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Locating boosted Kerr and Schwarzschild apparent horizons
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We describe a finite-difference method for locating apparent horizons in generic spacetimes and illustrate its
capabilities on boosted Kerr and Schwarzschild black holes. Our model spacetime is given by the Kerr-Schild
metric. We apply a Lorentz boost to this spacetime metric and then carry out a 311 decomposition. The result
is a slicing of Kerr-Schwarzschild spacetime in which the black hole is propagated and Lorentz contracted. We
show that our method can locate distorted apparent horizons efficiently and accurately.
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I. INTRODUCTION

Apparent horizon locators play an integral role in the a
plication of black hole excision techniques to computatio
evolutions of black hole spacetimes. The idea behind e
sion techniques is to delete those regions of spacetime
taining curvature singularities from the computational d
main. This approach is viable since, assuming cos
censorship, such curvature singularities are expected to
located within event horizons. By definition, an event ho
zon is a causal boundary whose interior does not caus
affect the exterior spacetime; as a result it is possible
excise a region within the event horizon—including t
black hole singularity—yet still be able to faithfully compu
the geometry of the spacetime outside the black hole.

In our approach to computationally solving the Einste
field equations we focus on the use of Cauchy technique
which a 311 splitting of spacetime into a foliation of spac
like hypersurfacesS, parametrized in time, is the basis fo
an evolution in time. The result of this splitting is a system
elliptic and hyperbolic partial differential equations in th
3-metricg i j and extrinsic curvatureKi j . These are the fou
constraint equations and 12 first-order-in-time evolut
equations. The Cauchy approach starts with an initial spa
like slice with g i j and Ki j set by solving an initial value
problem~the elliptic constraint equations!. One then uses the
evolution equations to evolve to the next spacelike slice
taining g i j and Ki j at the next time~see York@1# for a de-
tailed discussion!.

In the evolution of black hole spacetimes in this mann
we do not have a complete history of the entire spacet
and hence do not have knowledge of the location of the ev
horizon. Since the event horizon is a global object that
pends on geometric information for all time~or at least until
the black hole becomes quiescent! we cannot use it to deter
mine an inner excision boundary in our Cauchy evolutio
However, there is an alternative, and that is to use the ap
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ent horizon surface which is a local object, locatable~if it
exists! with g i j andKi j on one time slice. The apparent ho
rizon is the outermost marginally trapped surface. It is
closed spacelike 2-surface whose future-directed outgo
null normals have zero divergence@2#. The apparent horizon
is slicing dependent and may not necessarily exist e
though an event horizon does. An example of this is given
Wald and Iyer@3# through nonspherically symmetric slicing
of the Schwarzschild spacetime. Provided anon-pathological
slicing is chosen the apparent horizon or any trapped sur
within it may be used for excising the black hole singulari
These surfaces define a local causal structure that di
guishes instantaneously escaping null rays from those
are certain to collapse. This distinction makes their treatm
very amenable to computational black hole excision te
niques. Since these surfaces can be determined with geo
ric information at one instant of time, they are used in pra
tice as an inner boundary in Cauchy evolutions. With t
purpose in mind, we developed a 3D apparent horizon lo
tor that utilizesg i j and Ki j on a given spacelike slice o
spacetime and locates an apparent horizon. Once it is loc
a region contained within it is excised. Thus the method
really a trapped-surface excision.

There has been a variety of work done on apparent h
zon location in spherical symmetry, axisymmetry and 3
We focus solely on the 3D locators. These can be classi
into those that use finite difference methods, and those
utilize pseudo-spectral schemes. Further, one can clas
each of these finders in terms of those that use flow meth
versus those that directly solve the apparent horizon equa
either via a minimization scheme or Newton’s method
root finding.

One of the first published 3D apparent horizon locat
was developed by Nakamuraet al. @4#. Their method ex-
pands theapparent horizon shape function, r 5r(u,f), in
spherical harmonics to some maximuml 5 l max:
©2002 The American Physical Society24-1
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HUQ, CHOPTUIK, AND MATZNER PHYSICAL REVIEW D66, 084024 ~2002!
r~u,f!5(
l 50

l max

(
m52 l

l

almYlm~u,f!. ~1!

