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Critical phenomena at the threshold of black hole formation for collisionless matter
in spherical symmetry
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We perform a numerical study of the critical regime at the threshold of black hole formation in the spheri-
cally symmetric, general relativistic collapse of collisionless matter. The coupled Einstein-Vlasov equations are
solved using a particle-mesh method in which the evolution of the phase-space distribution function is ap-
proximated by a set of particles~or, more precisely, infinitesimally thin shells! moving along geodesics of the
spacetime. Individual particles may have nonzero angular momenta, but spherical symmetry dictates that the
total angular momentum of the matter distribution vanish. In accord with previous work by Rein, Rendall, and
Schaeffer, our results indicate that the critical behavior in this model is type I; that is, the smallest black hole
in each parametrized family has afinite mass. We present evidence that the critical solutions are characterized
by unstable,staticspacetimes, with nontrivial distributions of radial momenta for the particles. As expected for
type I solutions, we also find power-law scaling relations for the lifetimes of near-critical configurations as a
function of the parameter-space distance from criticality.
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I. INTRODUCTION

Critical phenomena at the threshold of black hole form
tion were originally discovered in studies of the spherica
symmetric, general relativistic collapse of a minima
coupled scalar field@1#. Similar behavior has now bee
found in many different scenarios, including the collapse
gravitational waves, perfect fluids, Yang-Mills fields and sc
lar fields in anti–de Sitter spacetime~for a review see@2#!.
Relatively little work has been done on the critical collap
of collisionless matter. To date, the only detailed study of
black-hole threshold in the Einstein-Vlasov model is due
Rein, Rendall and Schaeffer@3#. These authors found evi
dence that, for spherically symmetric collapse with non-z
angular momenta distributions, the threshold black hole m
is finite ~type I behavior!. In this paper we summarize th
results of @4# which corroborate and extend the previo
work of Reinet al.

The paper is organized as follows. In Sec. II, we outli
the specific form of the Einstein-Vlasov equations we ha
solved, and make some contact with the particle-mesh~PM!
method which is subsequently used to numerically so
these equations. Here we follow the approach of Shapiro
Teukolsky @5#, which has been successfully used to mo
the dynamics of spherically symmetric, relativistic cluste
of stars @6–8#. Section III describes our numerical tec
niquesper se, while Sec. IV contains our main results, in
cluding evidence that the critical solutions in this model a
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characterized bystatic geometries and satisfy the type o
scaling expected of type I solutions. Finally, some brief co
cluding remarks are made in Sec. V.

We use geometric units,G5c51, throughout the paper
Abstract spacetime indices are generally denoted bya andb,
while m,n and k,l are used for spacetime and spatial co
ponent indices, respectively. Finally, subscripti ’s label spe-
cific particles, while subscriptj ’s are generally used fo
finite-difference indexing.

II. FORMALISM AND EQUATIONS OF MOTION

The dynamical state of collisionless matter can be
scribed by a distribution function,f (xa,pa):

f ~xa,pa!5dN/dVp ~1!

where N is the particle number andVp is the phase-spac
volume. In the current case, the volume in phase spac
conserved during the evolution of the system~Liouville’s
theorem!. This implies that the distribution function is also
conserved quantity:

d f~ t,xk,pk!

dt
50. ~2!

This is the collisionless Boltzmann, or Vlasov, equation. T
equation, coupled to Einstein’s equations,Gab58pTab , all
restricted to spherical symmetry: i.e.,

f ~ t,xk,pk!5 f ~ t,R xk,R pk! with RPSO~3! k51,2,3
~3!

form the system we wish to solve numerically.
©2001 The American Physical Society07-1
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A. Maximal-areal coordinate system

As with any problem in ‘‘311’’ ~‘‘space1time’’ ! numeri-
cal relativity, we want to specify initial data on a spati
hypersurface and then evolve these data in time. To do
we need to split the Einstein equations into a set of constr
equations~equations that must be satisfied at each instan
time! and dynamical or evolution equations~equations that
tell us how to evolve the geometric quantities in time!. We
carry out this splitting using the 311 formalism due to Ar-
nowitt, Deser and Misner~ADM ! ~for reviews of this formal-
ism, see@9# and @10#!.

We restrict our attention to spherical symmetry and ad
coordinates (t,r ,u,w) with the usual spherical-polar topo
ogy. We are left with the freedom to choose our radial a
time coordinates, and have chosen maximal-areal coo
nates. As the name suggests, in this system the radial c
dinate is areal, so that the proper area of 2-spheres
radiusr is 4pr 2. The time coordinate is fixed by demandin
that thet5const, 3-slices bemaximal, i.e. that the trace of
the extrinsic curvature,K(t,r )[Kl

l(t,r ), identically vanish
on each slice. This leads to aslicing conditionon the lapse
function, a(t,r ), which must be satisfied at each instant
time.

