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We perform a numerical study of the critical regime at the threshold of black hole formation in the spheri-
cally symmetric, general relativistic collapse of collisionless matter. The coupled Einstein-Vlasov equations are
solved using a particle-mesh method in which the evolution of the phase-space distribution function is ap-
proximated by a set of particlésr, more precisely, infinitesimally thin shellmoving along geodesics of the
spacetime. Individual particles may have nonzero angular momenta, but spherical symmetry dictates that the
total angular momentum of the matter distribution vanish. In accord with previous work by Rein, Rendall, and
Schaeffer, our results indicate that the critical behavior in this model is type |; that is, the smallest black hole
in each parametrized family hadiaite mass. We present evidence that the critical solutions are characterized
by unstablestatic spacetimes, with nontrivial distributions of radial momenta for the particles. As expected for
type | solutions, we also find power-law scaling relations for the lifetimes of near-critical configurations as a
function of the parameter-space distance from criticality.
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[. INTRODUCTION characterized bystatic geometries and satisfy the type of
scaling expected of type | solutions. Finally, some brief con-
Critical phenomena at the threshold of black hole forma-<luding remarks are made in Sec. V.
tion were originally discovered in studies of the spherically We use geometric unit&s=c=1, throughout the paper.
symmetric, general relativistic collapse of a minimally Abstract spacetime indices are generally denoted agdb,
coupled scalar field1]. Similar behavior has now been While u,v andk,| are used for spacetime and spatial com-
found in many different scenarios, including the collapse ofPonent indices, respectively. Finally, subsciijstlabel spe-
gravitational waves, perfect fluids, Yang-Mills fields and sca-Cific particles, while subscripf’s are generally used for
lar fields in anti-de Sitter spacetintor a review seg2]).  finite-difference indexing.
Relatively little work has been done on the critical collapse
of collisionless matter. To date, the only detailed study of the !l FORMALISM AND EQUATIONS OF MOTION
blapk-hole threshold in the Einstein-Vlasov model is dug 0 The dynamical state of collisionless matter can be de-
Rein, Rendall and S.chaefféB]. The;e authors fpund Vi~ scribed by a distribution functiorf(x?,p,):
dence that, for spherically symmetric collapse with non-zero
angular momenta distributions, the threshold black hole mass f(x%,pa) =dN/dV, (@)
is finite (type | behavioy. In this paper we summarize the
results of [4] which corroborate and extend the previousWhereN is the particle number anit,, is the phase-space
work of Reinet al. volume. In the current case, the volume in phase space is
The paper is organized as follows. In Sec. II, we outlineconserved during the evolution of the systehiouville's

the specific form of the Einstein-Vlasov equations we havetheoren). This |mplles that the distribution function is also a
solved, and make some contact with the particle-m@sn)  conserved guantity:
method which is subsequently used to numerically solve df(t,x<,py)
these equations. Here we follow the approach of Shapiro and —
Teukolsky[5], which has been successfully used to model dt
the dynamics of spherically symmetric, relativistic clusters
of stars [6-8]. Sgction i describ_es our numerical te(_:h- equation, coupled to Einstein’'s equatio,,= 87T, all
niquesper se while Sec. IV contains our main results, in- restricted to spherical symmetry: i.e
cluding evidence that the critical solutions in this model are T

2

This is the collisionless Boltzmann, or Vlasov, equation. This

f(t, x5 p)=f(t,RX¥Rp) with ReSO3) k=1,2,3
3

*Email address: inaki@physics.ubc.ca
TEmail address: choptuik@physics.ubc.ca form the system we wish to solve numerically.
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A. Maximal-areal coordinate system chosen to implement flly constrainedevolution, which in

this case means that we use the constraint equations, rather
| than evolution equations, to updateandK?, .
During our simulations, we also compute tmass aspect

As with any problem in “3+ 1" (“spacet+time”) numeri-
cal relativity, we want to specify initial data on a spatia
hypersurface and then evolve these data in time. To do this, ~*
we need to split the Einstein equations into a set of constraiftnction M(t,r):
equationgequations that must be satisfied at each instant of
time) and dynamical or evolution equatiofequations that M (t,r)= r
tell us how to evolve the geometric quantities in tjmé/e ' 2
carry out this splitting using the-81 formalism due to Ar-
nowitt, Deser and MisnelADM) (for reviews of this formal-  which, among other useful diagnostic purposes, allows us to
ism, se¢[9] and[10]). detect the formation of apparent horizons. Specifically, when