With this expansion Nakamuraet al. evaluate the appar
ent horizon equation and solve for the coefficientsalm via a
‘‘direct’’ functional iteration scheme. Bishop@5# reimple-
mented this approach and made modifications that led
improved convergence and stability behavior. Anninoset al.
@6# and Baumgarteet al. @7# implement similar methods tha
involve an expansion ofr(u,f); the primary differences in
these later works is that they expand in terms of symme
trace-free tensors and use Powell’s method for minimiza
of the square of the apparent horizon equation@Eq. ~2!#,
which is related to the expansion of the outgoing null n
mals.

Thornburg@8# gives a very good treatise on the use
finite differencing to solve the apparent horizon equation
ing spherical coordinates (r ,u,f) via Newton’s method. He
discusses in general how algebraic Jacobians may be ap
in a full 3D context. His implementation for horizon findin
is, however, axisymmetric; his full 3D finder suffers fro
problems with thez axis (u50,p). Our method for finding
horizons uses closely related concepts except that we
finite differences in Cartesian coordinates, eliminating a
potentialz-axis problems.

Another class of apparent horizon locators casts the e
tic apparent horizon equation into a parabolic one as s
gested by Tod@9#, via the use of flow methods in locatin
apparent horizons. Bernstein@10# implemented Tod’s algo-
rithm in axisymmetry using finite differences, but encou
tered problems with differencing on a sphere in spher
coordinates in the general case.

The advantage of flow methods is that one can start w
an arbitrary initial guess and flow towards the apparent
rizon~s!. In some implementations it is possible to find mu
tiple apparent horizon surfaces starting from a single ini
guess surface~i.e., there is a topology change in the course
location of the apparent horizon!. Pasch@11# uses a level-se
method to locate multiple apparent horizons in 3D. He de
onstrates his method utilizing time-symmetric conforma
flat initial data for multiple black holes. A hybrid flow o
level-set-like method utilizing our approach of evaluating t
outgoing null expansions via Cartesian finite differences
been implemented by Shoemakeret al. @12#. That method
flows towards the apparent horizon~s! from an arbitrary ini-
tial guess allowing for topology changes. Gundlach@13# has
implemented a ‘‘fast flow’’ method for finding apparent h
rizons. Alcubierreet al. @14# present a series of results for th
pseudo-spectral method and the fast flow method for a se
of ‘‘testbed’’ data sets.

In the sections that follow we give a brief discussion
the algorithm used and relegate the details to the Appen
The model spacetime in which all of the results are presen
is discussed in Sec. III. In Sec. IV we discuss tests of
algorithm and demonstrate that the algorithm fares well
distorted apparent horizons in boosted Kerr spacetimes.
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II. FORMULATION AND SOLUTION OF THE ELLIPTIC
PDE

On a particular 3D spacelike hypersurface,S, from our
foliation of spacetime, we are given the 3-metric,g i j and the
extrinsic curvature,Ki j . Let S be a closed 2-surface inS. At
any pointp on S we can define an outward-pointing spac
like normal,sa, to S, and a future-directed timelike norma
na, to S. From these we can construct the outgoing n
normal, ka[ta1sa, at p. If the divergence¹aka (¹a is the
covariant derivative compatible with the spacetime met
gab) is zeroeverywhereon S, thenS is amarginally trapped
surface~MTS!. The apparent horizon is the outermost su
MTS. The equation for the vanishing of the divergence~ex-
pansion! of the outgoing null normals,¹aka50, can be re-
written entirely in terms of quantities defined onS @1#:

Dis
i1Ki j s

isj2K50. ~2!

Here Di is the covariant derivative compatible with th
3-metricg i j andK is the trace of the extrinsic curvature.

Given a specific coordinatization of the 2-surfaceS, the
apparent horizon equation becomes an elliptic partial diff
ential equation. This can be made manifest by noting tha
MTS is a closed 2-surface; spherical coordinates thus p
vide a natural labelling of points onS. The embedding ofS
in S can then be expressed in terms of the radial displa
ment,r(u,f), measured from some origin in the interior o
S. In general one can generate a foliation of such clo
spacelike 2-surfaces parametrized by their distance,w, from
the MTS:

w~r ,u,f![r 2r~u,f!. ~3!