With these choices, the spacetime metric takes the spe
form

ds25„2a~ t,r !21a~ t,r !2b~ t,r !2
…dt212a2b dtdr1a2dr2

1r 2~du21sin2udw2! ~4!

where b(t,r ) is the radial component of theshift vector,
bk5(b,0,0). A sufficient set of equations for determinin
the geometric quantities,a(t,r ), Ku

u(t,r ), a(t,r ) and
b(t,r ) is then:
Hamiltonian constraint:

a8

a
5

3

2
a2rK u

u
214pra2r1

1

2r
~12a2!. ~5!

Momentum constraint:

Ku
u852

3

r
Ku

u24p j r . ~6!

Slicing condition:

a95a8S a8

a
2

2

r D1
2a

r 2 S 2r
a8

a
1a221D14pa2a~S23r!.

~7!

Areal coordinate condition:

b5arK u
u . ~8!

Here, a prime denotes differentiation with respect tor, and
the last formula is derived from] tK50, using K50. In
addition,r(t,r ), j r(t,r ) andS(t,r ), which are discussed in
detail in the next section, are the local energy density,
local current density and the trace of the spatial part of
stress-energy density, respectively. We note that we h
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chosen to implement afully constrainedevolution, which in
this case means that we use the constraint equations, r
than evolution equations, to updatea andKu

u .
During our simulations, we also compute themass aspect

function, M (t,r ):

M ~ t,r !5
r

2 S 11
b2

a2
2

1

a2D 5
r

2 S 11r 2Ku
u

22
1

a2D , ~9!

which, among other useful diagnostic purposes, allows u
detect the formation of apparent horizons. Specifically, wh
2M (t,r )/r 5121/a21b2/a2, becomes equal to 1, a margin
ally trapped surface has been formed. We can see this
computing the expansion of the outgoing null geodesics~see
for instance@11#!, which in these coordinates can be writte
as

12a~ t,r !r K u
u~ t,r !512

a~ t,r !b~ t,r !

a~ t,r !
. ~10!

Therefore, if the outgoing expansion is zero, 1/a25b2/a2,
and 2M (t,r )/r 51.

B. Stress-energy tensor

In this section we explain how we calculate the stre
energy quantitiesr(t,r ), j r(t,r ) and S(t,r ) that appear in
Eqs.~5!–~8!. Adopting a Monte Carlo approach, we approx
mate the distribution function~1! by a set ofN ‘‘spherical
particles,’’ which actually represent infinitesimally thi
spherical shells of matter. Since these particles only inte
with each other gravitationally, we have

Tmn5(
i 51

N

Ti
mn ~11!

whereTi
mn is the stress energy tensor for a single partic

For a point particle we have

Ti
mn5

pi
mpi

n

mi
d„rW2rW i~ t !…, ~12!

where,pi
m are the components of the 4-momentum of theith

particle,mi is its rest mass,rW i(t) is its radial position at time
t, andd is the usual Diracd-function. In maximal-areal co-
ordinates, the single-particle contributions to the quantit
r, S and j r then take the form

@r# i5a2@Ttt# i ~13!

@S# i5
1

a2
@Trr # i1

1

r 2
@Tuu# i

1
1

r 2sin2u
@Tww# i ~14!

@ j r # i5a@Tt
r # i . ~15!
7-2
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We now relax the point particle approximation and assu
that each particle is a spherically symmetric shell of ma
uniformly distributed over a regionDr in radius ~subse-
quently,Dr will be identified with the mesh spacing,h, used
in the finite-difference solution of the geometrical equation!.
Each shell of matter is to be interpreted as an average ove
ensemble of shells, each centered atr 5r i , and with angular
momentum vectors which point in all possible direction
Thus, for any shell, the net angular momentum is zerolW

50, but u lWu2[ l 2Þ0. The proper volume occupied by eac
particle is then given by

Vi5
pt

mi
Dr E A2gdw du54p Dr a a

r i
2pi

t

mi
, ~16!

and we can approximate the delta function that appear
Eq. ~12! by 1/Vi . This yields

r i5
1

4pDra

@ p̄t# i

r i
2

~17!

Si5@Sr
r # i1@Sa

a# i5
1

4pDra3

@pr # i
2

@ p̄t# i r i
2

1
1

4pDra

@ l # i
2

r i
4@ p̄t# i

~18!

@ j r # i5
1

4pDra

@pr # i

r i
2

. ~19!