We restrict our attention to spherical symmetry and adoppM (t,r)/r =1—1/a2+ %/ «?, becomes equal to 1, a margin-
coordinates t,r,8,¢) with the usual spherical-polar topol- ally trapped surface has been formed. We can see this by
ogy. We are left with the freedom to choose our radial andcomputing the expansion of the outgoing null geodeties
time coordinates, and have chosen maximal-areal coordfor instance 11]), which in these coordinates can be written
nates. As the name suggests, in this system the radial coogs
dinate is areal, so that the proper area of 2-spheres with
radiusr is 47r2. The time coordinate is fixed by demanding a(t,r)B(t,r)
that thet=const, 3-slices benaximal i.e. that the trace of 1-a(t,n)rKi(tr=1- Taltn) (10
the extrinsic curvature (t,r)=K!(t,r), identically vanish ’
on each slice. This leads tosdicing conditionon thelapse  Therefore, if the outgoing expansion is zeroaZ# g2/ a?,
function «(t,r), which must be satisfied at each instant ofgng avi(t,r)/r=1.
time.

With these choices, the spacetime metric takes the specific
form

a2 2

2 1) 1
1+ B—Z— —) =—( 1+r2K%%— —) , (9
o a

B. Stress-energy tensor

In this section we explain how we calculate the stress-
ds’=(—a(t,r)®+a(t,r)?p(t,r)?dt*+2a’gdtdr+a’dr*  energy quantities(t,r), j,(t,r) and S(t,r) that appear in
2 1o P Egs.(5)—(8). Adopting a Monte Carlo approach, we approxi-
ri(de*+sintode?) “) mate the distribution functionl) by a set ofN “spherical
particles,” which actually represent infinitesimally thin
spherical shells of matter. Since these particles only interact
with each other gravitationally, we have

where B(t,r) is the radial component of thshift vector
B“=(B,0,0). A sufficient set of equations for determining
the geometric quantitiesa(t,r), K%(t,r), «(t,r) and

B(t,r) is then: N
Hamiltonian constraint: TMV:E ™ (11)
i=1
a—,=§aZrK9 2+ 4mra? +i(1—a2) (5 : , .
a 2 0 T ' where T/*” is the stress energy tensor for a single particle.

For a point particle we have
Momentum constraint:
3 T“V—ﬁé(F— ri(t)) (12)
K’ =——K%—4mj,. (6) Loom s

where,p/* are the components of the 4-momentum of ithe
particle,m is its rest mass;;(t) is its radial position at time
2l a’ t, and ¢ is the usual Dirags-function. In maximal-areal co-
+ —2( 2r E+a2— 1) +47a’a(S—3p). ordinates, the single-particle contributions to the quantities
r @ p, Sandj, then take the form

Slicing condition:

a 2

a I

. orTity
Areal coordinate condition: [pli=a’[T"]; (13

B=arK’,. (8) 1 1
[Sli= S [Telit—[Tooli
Here, a prime denotes differentiation with respect t@and a r

the last formula is derived fron#K=0, usingK=0. In 1

addition, p(t,r), j,(t,r) andS(t,r), which are discussed in +——[T,.li (14)
detail in the next section, are the local energy density, the rsinfg

local current density and the trace of the spatial part of the

stress-energy density, respectively. We note that we have [jli=alT4 ;. (15
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We now relax the point particle approximation and assume a’ 1—-a? 3 _
that each particle is a spherically symmetric shell of mass, 2 or Era2K092+4warp (22
uniformly distributed over a regioAr in radius (subse-
quently,Ar will be identified with the mesh spacing, used —
in the finite-difference solution of the geometrical equatjons KO, =— § K00—47Tj—r (23)
Each shell of matter is to be interpreted as an average over an r a
ensemble of shells, each centeredat;, and with angular
momentum vectors which point in all possible directions. a 2 al , a’
Thus, for any shell, the net angular momentum is zéro, a'=a’|l—- ?) Tzl —1+2r§)
=0, but|[|?>=12#0. The proper volume occupied by each B
particle is then given by S, — _
+4maa ¥+Saa—3p (24)
-=—Arf J-gdpdé=47 Ar aa 'p', (16)

B=arK}. (25)
and we can approximate the delta function that appears in
Eqg. (12) by 1N;. This yields C. Evolution equations