Clearly, thew50 level surface is the MTS. From this scal
function w we can construct the outward-pointing spaceli
vector field,si , which is normal to the constant-w surfaces:

si5g i j ] jw/Agkl]kw] lw. ~4!

Substitution of the above expression into Eq.~2! results in a
second order elliptic partial differential equation onS,

F@r#5gab]a]bw1g ,a
ab]bw2

1

2
v21gabga

cd]bw]cw]dw

2v21gabgcd]bw]a]cw]dw1Gab
a gbc]cw

1v21/2Kabg
acgbd]cw]dw2v1/2K50, ~5!

which, as we have indicated, is to be interpreted as an e
tion for r(u,f) and wherev5gcd]cw]dw, andG bc

a are the
connection coefficients associated with the 3-metricgab .

Our approach involves the direct solution of Eq.~5! using
finite-difference techniques and a global Newton iteratio
To that end,S is replaced with a uniform finite-differenc
mesh, Ŝ, containing Nu3Nf points whereNu5Nf5Ns .
~Note that here and below we adopt the notation whereb
discrete version of a continuum quantity,T, is denoted byT̂.)
The range of coordinates onŜ is 0<u<p and 0<f,2p.
4-2
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LOCATING BOOSTED KERR AND SCHWARZSCHILD . . . PHYSICAL REVIEW D66, 084024 ~2002!
At the poles,u50 andu5p, all Nf points are identified.
The f52p branch cut is identified with thef50 line. The
‘‘boundary conditions’’ are periodicity atf52p andf iden-
tification atu50,p. These conditions are key to dealing wi
the coordinate singularities at the poles in combination w
the use ofCartesiancoordinates to discretize partial deriv
tives onŜ. We treatw as a function of Cartesian coordinat
x,y,z and center on each mesh point ofŜ a 3D Cartesian
difference stencil of 27 points. Using the form Eq.~3! we
interpolate values ofw(x,y,z) onto each of the 26 stenc
points surrounding eachŜ stencil point.~See the Appendix
for more details.! Using this difference stencil we can eval
ate first, second and mixed derivatives ofw(x,y,z) as re-
quired by the discretized version of Eq.~5!. At every point
on Ŝ we can then construct the residualF̂@ r̂# on Ŝ.

The problem at hand is to solve forr(u,f) that yields
F@r#50. SinceF@r# is a nonlinear operator@as shown in
Eq. ~5!#, we use a global Newton iteration, with an appro
mately computed Jacobian, to determiner. Given an initial
guess surface,r5r0, we wish to find adr ~the change in the
surface! that leads toF@r01dr#50 or, to lowest order,

F@r01dr#5F@r0#1
]F@r#

]r
ur5r0

dr1O~dr2!50. ~6!

Now, J defined by

J[
]F

]r
. ~7!

is the Jacobian associated withF, and in the discrete case,Ĵ
is an N3N matrix, whereN is the total number of points
used in the discretization. To obtain adr that givesF@r
1dr#50 to leading order, we must solve

J•dr52F@r# ~8!

for dr.
Computationally, each iteration of the Newton method

volves~1! the evaluation of the discrete form of the Jacob
matrix, Ĵ and~2! the solution of the discrete form of Eq.~8!.
We numerically compute the Jacobian matrix by perturb
the surface pointwise and examining the effect of the per
bation on the residual,F̂. Let m̄ label ‘‘independent’’ points
in the computational mesh,Ŝ. By independent we mean th
unique points in the mesh, that is mesh-points mod
boundary identifications. In particular, given the identific
tions discussed above, there areN[Ns

222Ns12 indepen-

dent points inŜ, sinceNs5Nu5Nf points at each of the
poles are identified. Equation~8! then becomes a linear sys
tem of equations whereĴ is anN3N matrix andF̂ anddr̂

are length-N vectors. Them̄n̄ component of the Jacobian
then computed by perturbingr̂ at then̄th point and comput-
ing the change in the residual,F̂ at the m̄th point. Specifi-
cally, using a first order forward difference approximati
we calculate
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$F̂ m̄@ r̂ n̄1e#2F̂ m̄@ r̂ n̄#%, ~9!

