaling exponent 1/2 derived
Peleg and Steif@9# for the collapse of thin rings of dust an
by Birmingham and Sen@10# for particle collisions. How-
ever, those works considered different forms of matter,
the phase transition was between black hole and naked
gularity formation. Thus one would not expect the same
ponent. Also, the local spacetime geometry about a dust
or point particles is necessarily~empty! AdS, hence such
systems cannot exhibit any of the features, other than m
scaling, that are characteristic of critical gravitational c
lapse.

Some questions remain unanswered in this work. F
what is the exact nature of the critical solution? In oth
words, what is the character of the symmetry~if any! respon-
sible for the self-similar behavior, as the system does
appear to admit a global homothetic Killing vector.10 Sec-
ond, will any distribution of energy that could conceivab
form a black hole~i.e., with asymptotic massM.0) even-

10Though, as mentioned in the footnote of Sec. III B 3, Dav
Garfinkle has found a CSS solution that is apparently relevant to
AdS critical solution@21#.
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tually do so if one waits long enough~because of the Dirich-
let boundary conditions imposed on the scalar field atI)? A
third question, related to the first two, is whether the critic
solution we have found is a true black-hole-formati
thresholdsolution. In other words, that we have a found
universal, CSS solution via a fine-tuning process indica
that this critical solution is one-mode unstable; so, does p
turbing the critical solution ‘‘one way’’ result in a black
hole, and perturbing it the ‘‘other way’’ cause the scalar fie
to remain regular, never forming a black hole? T
asymptotic nature of AdS spacetime, which is ultimately
sponsible for the boundary conditions of the scalar field aI,
prevent us from answering this question in our collap
simulations.

With regards to future work, it would be useful to exten
these results to different scalar-field–geometry couplings,
clude a mass and potential terms in the Lagrangian, an
add angular momentum to the initial data to study the f
mation of rotating black holes. It would also be interesting
understand the critical behavior in light of the AdS-CFT co
respondence. Even though our calculation is purely class
there should be a regime where the classical evolution
good approximation to the full bulk theory, and consequen
there should be a dual CFT description of the critical ph
nomena.
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