= Because there are no explicit interactions between the par-

t
pi= ! [pz]‘ (17)  fticles, their equations of motion are just the spacetime geo-
4mAra ri desic equationgthe characteristics of the Vlasov equadion
These can be derived from the formula for parallel transport
1 [p]? of a particle’s four-momentum along its world line:
S=[S ] +[S%]i= S =
4mwAra® [p]ir P2V p°=0. (26)
. [I]I (18) It proves useful to recast these equations in terms of the
Tarira rip; quantities,p, , p' and|?=pJ+ pZ/sinfg. We can expresp’
in terms of these variables as
. 1 [pr]i
Ledi= 1o : (19
amhra rf ot =20 g pien), 27
as(t,r)

Here [p']; is defined by[p']i=a[p'];, and [1]7=[p,]

+[p‘p]|2/3|n20| is the square of the magnitude of the angu|arT0 Compute total derivatives with reSpeCt to coordinate time
momentum of theth particle. The geometric quantities =~ W€ USE

anda are evaluated at=r; as described in Sec. Ill C. Note

that we have also defined d_ 4 dr dr g o p'd

- = —+t——, (29)

p dt dT dt 8r c7t pt ar

=5+, (20)
where here, and in the remainder of this sectiens the

i.e., for S, the indexa is summed over thangular coordi- particle’s proper time. Applying this operator to Hg7) we

nates. We then introduce quantities which do not explicitly
depend on the geometrical quantm@;], a[pl;, [Srr],
=a3[S’r],, [Saa]l_a[saa]l and [Jr]l_a[Jl‘]l' In our nu- dpr 1 dp pr oa pr Ja dpt
merical implementation of the equations of motion, these 9o 2at E\ m T Pa
definitions provide a clean separation of the particle updates a a pror

and the updates of the geometry variables. P P
We interpolate the one-particle quantities to the con- B L P’ '8 (29)
tinuum and sum over all the particles to find the total values: gt pt ar

N

£(r) =2 (21

Substituting Eqs(27) and(29) into Eq. (26) we obtain

. dp, da . 9B 1 oap? |12

- . . . " —=—a—pH—pt+t———+—, (30
where f; is any of the single-particle barred quantities de- dt ar ar a®dr pt p'rs

fined abovef is the corresponding continuum quantity, and

W(r —r;) is an interpolation function defined in detail in Sec. which is the evolution equation fqu, . To derive the evolu-
Il C [see Eq.(51)]. Having defined Eq(21) we can now tion equation for r, we use the definition ofp’
write Egs.(5)—(8) as (p"=dr/d7), which after some manipulation yields
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dr P, A. The field equations
dat az_pt_'B' 31 We first explain how th_e equatiorﬁﬁZ)—(ZS) for the ge-
ometry are solved numerically, assuming that we know the
quantitiesp, j,, S, S%; (our computation of the stress-
energy quantities is described in Sec. 1)l The first two
equations, Eqs(22), (23), are integrated from the origim,
=0, using theLsoDA [13] integrator. The boundary condi-
o , P tions are given by the spherical symmetry of the spacetime,
ap=\mt ot (32 and by the demand that the spacetime be locally flat at
=0. They area(t,0)=1, andK?,(t,0)=0.
o We compute the values of the functioajsandK%j ona
It is also convenient, as previously mentioned, to pée uniform grid of N, points, ri=>(-Lh, j=1,... N,
= ap' rather tharp' itself. Using this definition in Eq¥30), ~ whereh=Ar =r ,/(N,—1), andr =r ., is the outer edge of
(31 and(32) yields the final form of the particle equations of the computational domain.
motion: In order to compute the values atr;, 1, we supply to
LSODA the values of the functions at=r; and the deriva-
dp, da—y 3B @ dap? 12a tives computed using Eq&2), (23) atr=r; 5, using the

FTTLAT pr"’;ﬁ?"’ﬁ (33 average of andj, atr; andr;.q:

The time component of the 4-momentupt, is calculated
using the normalization conditiop‘p , = —m?:

_ 1 -
[plj+12= E([P]j"‘[ﬂ]jﬂ) (36)
dr  ap, 8 34
dt a2pt - 1 - -
Ueli+wz= 5L+ Ledj+0)- (37)
2 2
— , P2 .
p'= me+ —+ —. (35 Once we have calculates] we can solve the slicing equa-
ar T tion:
a’ 2 @ a’
I1l. NUMERICAL APPROACH d"=a' | —= ]+ a2—1+2r _)
a r r2 a