Here @ p̄t# i is defined by @ p̄t# i[a@pt# i , and @ l # i
2[@pu# i

2

1@pw# i
2/sin2ui is the square of the magnitude of the angu

momentum of theith particle. The geometric quantitiesa
anda are evaluated atr 5r i as described in Sec. III C. Not
that we have also defined

Sa
a[Su

u1Sw
w ~20!

i.e., for Sa
a the indexa is summed over theangular coordi-

nates. We then introduce quantities which do not explic
depend on the geometrical quantities:@ r̄# i[a@r# i , @S̄r

r # i

[a3@Sr
r # i , @S̄a

a# i[a@Sa
a# i and @ j̄ r # i[a@ j r # i . In our nu-

merical implementation of the equations of motion, the
definitions provide a clean separation of the particle upda
and the updates of the geometry variables.

We interpolate the one-particle quantities to the co
tinuum and sum over all the particles to find the total valu

f̄ ~r !5(
i 51

N

f̄ iW~r 2r i !, ~21!

where f̄ i is any of the single-particle barred quantities d
fined above,f̄ is the corresponding continuum quantity, a
W(r 2r i) is an interpolation function defined in detail in Se
III C @see Eq.~51!#. Having defined Eq.~21! we can now
write Eqs.~5!–~8! as
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a8

a
5

12a2

2r
1

3

2
ra2Ku

u
214par r̄ ~22!

Ku
u852

3

r
Ku

u24p
j̄ r

a
~23!

a95a8S a8

a
2

2

r D1
2a

r 2 S a22112r
a8

a D
14paaS S̄r

r

a2
1S̄a

a23r̄ D ~24!

b5arK u
u . ~25!

C. Evolution equations

Because there are no explicit interactions between the
ticles, their equations of motion are just the spacetime g
desic equations~the characteristics of the Vlasov equation!.
These can be derived from the formula for parallel transp
of a particle’s four-momentum along its world line:

pa¹apb50. ~26!

It proves useful to recast these equations in terms of
quantities,pr , pt and l 2[pu

21pw
2/sin2u. We can expresspr

in terms of these variables as

pr~ t,r !5
pr~ t,r !

a2~ t,r !
2b~ t,r !pt~ t,r !. ~27!

To compute total derivatives with respect to coordinate ti
we use

d

dt
5

]

]t
1

dr

dt

dt

dt

]

]r
5

]

]t
1

pr

pt

]

]r
, ~28!

where here, and in the remainder of this section,t is the
particle’s proper time. Applying this operator to Eq.~27! we
get

dpr

dt
5

1

a2

dpr

dt
22

pr

a3 S ]a

]t
1

pr

pt

]a

]r D 2b
dpt

dt

2ptS ]b

]t
1

pr

pt

]b

]r D . ~29!

Substituting Eqs.~27! and ~29! into Eq. ~26! we obtain

dpr

dt
52a

]a

]r
pt1

]b

]r
pr1

1

a3

]a

]r

pr
2

pt
1

l 2

ptr 3
, ~30!

which is the evolution equation forpr . To derive the evolu-
tion equation for r, we use the definition of pr

(pr[dr/dt), which after some manipulation yields
7-3
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dr

dt
5

pr

a2pt
2b. ~31!

The time component of the 4-momentum,pt, is calculated
using the normalization conditionpmpm52m2:

apt5Am21
pr

2

a2
1

l 2

r 2
. ~32!

It is also convenient, as previously mentioned, to usep̄t

5apt rather thanpt itself. Using this definition in Eqs.~30!,
~31! and~32! yields the final form of the particle equations
motion:

dpr

dt
52

]a

]r
p̄t1

]b

]r
pr1

a

a3

]a

]r

pr
2

p̄t
1

l 2a

p̄tr 3
~33!

dr

dt
5

apr

a2p̄t
2b ~34!

p̄t5Am21
pr

2

a2
1

l 2

r 2
. ~35!

III. NUMERICAL APPROACH

As discussed in the previous section, we have adopte
Monte Carlo, particle-based strategy to the solution of
Vlasov equation. In this approach we generate anN-particle
sample of some specified initial distribution functio
f (0,xk,pk), and then use dynamical evolution of theN par-
ticles to approximate the full dynamics off (t,xk,pk). The
continuum limit is recovered in the limitN→` and, in the
absence of any sophisticated ‘‘importance sampling’’ te
niques, we expect the level of statistical error in our parti
calculations to be of the order of 1/AN. We couple the par-
ticles to the gravitational field by introducing a finite
difference mesh on which we approximately solve the g
metric equations, and by introducing transfer operat
which allow us to produce mesh-based representation
particle quantities andvice versa. ‘‘Particle-mesh,’’ or PM,
methods such as ours are commonly used in the solutio
Boltzmann equations, particularly those involving lon
range interactions, and the reader is referred to@12# for a
detailed review of such techniques.