wheree, which we will call theperturbation parameter, is
the amount by which we perturb the surface. We note that
process of generating the non-vanishing Jacobian elem
involves an evaluation ofF̂ in only a small neighborhood o
the nth point sinceF̂ has a local domain of dependenc
~dependent on the discrete operators used, in our case
are finite differences convolved with interpolations!. Nota-
bly, the computational cost for the Jacobian computation
O(N), and the Jacobian hasO(N) non-zero elements.

Once we have solved the linear system fordr̂, the esti-
mate ofr̂ is updated viar̂5 r̂2dr̂, and the Newton iteration
is repeated until the solution is deemed converged. In p
tice we demand that theL2 norm of the change of the solu
tion, idr̂i2 @15#, be driven below a chosen stopping crit
rion.

Further implementation details concerning our method
found in the Appendix. We now direct attention to the mod
spacetime which we use for our numerical experimentat
with the technique.

III. 3 ¿1 SPLITTING OF THE KERR-SCHILD METRIC

In the remainder of the paper we focus on tests of
algorithm which use Kerr black holes~including the limiting
case of Schwarzschild black holes!. The particular form of
the Kerr solution that we use is the Kerr-Schild line eleme

gmn5hmn12Hl ml n , ~10!

where l m is an ingoing null vector~i.e. gmnl ml n5hmnl ml n

50), H is a scalar function of the spacetime coordinates a
hmn is the Minkowski spacetime metric. We note that t
above form of the Kerr metric is form invariant under
Lorentz transformation. By definition such a transformati
takeshmn→hmn and l m andH are transformed to a new nu
vector and left unchanged~though evaluated at the new co
ordinate labels for the same event!, respectively. This prop-
erty makes our analysis easier since a 311 decomposition of
Eq. ~10! has the same form as a 311 decomposition of the
boosted metric. As we shall see, we only need to specifyH,
l m and their spacetime derivatives in order to obtain
3-metric and extrinsic curvature onS.

We also note thatl m is the tangent field to a family o
ingoing null geodesics, and thus Eq.~10! leads to a 311
slicing of Kerr spacetimes that is well behaved at the ho
zon. That is, spacelike slices penetrate the horizon and hi
black hole singularity. This is a desirable property for bla
hole excision in computational applications and, indeed,
metric has proved to be a good choice for the study of sin
and multiple black hole evolutions with exicision.

Adopting ‘‘Cartesian’’ coordinates (t,x,y,z), H andl m are
given by

H5
Mr 3

r 41a2z2
~11!
4-3
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and

l m5S 1,
rx1ay

r 21a2
,
ry2ax

r 21a2
,
z

r D , ~12!

wherer is given by

x21y2

r 21a2
1

z2

r 2
51, ~13!

or

r 25
1

2
~r22a2!1A1

4
~r22a2!21a2z2. ~14!

In the above,M is the mass of the Kerr black hole,a
5J/M is the hole’s angular momentum, andr
[Ax21y21z2.

In thea→0 limit we recover the Schwarzschild metric
ingoing Eddington-Finkelstein coordinates wherein

H5
M

r
, ~15!

l m5S 1,
x

r
,
y

r
,
z

r D ~16!

and r 5Ax21y21z2.
In a t5const slice of a Kerr~or Schwarzschild! space-

time, the apparent horizon is known to coincide with t
intersection of the event horizon with that slice. In the Ke
spacetime, then, the apparent horizon is a surface of ra
r 5r 1 :

r 15M1AM22a2 ~17!

and area

A54p~r 1
2 1a2!. ~18!

In the more general nonstationary case the apparent hor
and event horizon will not coincide. We thus emphasize t
we use the special properties of the Kerr and Schwarzsc
spacetimes described here solely to test and calibrate
scheme for locating apparent horizons.