As discussed in the previous section, we have adopted a
Monte Carlo, particle-based strategy to the solution of the o L@ o

" . . +47maa(S,+S5—-3p), 38

Vlasov equation. In this approach we generatéNgparticle maa(S+S,~3p) (38)

sample of some specified initial distribution function

. . th th "
f(0,x%,py), and then use dynamical evolution of tNepar- with the boundary conditions

ticles to approximate the full dynamics éft,x*,p,). The a'(1,0=0 (39)
continuum limit is recovered in the limil—o and, in the ' ’
absence of any sophisticated “importance sampling” tech- a(t,o)=1. (40)

niques, we expect the level of statistical error in our particle

calculations to be of the order of . We couple the par- jjere the first condition follows from the demand that the
ticles to the gravitational field by introducing a finite- gjicing pe regular at=0, and the second one follows from
difference mesh on which we approximately solve the geoygympiotic flatness, plus the demand thateasure proper
metric equations, and by introducing transfer operatorgj e at infinity. We solve Eq(38) using a second-order

which allow us to produce mesh-based representations Gj,jte_gifference approximation on the finite-difference mesh:
particle quantities andice versa “Particle-mesh,” or PM,

methods such as ours are commonly used in the solution of
Boltzmann equations, particularly those involving long-
range interactions, and the reader is referred1® for a h2 2h
detailed review of such techniques.

Here we simply note that a PM method is generically +@
characterized by the splitting of each discrete time step, r.2
t"—t"*! into two stages(1) the solution of the field equa- .
tions on a finite-difference mesh, arid) the updating of S, — —
particle positions via discrete versions of their equations of +4ma;a; > t[Sa]—3le]; |-
motion. In our case, and as described in the previous section, a
at each time step the stress-energy quantities are calculated (41
by considering each particle to be “smoothed” over a finite
volume. Rearranging this equation gives us

aj+1—2aj+aj,1_aj+1—aj,l aj+1_aj,1 2

2haj rj

aiy1—ai_

2 j+1 j—1
a. _1+2r.—
J ' 2ha )
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1 f; 2 1 f;
E-ﬁ-% a1~ ﬁ'ng aj-i- ﬁ_% aj,1=0 1 W -1
(42 1 h
where
R P F
f— aj+1_aj,1 2 43 i ] j+1
™ 2haj ﬂ (43 FIG. 1. lllustration of the smoothing kern&l(r —r;). Here,r;

is the position of a particle;- -rj_q, rj, rj;1- - - are the(uniform)
finite-difference mesh points with,=r;,,;—rj=const=h.

quantities in the particle updates, rather than, for example,
Al values att=t""'2 we expect our solution of the particle
+4waj(—2+[S§]j—3[p]j) ) (44)  equations to have accuray(At). We also note that in our
numerical implementation, we chose a valueAdf propor-
. ] tional toh, i.e. At=X\ h, where usuallyx =1.0.
In addition to Eq.(42) we have the boundary equation at  \ye need to take special care if a particle leaves the com-

r=0: putational domainr;>r ., or if it reaches the origin. In the
5 ) first case we simply remove the particle from the integration
34 1h”+1,/(2h) it | 4+ —2h"—g, o= scheme. When a particle reaches the origin, which operation-
1h?—f,/(2h) ! 1h?—f,/(2h) 2 ally is signaled byr;<<0, we “reflect” the particle by setting
(45)
ri—> - ri y (48)
which can be derived from thé(h?) forward finite-
difference approximation ta’ =0 atr=0 [peli——=[pe]is (49
—3a;+4a,—as i —1;. (50)

h 0, (46)

o . C. Interpolation and restriction
and Eq.(42) with j =2. We have also the boundary condition

atr=r..- In this section we explain how we calculate the stress-
max-*

energy quantities on the finite-difference mesh from a given

2My set of particlegrestrictior), as well as how we interpolate the
ay = 1— ! (47 geometric quantities from the finite-difference mesh to the
' N, particles’ positions.