Here we simply note that a PM method is generica
characterized by the splitting of each discrete time st
tn→tn11 into two stages:~1! the solution of the field equa
tions on a finite-difference mesh, and~2! the updating of
particle positions via discrete versions of their equations
motion. In our case, and as described in the previous sec
at each time step the stress-energy quantities are calcu
by considering each particle to be ‘‘smoothed’’ over a fin
volume.
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A. The field equations

We first explain how the equations~22!–~25! for the ge-
ometry are solved numerically, assuming that we know
quantitiesr̄, j̄ r , S̄r

r , S̄a
a ~our computation of the stress

energy quantities is described in Sec. III C!. The first two
equations, Eqs.~22!, ~23!, are integrated from the origin,r
50, using theLSODA @13# integrator. The boundary condi
tions are given by the spherical symmetry of the spaceti
and by the demand that the spacetime be locally flat ar
50. They area(t,0)51, andKu

u(t,0)50.
We compute the values of the functionsaj andKu

u j on a
uniform grid of Nr points, r j[( j 21)h, j 51, . . . ,Nr ,
whereh[Dr 5r max/(Nr21), andr 5r max is the outer edge of
the computational domain.

In order to compute the values atr 5r j 11, we supply to
LSODA the values of the functions atr 5r j and the deriva-
tives computed using Eqs.~22!, ~23! at r 5r j 11/2, using the
average ofr̄ and j̄ r at r j and r j 11:

@ r̄# j 11/25
1

2
~@ r̄# j1@ r̄# j 11! ~36!

@ j̄ r # j 11/25
1

2
~@ j̄ r # j1@ j̄ r # j 11!. ~37!

Once we have calculateda, we can solve the slicing equa
tion:

a95a8S a8

a
2

2

r D1
2a

r 2 S a22112r
a8

a D
14paa~S̄r

r1S̄a
a23r̄ !, ~38!

with the boundary conditions

a8~ t,0!50, ~39!

a~ t,`!51. ~40!

Here the first condition follows from the demand that t
slicing be regular atr 50, and the second one follows from
asymptotic flatness, plus the demand thatt measure proper
time at infinity. We solve Eq.~38! using a second-orde
finite-difference approximation on the finite-difference mes

a j 1122a j1a j 21

h2
5

a j 112a j 21

2h S aj 112aj 21

2haj
2

2

r j
D

1
2a j

r j
2 S aj

22112r j

aj 112aj 21

2haj
D

14paja j S @S̄r
r # j

aj
2

1@S̄a
a# j23@ r̄# j D .

~41!

Rearranging this equation gives us
7-4
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S 1

h2
1

f j

2hD a j 112S 2

h2
1gj D a j1S 1

h2
2

f j

2hD a j 2150

~42!

where

f j5
aj 112aj 21

2haj
2

2

r j
~43!

gj5
2

r j
2 S aj

22112r j

aj 112aj 21

2haj
D

14paj S @S̄r
r # j

aj
2

1@S̄a
a# j23@ r̄# j D . ~44!

In addition to Eq.~42! we have the boundary equation
r 50:

S 231
1/h21 f 2 /~2h!

1/h22 f 2 /~2h!
D a11S 41

22/h22g2

1/h22 f 2 /~2h!
D a250,

~45!

which can be derived from theO(h2) forward finite-
difference approximation toa850 at r 50

23a114a22a3

2h
50, ~46!

and Eq.~42! with j 52. We have also the boundary conditio
at r 5r max:

aNr
5A12S 2MNr

r Nr

D ~47!

whereM is the mass aspect function defined by Eq.~9!. This
approximation follows from the known representation of t
asymptotically-flat Schwarzschild solution in maximal-are
coordinates. Equations~42!, ~45! and~47! constitute a linear
tridiagonal system that can be solved using a tridiago
solver ~we have used theLAPACK @14# routineDGTSV!.

B. The evolution equations

To evolve the particles’ positions and momenta we in
grate the geodesic equations~33!, ~34!. The values of the
coefficients in these equations~basically products and quo
tients ofa, a, b, a8, a8 andb8) must be calculated at th
particle positions,r i , using the values obtained at the me
points, r j . The mesh values are interpolated to the parti
positions using the same operator kernel used to prod
mesh values from particle quantities~this procedure is ex-
plained in the next section!. The geodesic equations are al
integrated using theLSODA routine. At discrete timet5tn,
given a particle’s position,r n, and radial momentum,pr

n , we
calculate the new position,r n11, and momentum,pr

n11 , at
t5tn115tn1Dt by supplying toLSODA the values of the
metric functions and their spatial derivatives evaluated
t5tn. Because we use thet5tn values of the geometric
02400
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quantities in the particle updates, rather than, for exam
values att5tn11/2, we expect our solution of the particl
equations to have accuracyO(Dt). We also note that in our
numerical implementation, we chose a value ofDt propor-
tional to h, i.e. Dt5l h, where usuallyl51.0.