To get the spacetime metric for a boosted Kerr hole, c
sider Ō to be the rest frame of the black hole, with coord
nates (t̄ ,x̄i). Let O be the ‘‘lab’’ frame with coordinates
(t,xi) such thatO is related toŌ via a Lorentz boost along
the v̂5( v̂x ,v̂y ,v̂z) direction: in theO frame the black hole
moves in thev̂ direction with boost velocity,v (d i j v̂

i v̂ j

51). As usual, we defineg51/A12v2. H(xm̄) and l m̄

~where a bar denotesŌ frame! now transform as

H~xm!5H~Lm
n̄ xn̄ ! ~19!

and
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l m5Lm
n̄ l n̄~Lg

s̄xs̄!. ~20!

As stated previously, these transformations preserve the f
of Eq. ~10!.

3¿1 decomposition

The standard Arnowitt-Deser-Misner~ADM ! 311 form
of the spacetime metric is given by

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!. ~21!

If we compare Eq.~10! to Eq. ~21! and use the property tha
l ml m50, we find that the lapse is given by

a5
1

A112Hl t
2

, ~22!

and the shift is given by

b i52Hl tl i ~23!

or

b i52Hl td
i j l j /~112Hl t

2!. ~24!

The 3-metric is

g i j 5h i j 12Hl i l j ~25!

and the extrinsic curvature is determined from

Ki j 52] tg i j /2a1Dib j1D jb i ~26!

52] t~Hl i l j !/a12@Di~Hl tl j !1D j~Hl tl i !# ~27!

and

g i j 5d i j 22Hd i l d jkl l l k /~112Hl t
2!. ~28!

Note that

detg i j 5112Hl t
2 . ~29!

To obtain explicit expressions for the 3-metric and extr
sic curvature we simply substitute Eqs.~11! and~12! @or Eqs.
~15! and~16! for the case of Schwarzschild#, along with Eq.
~22!, into Eqs.~25! and ~27!.

IV. RESULTS

In the discussion that follows we present results from te
done with the locator using the metric data discussed in
preceding section. We set up a 3-dimensional Cartesian g
Ŝ, of n3 points on which we define a coordinate system. T
black hole ~either Kerr or Schwarzschild! is placed at the
origin of this coordinate system. Using Eq.~25! and Eq.~27!
we computeg i j and Ki j at each grid point except in th
region that contains the curvature singularity of the bla
hole ~for Schwarzschildx21y21z250 and for Kerr r
5Ax21y21z2<a). That is, we explicitly excise the singu
larity from the computational grid.
4-4
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With this setup we consider two groups of tests. The fi
uses Schwarzschild data to conduct some basic tests o
locator and to illustrate some of its properties. The sec
part of this section examines apparent horizons for boo
Schwarzschild and Kerr black holes and illustrates the lo
tor’s ability to locate extremely distorted apparent horizo
Specifically we consider~1! v50, a50 ~unboosted
Schwarzschild!, ~2! v50, aÞ0 ~unboosted Kerr!, ~3! v
Þ0, a50 ~boosted Schwarzschild! and ~4! vÞ0, aÞ0
~boosted Kerr!. From this point forward we also work in
units yielding unit black hole mass, i.e. in units such th
M51.

A. Tests with Eddington-Finkelstein metric data

In this section we discuss some basic tests of the appa
horizon locator including a demonstration that the solutio
obtained areO(h2), where h is the mesh spacing of th
Cartesian grid. We takev̂x50, v̂y50, v̂z50 and a50,
which generates metric data for an unboosted Schwarsc
black hole in ingoing Eddington-Finkelstein coordinates. D
spite the simplicity of the setup, we note that all compone
of g i j andKi j are non-zero. The latter property makes thi
good initial model problem to work with, because the co
putation is fully exercised in an analytically tractable situ
tion. As stated earlier, the apparent horizon is expected t
located atr 52M , and we conduct the tests with data~i.e.
metric and extrinsic curvature components! specified analyti-
cally where required.

1. Residual evaluation and second order convergence

We place the black hole at the origin of the computatio
domain (x50,y50,z50). For the spherically symmetri
line element currently under consideration the horizon eq
tion becomes the algebraic equation,

F~r !5
122M /r

rA112M /r
50. ~30!