The values of the stress-energy quantitiesj,, S are

whereM is the mass aspect function defined by Bj. This calculated on the mesh using E@1):

approximation follows from the known representation of the
asymptotically-flat Schwarzschild solution in maximal-areal o N
coordinates. Equationg?), (45) and(47) constitute a linear f(rj):E fiW(rj—ry)
tridiagonal system that can be solved using a tridiagonal =1

solver(we have used theapAck [14] routine DGTSV). — _ . . _
wheref; are the single particle quantities. In our implemen-

B. The evolution equations tation, we use the specific kern@ee Fig. 1

To evolve the particles’ positions and momenta we inte- 1=[rj=ril/h, |rj—ri|<h,
grate the geodesic equatiof33), (34). The values of the W(rj—ri)= 0 otherwise.
coefficients in these equatioribasically products and quo-
tients ofa, «, B, a’, @’ andB’) must be calculated at the Similarly, to restrict the geometric quantities calculated on
particle positionsr;, using the values obtained at the meshthe mesh to the particles’ positions we compute
points, r;. The mesh values are interpolated to the particle
positions using the same operator kernel used to produce
mesh values from particle quantitiéthis procedure is ex- FW:JZI F(rpW(rj—r) (52
plained in the next sectionThe geodesic equations are also
integrated using thesopa routine. At discrete time=t",  where, againr; is the position of the particle, are the grid
given a particle’s positior,", and radial momentunp;', we  points, andF is any of the coefficients which appear in the
calculate the new position"**, and momentump?”, at  geodesic equations. These coefficients are generally products
t=t""1=t"+ At by supplying toLsoDA the values of the and quotients of metric functions and their derivatives. In
metric functions and their spatial derivatives evaluated abrder to calculate derivatives we use the standa(th?)
t=t". Because we use the=t" values of the geometric finite-difference approximation:

(51)

Ny
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[F'1lj=(Fj+1— Fj_l)/(2h)+0(h2) (53 . TABLE I. Summary of criti(.:a.llsearches described in t.h.e text.
Listed are family label, form of initial data, set numigéar families
where multiple, independeniy-particle representations of the ini-
tial distribution function were use@dand computed lifetime-scaling
exponents,o. See the text and particularly Eq&6)—(58) and
(63),(64), respectively, for detailed definitions of the “Gaussian”
D. Initial data and “Tanh” initial data. Also note that ATS stands for “almost time
symmetric,” as discussed in the text. The quoted erroafbvalues
of o is the estimated statistical error for the ATS datee Eq(62)].

and then use Eq(52) to find an approximate value for
F/(ri).

To initialize the sets of particles which we evolve, we
specify the particle distributiotnumber of particles per unit
of areal coordinateand the velocity distributiofspecifically

. . Famil Form of initial data Set no.
the number of particles pgx, andl). This corresponds to a y 7
separabledistribution function,f(r,p, ,!): @ Gaussian|,=12 ATS 1 5.10.2
(a Gaussian|,=12 ATS 2 5.3-0.2
f(r,pe,1)=R(r)P(p)L(I). GRS Gaussian|,=12 ATS 3 5.2:0.2
Moreover, instead of specifying as a function ofp, we (0 Gaussian|,=3 1 5.7£0.2
give P=P(p,) wherep,=p,/a. This allows us to calculate () Gaussian|,=5 1 5.5+ 0.2
the value ofp'=Vm2+ p?+12/r2 (assuming all the particles
fo Pr ( 94 ._p (d) Gaussian|,=7 1 5.0-0.2
hive the same rest masy, and thereford p];, [j,]; and d) Gaussian| =7 > 5.0+ 0.2
[S]; without a priori knowledge of the geometry. We can :
thus decouple the tasks of specifying initial conditions for(€) Gaussian|,=12 1 4.9:0.2
:h_eopartlcles, and ensuring that the constraints are satisfied @} Tanh,l,=7 1 5.9+0.2

We use 1-dimensional Monte Carlo techniques applied to
each ofR(r), P(p,), L(I) to get a specific set af particles.
As mentioned above, the statistical error, in theory, shoul
scale as I/N.

d%earch, we generally determinbt}, to a relative precision of
about 4< 1071, Table | provides a summary of the various
families we have studied.