We need to take special care if a particle leaves the c
putational domain (r i.r max) or if it reaches the origin. In the
first case we simply remove the particle from the integrat
scheme. When a particle reaches the origin, which operat
ally is signaled byr i,0, we ‘‘reflect’’ the particle by setting

r i→2r i , ~48!

@pr # i→2@pr # i , ~49!

l i→ l i . ~50!

C. Interpolation and restriction

In this section we explain how we calculate the stre
energy quantities on the finite-difference mesh from a giv
set of particles~restriction!, as well as how we interpolate th
geometric quantities from the finite-difference mesh to
particles’ positions.

The values of the stress-energy quantitiesr̄, j̄ r , S̄ are
calculated on the mesh using Eq.~21!:

f̄ ~r j !5(
i 51

N

f̄ iW~r j2r i !

where f̄ i are the single particle quantities. In our impleme
tation, we use the specific kernel~see Fig. 1!:

W~r j2r i !5H 12ur j2r i u/h, ur j2r i u<h,

0 otherwise.
~51!

Similarly, to restrict the geometric quantities calculated
the mesh to the particles’ positions we compute

F~r i !5(
j 51

Nr

F~r j !W~r j2r i ! ~52!

where, again,r i is the position of the particle,r j are the grid
points, andF is any of the coefficients which appear in th
geodesic equations. These coefficients are generally prod
and quotients of metric functions and their derivatives.
order to calculate derivatives we use the standardO(h2)
finite-difference approximation:

FIG. 1. Illustration of the smoothing kernel,W(r 2r i). Here,r i

is the position of a particle;•••r j 21 , r j , r j 11••• are the~uniform!
finite-difference mesh points withD r5r j 112r j5const5h.
7-5
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@F8# j5~F j 112F j 21!/~2h!1O~h2! ~53!

and then use Eq.~52! to find an approximate value fo
F8(r i).

D. Initial data

To initialize the sets of particles which we evolve, w
specify the particle distribution~number of particles per uni
of areal coordinate! and the velocity distribution~specifically
the number of particles perpr and l ). This corresponds to a
separabledistribution function,f (r ,pr ,l ):

f ~r ,pr ,l !5R~r !P~pr !L~ l !. ~54!

Moreover, instead of specifyingP as a function ofpr we
give P5P( p̄r) wherep̄r5pr /a. This allows us to calculate

the value ofpt5Am21 p̄r
21 l 2/r 2 ~assuming all the particle

have the same rest massm), and therefore@ r̄# i , @ j̄ r # i and

@S̄# i without a priori knowledge of the geometry. We ca
thus decouple the tasks of specifying initial conditions
the particles, and ensuring that the constraints are satisfie
t50.

We use 1-dimensional Monte Carlo techniques applied
each ofR(r ), P(pr), L( l ) to get a specific set ofN particles.
As mentioned above, the statistical error, in theory, sho
scale as 1/AN.

IV. RESULTS

All of the calculations discussed in this paper were p
formed with Nr5257, N5105 and h50.078125. With this
choice of parameters we ensured that the truncation error
to the finite-differencing of the field equations with me
spacingh was of the same order of magnitude as the sta
tical error resulting from representation of the phase-sp
distribution with a finite number,N, of particles. We have
observed@4# that both types of error scale in the expect
way: the truncation error scales asO(h), with the number of
particles per cell fixed; the statistical error scales as 1/AN for
fixed h, and asO(1/h) for fixed N. Once the two errors are o
comparable magnitude, in order to further decrease the o
all error ~truncation plus statistical error! asO(h), we have
to increase the number of particles asN'1/h4. This scaling
behavior makes it very costly to substantially reduce
level of numerical error in the results presented here.

Our critical solutions~solutions sitting at the threshold o
black hole formation! were found by performing bisectio
searches using the total rest mass,M0:

Mo5(
i 51

N

mi5Nm ~55!

as the tuning parameter. In particular, ifMo
! is the critical

parameter value, then configurations withMo,Mo
! ~subcriti-

cal! will eventually disperse, while those withMo.Mo
! ~su-

percritical! will form black holes. For any given critica
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search, we generally determinedMo
! to a relative precision of

about 4310211. Table I provides a summary of the variou
families we have studied.

We first focus on a specific family of initial condition
@Table I, family~a!# and then summarize our observations f
the remaining families. We thus consider an initial distrib
tion defined by

R~r !5r 2e„2(r 2r o)2/Dr
2
…Q~r ! ~56!