We first focus on a specific family of initial conditions
IV. RESULTS [Table I, family(a)] and then summarize our observations for
the remaining families. We thus consider an initial distribu-

All of the calculations discussed in this paper were Perion defined by

formed with N, =257, N=10° and h=0.078125. With this
choice of parameters we ensured that the truncation error due 2
to the finite-differencing of the field equations with mesh R(r)=r2e (17400 (r) (56)
spacingh was of the same order of magnitude as the statis-
tical error resulting from representation of the phase-space
distribution with a finite numberN, of particles. We have
observed 4] that both types of error scale in the expected
way: the truncation error scales @gh), with the number of L(I) :e(f(lflo)sz)@“) (58)
particles per cell fixed; the statistical error scales ad\ifor
fixed h, and a0 (1/h) for fixed N. Once the two errors are of . — . .
comparable magnitude, in order to further decrease the ovefN€reé. againp; =p./a, and® is the step function. We take
all error (truncation plus statistical errpas O(h), we have o=5, A;=1, p;,=0, A, =2, 1,=12, A|=2, and refer to
to increase the number of particlesNs-1/h*. This scaling the data as “almost time symmetri¢ATS) since the Gauss-
behavior makes it very costly to substantially reduce thdan for the radial momentum is centeredpat=0. The criti-
level of numerical error in the results presented here. cal parameter for this family iM};~1.3 as shown in Fig. 2.
Our critical solutiongsolutions sitting at the threshold of This figure also shows that the smallest black hole formed
black hole formatioh were found by performing bisection hasfinite mass and that the transition is therefore of type I, in
searches using the total rest mas,: agreement with the observations of Reinal. [3].
In Fig. 3 we show a few snapshots of the evolution of
N a(t,r)=a,a(t,r) resulting from initial data which is close to
Mo:zfl m=Nm (55 criticality but which eventually disperses. At early times,
a(t,r) oscillates, but for 108t=<200 it appears to approach

as the tuning parameter. In particular,Nf; is the critical ~ O- In the last snapshot<234) we observe thai(t,r) has
parameter value, then configurations witly<M? (subcriti- become negative, corresponding to dispersal of the particles.
cal) will eventually disperse, while those witdl ,>M} (su- We also observe similar behavior for the time derivatiues

percritica) will form black holes. For any given critical and .

P(p,)= e (Pr=pr)?/4p%) (57)
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FIG. 4. Plot ofa(156y) from three separate familg) calcula-

FIG. 2. Black hole mass as function of total rest madg, for  tions using distinct initial particle setdNE 10°). The scatter in the
the “almost time-symmetric,” Gaussian family of initial data de- displayed datasets gives a rough indication of the level of statistical
scribed in the texiTable I, family(a)]. We observe that the smallest error Ag(a) in the computations. The plot shows that, at least for
black hole has a finite mastype | transition at a critical parameter r=5.5, where 93% of the mass of the putative static cluster is
M¢~1.3 (dashed ling Computationally, we have tuned; 10 @ |ncated, there is little or no correlation between the three sets. Thus,
relative precision of about>410~ 1%, which is typical of the critical ny nonzero value o in the critical limit may be attributable to
surveys discussed in this paper. The discrete jumps in the black ho%nite-N statistical fluctuations
masses forM,>M} reflect the discrete nature of the finite- '

difference grid. We have made no attempt to “interpolate” the lo- . Lt . .
cation of the black hole horizon in the finite-difference mesh; hence These results are theensistenwith a—0 in the critical

our mass estimates will always satisfg,=kAr =kh, for some €gime, although more definitive proof would require signifi-
integerk. cantly higher particle numbers, as well as higher finite-
difference resolution. If we accept that the metric coefficients

In order to better see how smal(t,r) becomes, we show become independent bfn the critical regime, then the criti-

in Fig. 4 details of(t,r) att=156 for three different sets of cal spacetime is stationary. If, in addition, the vectdt
particles sampled from the same initial distribution function.= (9/dt)* is orthogonal to the spatial hypersurfaces, then the
The difference between the solutions obtained with differenfPacetime is static, and the shift functigg(t,r), must van-

sets give Us an estimate of the statistical ertay(a), in the ish. In Fig. 5 we show the evolution of the shift function.

calculation. From the figure we can see that for the most parPu”n.g. the period when the time d_envatwgs of t_he metric
Au(s I~ |é| This is not the case far=5.5 where the three coefficients are close to zero, the shift functjgft,r) is also
|As(a) : — close to zero, in the sense tHatg(8)|~|B|. We thus have

<_:a|cu|at|0ns all seem to indicate a specnjc non-zerq value 1Eolrevidence that the critical solution in this case is characterized
a; however, we suspect that the amplitude of this featureyy g static geometry.

may decrease if we tune closer to the critical solution, and if ~ \we have also observed that in the critical regime the total

we use greater resolution. More importantly, the region cyrrent densityj, , tends to zero. This must be the case if the
=5.5 accounts for only about 5-10% of the mass of the

near-critical configuration. f\
£ _ _ v
A i 5 t=0 t=9.5 t=29
e N
t=0 t=9.5 t=29 A
N
Q.
LA t=49 t=78 t=117
.© E A -
r e 0.01 7\ 1T ‘ 1T \7
t=49 t=78 t=117 C ]
7\ T T T L |7 O | -
0.015 - 7 C ]
o Fe ] —0.01 [t=156  Jt=195 t=234
L _ X‘{ NI B
-0.015 =156  1t=195 t=234 0 1o =0 .
I Ll
0 10 20 ) ) N )
r FIG. 5. Evolution ofB from a marginally subcritical calculation

. using family (a). The shift function apparently vanishes during the
FIG. 3. Evolution ofa from a marginally subcritical calculation same period of time as does Therefore, during this interval, we
(My<M?) using family (a). Note that at intermediate timéé| have evidence thai®= (4/9t)® is orthogonal to the hypersurfaces,
~0. and, thus, that the geometry is static.
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FIG. 6. Evolution ofS',(t,r) from a marginally subcritical cal-
culation using family(a). During the static regimeS',(t,r) is
bounded away from zero, showing that althoyghis zero on av-
erage,|p;| is not.

FIG. 7. lllustration of scaling law for the lifetime of near-critical
configurations. The quoted uncertainty for each valuerdé the
standard deviation of the slope, which has been computed using a
least squares fit.

spacetime is static. However, as shown in Fig. 6, $1¢  most nearly-critical solution. We can see that thererisugh
component of the stress energy tensonas-zeronear criti- |inear relation between the lifetimeof the near-critical con-
cality. This means that although on average there are thﬁ.‘gurations and IMy—M?):
same number of particles with positiveutward-directed
and negativeiinward-directedl p, , the mean value ofp,| 7~—(5.2£0.2)In|M;—M*| (62)
doesnot vanish.

As is typical of type | critical solutions, as we tumé,  where the quoted uncertainty is an estimate of the statistical
— My, the dynamical solution spends more and more timeeffor. o
“close” to the putative static solution, and we expect to find ~ Qualitatively, then, our results are similar to what has
power-law scaling of the timer (the “lifetime” of the near- ~ been observed in other instances Qf type | crltlcal'collapse
critical configuration spent in the critical regime as a func- [15]. We have also found results similar to those just pre-
tion of In|M,—M?]. Specifically, we expect the static critical S€nted by using 4 other Gaussian famifi@able I, families
solution (or solutions, since we are unable to demonstratéb)—(e)], each withp,,= —4 and with varying ;s of 3, 5, 7
convincingly that the model hastmiquecritical solution, up ~ and 12;r,=5, A, =1, Ay =2 andA =2, as for family(a).
to trivial rescalingto possess exactly one unstable mode inSpecifically, in each case we find that the critical geometry
perturbation theory, with an associated Lyapounov exponerippears to be static. We note that for smaller valuek, pf
which is simply the reciprocal of the scaling exponentjn  the mass in the critical solution gets increasingly concen-

the lifetime scaling law: trated near =0, making accurate evolution with a uniform
. finite-difference grid more difficult. Finally, we have studied
7~ =0 In[Me=My*|. G family with the following initial single-particle distribu-

Figure 7 shows a plot ofr=t—t. versus [fM,—M}| tions(Table I, family (P

wheret is the total time that the particles in the solution R(r)ec(1—tanH (r—r,)/A, 19O (r) (63
generated with paramet®t, are localized withimr =r,=6,
andt. is the same quantity for the solution closest to criti- P(Pr)“(l—tanﬂ(a—ao)mﬂ) (64)

cality. We show results from calculations using three differ-
ent sets of particles and the same Gaussian family previously
discussed. Using the residual scaling freedom in the model
for arbirary xo0). we have also nomalized each ortical T8 W€ 100605, 8 =1, Pro=—4, A =2, 1,7 and
y ' A;=2. For this data we also find evidence that M

solution to have unit ADM mass: )
—M?, the geometry becomes static.