P~ p̄r !5e„2( p̄r2 p̄ro)2/D p̄r

2
… ~57!

L~ l !5e„2( l 2 l o)2/D l
2
…Q~ l ! ~58!

where, again,p̄r5pr /a, andQ is the step function. We take
r o55, D r51, p̄ro50, D p̄r

52, l o512, D l52, and refer to
the data as ‘‘almost time symmetric’’~ATS! since the Gauss
ian for the radial momentum is centered atpr50. The criti-
cal parameter for this family isMo

!'1.3 as shown in Fig. 2.
This figure also shows that the smallest black hole form
hasfinite mass and that the transition is therefore of type I,
agreement with the observations of Reinet al. @3#.

In Fig. 3 we show a few snapshots of the evolution
ȧ(t,r )[] ta(t,r ) resulting from initial data which is close to
criticality but which eventually disperses. At early time
ȧ(t,r ) oscillates, but for 100&t&200 it appears to approac
0. In the last snapshot (t5234) we observe thatȧ(t,r ) has
become negative, corresponding to dispersal of the partic
We also observe similar behavior for the time derivativesȧ

and ḃ.

TABLE I. Summary of critical searches described in the te
Listed are family label, form of initial data, set number~for families
where multiple, independent,N-particle representations of the in
tial distribution function were used! and computed lifetime-scaling
exponents,s. See the text and particularly Eqs.~56!–~58! and
~63!,~64!, respectively, for detailed definitions of the ‘‘Gaussian
and ‘‘Tanh’’ initial data. Also note that ATS stands for ‘‘almost tim
symmetric,’’ as discussed in the text. The quoted error forall values
of s is the estimated statistical error for the ATS data@see Eq.~62!#.

Family Form of initial data Set no. s

~a! Gaussian,l o512 ATS 1 5.160.2
~a! Gaussian,l o512 ATS 2 5.360.2
~a! Gaussian,l o512 ATS 3 5.260.2

~b! Gaussian,l o53 1 5.760.2

~c! Gaussian,l o55 1 5.560.2

~d! Gaussian,l o57 1 5.060.2
~d! Gaussian,l o57 2 5.060.2

~e! Gaussian,l o512 1 4.960.2

~f! Tanh, l o57 1 5.960.2
7-6



f
n

en

a

fo
ur
d

th

fi-
te-
nts

the

n.
ric

zed

tal
he

-
t

ho
-

lo-
nc

tical

for
r is
hus,

e

s,

CRITICAL PHENOMENA AT THE THRESHOLD OF . . . PHYSICAL REVIEW D 65 024007
In order to better see how smallȧ(t,r ) becomes, we show
in Fig. 4 details ofȧ(t,r ) at t5156 for three different sets o
particles sampled from the same initial distribution functio
The difference between the solutions obtained with differ
sets give us an estimate of the statistical error,DS(ȧ), in the
calculation. From the figure we can see that for the most p
uDS(ȧ)u'uȧu. This is not the case forr *5.5 where the three
calculations all seem to indicate a specific non-zero value
ȧ; however, we suspect that the amplitude of this feat
may decrease if we tune closer to the critical solution, an
we use greater resolution. More importantly, the regionr
*5.5 accounts for only about 5–10 % of the mass of
near-critical configuration.

FIG. 2. Black hole mass as function of total rest mass,Mo , for
the ‘‘almost time-symmetric,’’ Gaussian family of initial data de
scribed in the text@Table I, family~a!#. We observe that the smalles
black hole has a finite mass~type I transition! at a critical parameter
Mo

!'1.3 ~dashed line!. Computationally, we have tunedMo
! to a

relative precision of about 4310211, which is typical of the critical
surveys discussed in this paper. The discrete jumps in the black
masses forMo.Mo

! reflect the discrete nature of the finite
difference grid. We have made no attempt to ‘‘interpolate’’ the
cation of the black hole horizon in the finite-difference mesh; he
our mass estimates will always satisfyMBH5kDr 5kh, for some
integerk.

FIG. 3. Evolution ofȧ from a marginally subcritical calculation

(Mo,Mo
!) using family ~a!. Note that at intermediate timesuȧu

'0.
02400
.
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rt,

r
e
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e

These results are thusconsistentwith ȧ→0 in the critical
regime, although more definitive proof would require signi
cantly higher particle numbers, as well as higher fini
difference resolution. If we accept that the metric coefficie
become independent oft in the critical regime, then the criti-
cal spacetime is stationary. If, in addition, the vectorNa

5(]/]t)a is orthogonal to the spatial hypersurfaces, then
spacetime is static, and the shift function,b(t,r ), must van-
ish. In Fig. 5 we show the evolution of the shift functio
During the period when the time derivatives of the met
coefficients are close to zero, the shift functionb(t,r ) is also
close to zero, in the sense thatuDS(b)u'ubu. We thus have
evidence that the critical solution in this case is characteri
by a static geometry.

We have also observed that in the critical regime the to
current density,j r , tends to zero. This must be the case if t

le

e

FIG. 4. Plot ofȧ(156,r ) from three separate family~a! calcula-
tions using distinct initial particle sets (N5105). The scatter in the
displayed datasets gives a rough indication of the level of statis

error DS(ȧ) in the computations. The plot shows that, at least
r &5.5, where 93% of the mass of the putative static cluste
located, there is little or no correlation between the three sets. T

any nonzero value ofȧ in the critical limit may be attributable to
finite-N statistical fluctuations.

FIG. 5. Evolution ofb from a marginally subcritical calculation
using family ~a!. The shift function apparently vanishes during th

same period of time as doesȧ. Therefore, during this interval, we
have evidence thatNa5(]/]t)a is orthogonal to the hypersurface
and, thus, that the geometry is static.
7-7
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spacetime is static. However, as shown in Fig. 6, theS̄r
r

component of the stress energy tensor isnon-zeronear criti-
cality. This means that although on average there are
same number of particles with positive~outward-directed!
and negative~inward-directed! pr , the mean value ofupr u
doesnot vanish.

As is typical of type I critical solutions, as we tuneMo

→Mo
! , the dynamical solution spends more and more ti

‘‘close’’ to the putative static solution, and we expect to fin
power-law scaling of the time,t ~the ‘‘lifetime’’ of the near-
critical configuration! spent in the critical regime as a func
tion of lnuMo2Mo

!u. Specifically, we expect the static critica
solution ~or solutions, since we are unable to demonstr
convincingly that the model has auniquecritical solution, up
to trivial rescalings! to possess exactly one unstable mode
perturbation theory, with an associated Lyapounov expon
which is simply the reciprocal of the scaling exponent,s, in
the lifetime scaling law:

t;2s lnuMo2Mo
!u. ~59!

Figure 7 shows a plot oft5t2tc versus lnuMo2Mo
!u

where t is the total time that the particles in the solutio
generated with parameterMo are localized withinr 5r o56,
and tc is the same quantity for the solution closest to cr
cality. We show results from calculations using three diff
ent sets of particles and the same Gaussian family previo
discussed. Using the residual scaling freedom in the mo
~the equations of motion are invariant undert→kt, r→kr
for arbitrary k.0), we have also normalized each critic
solution to have unit ADM mass:

r→r /Mc~ t!,r max! ~60!

t→t/Mc~ t!,r max!. ~61!

Heret! is defined to be the instant at which the time deriv
tives of the metric components are closest to zero for
solution closest to criticality.Mc(t!,r max) is then the value of
the mass aspect function att5t!, r 5r max, again for the

FIG. 6. Evolution ofS̄r
r(t,r ) from a marginally subcritical cal-

culation using family~a!. During the static regime,S̄r
r(t,r ) is

bounded away from zero, showing that althoughpr is zero on av-
erage,upr u is not.
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most nearly-critical solution. We can see that there is arough
linear relation between the lifetimet of the near-critical con-
figurations and lnuMo2Mo

!u:

t;2~5.260.2!lnuMo2Mo
!u ~62!

where the quoted uncertainty is an estimate of the statis
error.

Qualitatively, then, our results are similar to what h
been observed in other instances of type I critical colla
@15#. We have also found results similar to those just p
sented by using 4 other Gaussian families@Table I, families
~b!–~e!#, each withp̄ro524 and with varyingl o’s of 3, 5, 7
and 12;r o55, D r51, D p̄r

52 andD l52, as for family~a!.
Specifically, in each case we find that the critical geome
appears to be static. We note that for smaller values ofl o ,
the mass in the critical solution gets increasingly conc
trated nearr 50, making accurate evolution with a uniform
finite-difference grid more difficult. Finally, we have studie
a family with the following initial single-particle distribu-
tions @Table I, family ~f!#:

R~r !}„12tanh@~r 2r o!/D r #
2
…Q~r ! ~63!

P~pr !}„12tanh@~ p̄r2 p̄ro!/D p̄r
#… ~64!

L~ l !}„12tanh@~ l 2 l o!/D l #
2
…Q~ l !. ~65!

Here we tookr o55, D r51, p̄ro524, D p̄r52, l o57 and
D l52. For this data we also find evidence that asMo

→Mo
! , the geometry becomes static.