L(I)=(1—tanH (I—1,)/A,1%)0(1). (65)

F—r/MS(t*F o) (60) In Fig. 8 we show profiles of ®I(t*,r)/r for all of the
different families considered, each separate profile being se-
t—t/ME(t* 1 o) - (62) lected from the corresponding period of near-critical evolu-

tion. Again, since different initial conditions set different
Heret* is defined to be the instant at which the time deriva-overall length scales for the problem, we have normalized
tives of the metric components are closest to zero for théhe results using the rescaling given by E(§0), (61). We
solution closest to criticalityM °(t*,r o0 is then the value of see that, after normalization, the peak oM@™*,r)/r is
the mass aspect function &&t*, r=r.,, again for the roughlyat the same radial location=r*=2.3. We also find
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FIG. 8. Comparison of near-critical solutions for different fami-
IZ'(KAS ct)f |n|;|al dﬁta('lt'?tz?f;). Wet ?ee ewﬁt:ncgl ert?] ”f""frs";" phroflle observe near-critical lifetime-scaling behavior for all the families
(t°.r)/r, where ifferent for each familyis the instant when we have studied, as expected for type | solutitstatic or periodic

the temporal derivatives of the metric components are m'mmlzedSOIutions, with one unstable mode in perturbation thepryThe

andr has been rescaled for each family so that all critical solutions o -
. . . uoted uncertainty irr is given by the standard deviation of the
have unit ADM mass. The maximum value oMZr)/r is about 4 v 9 y

L . i, . east-squares slope. The axes ranges vary somewhat from subplot to
0.76 showing immediately that the critical solution cannot be one o} q P 9 y P

the clusters considered [i6], since there are no equilibrium Ein- subplot; the values shown for familg) are representative.
stein clusters with maximumM(r)/r larger than 2/3(Moreover,

in contrast to the configurations studied here, all particles in al
Einstein cluster are in circular orbi}s.

FIG. 9. Scaling behavior for different families of initial data. We

rprofiles calculated from different families of initial data;
clearly more work needs to be done in order to clarify the
effect of initial angular momentum distributions on critical

that the better resolved a solution is, the closer it conforms t&Velution in this model.

the best resolved solutidifable I, family(a)]. This provides
some indication that there may beuaiversalcritical solu- V. CONCLUSIONS
tion in this model(up to trivial rescalingsy — «r, t— «t),
but again, we would need better finite-difference resolution We have studied critical behavior at the threshold of black
and many more particles to verify this conjecture. This figurehole formation for collisionless matter with angular momen-
also shows that the maximum ofVt*,r)/r has a value of tum and have corroborated the findings of Refral.[3] that
approximately 0.76. This immediately shows that the criticalthe black holes which form at threshold in this model are of
solution is not one of the clusters considered 16], since  finite mass(type | behavioy. Further, our results indicate that
there are no equilibrium Einstein clusters with maximumfor families with non-zero angular momentum, the critical
2M(r)/r larger than 2/3. solution has a static geometry, with non-zero radial particle
We have also estimatea defined by Eq.(59) for the
different families described above. Figure 9 shows the life-
time scaling measured for the various initial data sets, where 0.15
the quoted uncertainty in each value @fis the standard
deviation of the slope computed from a least squares fit. The
values that we have obtained for the scaling exponents are
also collected in Table I.
Finally, we are also interested in investigating the depen-
dence of the critical solutions on the distribution of angular

momentum. In Fig. 10 we shom?gaa(t*,r) for the different
families of initial data we have studied. Here

A L L

%(a) Set 1
«(b)

®\C
«(d) Set
e (e)
~(f)

—_

0.1

r? S (t'r)

0.05

1 [I7? 0
4mAr ript, (60

(=]
N
e
@

N
rZs,=r2 > W(r—r,)
=1

.. . ) FIG. 10.r2S%,(t*,r) for the different families in the near-critical
[see Eq(18)], andt” is defined as previously. We note that regime. As described in the text, this quantity is a dimensionless
r2S%,(t,r), is a dimensionless quantity which measures theneasure of the squared-angular-momentum of the distribution. In
square of the angular momentum of the distribution of parcontrast to Fig. 8, we see no particular evidence of a universal
ticles. As in Fig. 8, we have again rescaled the radial coorprofile here. However, considerably more resolutibath inh and
dinate (and timg so that the critical configuration has unit N) is needed to accurately assess the impact of angular momentum
ADM mass. We see that there is no obvious agreement of then critical collapse in this model.
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momenta. We have also found evidence for a lifetime scalinghould provide a technique with better-understood, and
law which is to be expected for type | critical solutions, andbetter-controllable, convergence properties.

have some indications of universality. In order to produce
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