In Fig. 8 we show profiles of 2M (t!,r )/r for all of the
different families considered, each separate profile being
lected from the corresponding period of near-critical evo
tion. Again, since different initial conditions set differen
overall length scales for the problem, we have normaliz
the results using the rescaling given by Eqs.~60!, ~61!. We
see that, after normalization, the peak of 2M (t!,r )/r is
roughlyat the same radial location,r[r !52.3. We also find

FIG. 7. Illustration of scaling law for the lifetime of near-critica
configurations. The quoted uncertainty for each value ofs is the
standard deviation of the slope, which has been computed usi
least squares fit.
7-8
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CRITICAL PHENOMENA AT THE THRESHOLD OF . . . PHYSICAL REVIEW D 65 024007
that the better resolved a solution is, the closer it conform
the best resolved solution@Table I, family~a!#. This provides
some indication that there may be auniversalcritical solu-
tion in this model~up to trivial rescalings,r→kr , t→kt),
but again, we would need better finite-difference resolut
and many more particles to verify this conjecture. This figu
also shows that the maximum of 2M (t!,r )/r has a value of
approximately 0.76. This immediately shows that the criti
solution is not one of the clusters considered in@16#, since
there are no equilibrium Einstein clusters with maximu
2M (r )/r larger than 2/3.

We have also estimateds defined by Eq.~59! for the
different families described above. Figure 9 shows the l
time scaling measured for the various initial data sets, wh
the quoted uncertainty in each value ofs is the standard
deviation of the slope computed from a least squares fit.
values that we have obtained for the scaling exponents
also collected in Table I.

Finally, we are also interested in investigating the dep
dence of the critical solutions on the distribution of angu
momentum. In Fig. 10 we showr 2S̄a

a(t!,r ) for the different
families of initial data we have studied. Here

r 2S̄a
a5r 2F(

i 51

N

W~r 2r i !
1

4pDr

@ l # i
2

r i
4@ p̄t# i

G ~66!

@see Eq.~18!#, and t! is defined as previously. We note th
r 2Sa

a(t,r ), is a dimensionless quantity which measures
square of the angular momentum of the distribution of p
ticles. As in Fig. 8, we have again rescaled the radial co
dinate ~and time! so that the critical configuration has un
ADM mass. We see that there is no obvious agreement o

FIG. 8. Comparison of near-critical solutions for different fam
lies of initial data~Table I!. We see evidence for a universal profi
2M (t!,r )/r , wheret! ~different for each family! is the instant when
the temporal derivatives of the metric components are minimiz
andr has been rescaled for each family so that all critical soluti
have unit ADM mass. The maximum value of 2M (r )/r is about
0.76 showing immediately that the critical solution cannot be one
the clusters considered in@16#, since there are no equilibrium Ein
stein clusters with maximum 2M (r )/r larger than 2/3.~Moreover,
in contrast to the configurations studied here, all particles in
Einstein cluster are in circular orbits.!
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profiles calculated from different families of initial data
clearly more work needs to be done in order to clarify t
effect of initial angular momentum distributions on critic
evolution in this model.

V. CONCLUSIONS

We have studied critical behavior at the threshold of bla
hole formation for collisionless matter with angular mome
tum and have corroborated the findings of Reinet al. @3# that
the black holes which form at threshold in this model are
finite mass~type I behavior!. Further, our results indicate tha
for families with non-zero angular momentum, the critic
solution has a static geometry, with non-zero radial parti

d,
s

f

n

FIG. 9. Scaling behavior for different families of initial data. W
observe near-critical lifetime-scaling behavior for all the famili
we have studied, as expected for type I solutions~static or periodic
solutions, with one unstable mode in perturbation theory!. The
quoted uncertainty ins is given by the standard deviation of th
least-squares slope. The axes ranges vary somewhat from subp
subplot; the values shown for family~d! are representative.

FIG. 10. r 2S̄a
a(t!,r ) for the different families in the near-critica

regime. As described in the text, this quantity is a dimensionl
measure of the squared-angular-momentum of the distribution
contrast to Fig. 8, we see no particular evidence of a unive
profile here. However, considerably more resolution~both in h and
N) is needed to accurately assess the impact of angular mome
on critical collapse in this model.
7-9
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momenta. We have also found evidence for a lifetime sca
law which is to be expected for type I critical solutions, a
have some indications of universality. In order to produ
more definitive results using our current approach, we wo
need to employmany more particles and better finite
difference resolution. Since the critical behavior in th
model doesnot appear to generate structure on arbitrar
small scales, it seems unlikely that adaptive methods, suc
those used in@1#, would be of much help here. Thus, it ma
be that the development of a finite-difference code to so
the Vlasov equation directly in phase space would be the
route to more accurate results. Perhaps most importantly,
a,

d
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should provide a technique with better-understood, a
better-controllable, convergence properties.
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