As follows immediately from the above expression atr
52M we haveF50. A useful test of the evaluation of th
expansion of the outgoing normalsF(r ) is to see if indeed
the residualF̂@ r̂# is correctly evaluated toO(h2) as

F̂5F1e2h21•••, ~31!

wheree2h2 is the leading order truncation error term. Give
that the exact value is known forF̂@ r̂# we can approximately
compute the leading order truncation error. We carry ou
convergence test by evaluatingF̂@ r̂# on a 2-sphere
of r 52M for a series of mesh sizes, Ns
517,25,33,49,65,97,129. We examined the behavior
logiF̂i2 versus logNs, where Ns is the number of mesh
points on one side of theNs3Ns mesh. At r 52M F̂

;e2h2 and so theL2 norm, iF̂i2;ie2i2h2. Sinceh}1/Ns
we expect that if the residual isO(h2) then the slope of a
plot of logiF̂i2 versus logNs should be22.0, which we vali-
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dated via a least squares fit. A closely related test is to a
evaluate logir̂2ri2 versus logNs, wherer̂ is the numerical
solution from the apparent horizon locator andr is the exact
horizon location. Figure 1 shows the result. From a le
squares fit to a straight line, the slope is found to be abo
22.1 which again validates our solution asO(h2).

2. Jacobian

For the 2D mesh~using Ns533) discussed above, w
generate the Jacobian matrix for a single Newton step. Th
are N51025 independentpoints on Ŝ and henceJm̄n̄ is a
102531025 matrix. There are seven non-zero bands in
matrix with two additional ones in the vicinity of the poles
m̄51 and m̄51025. The structure reflects the domain
dependence of the finite difference operators used in
evaluation ofF̂. Here it comes from a combination of inte
polations and finite differencing in the Cartesian mesh. N
m̄51 andm̄51025 the additional bands come from our sp
cial choice of interpolation stencils at the poles, as discus
in the Appendix.

The structure reflects the fact that a perturbation a
single mesh point affects the residual in a small neighb
hood around it so we can optimize the generation of
Jacobian toO(N) by evaluatingF̂@r1dr# only in a small
neighborhood of the perturbed point. In practice, the Ja
bian generation was found to be orderO(Np) where p
'1.1.

A matrix A is defined to be diagonally dominant@16# if its
elements,Ai j , satisfy

(
j 51
j Þ i

n

uAi j u<uAii ufor all i . ~32!

FIG. 1. This graph shows the logarithm of the error norm of t

numerical solution,i r̂2ri2 versus log(Ns). Note thatM51. The
slope of the graph is22.1 and hence we conclude that the soluti
is O(h2).
4-5
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TABLE I. This table summarizes results from a test of our apparent horizon~AH! locator’s ability to find the AH in Schwarzschild data
starting from various initial conditions. In each case the initial surface is a 2-sphere of radiusr 0. The number of iterations taken for th
solution to achieveidri2,10210 is listed in the second column. Note that the final error in the solution remains a constant provid
solver is able to driveidri2 below the specified stopping criterion. The perturbation parameter used to generate the Jacobian was25.

r 0 No. iterations Final iF̂i2 i r̂2ri2
% error

0.5 10 2.2310210 3.031025 1.531023

0.75 9 2.5310210 3.031025 1.531023

1.00 9 9.7310211 3.031025 1.531023

1.25 8 9.5310211 3.031025 1.531023

1.50 7 1.6310210 3.031025 1.531023

1.75 7 9.6310211 3.031025 1.531023

2.00 4 9.7310211 3.031025 1.531023

2.25 7 9.8310211 3.031025 1.531023

2.50 8 1.0310210 3.031025 1.531023

2.75 9 9.5310211 3.031025 1.531023

3.00 12 9.9310211 3.031025 1.531023
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We found that our Jacobians werenot diagonally dominant
in general.

This is of interest since for some iterative solution tec
niques ~Gauss-Seidel and SOR, for example! a sufficient
condition for the solution of a linear system,A•x5b, is that
the matrix,A, be diagonally dominant. In our case we co
cluded from early experiments that indeed such simple ite
tive solvers did not converge for this problem.

Additionally, the Jacobian matrix is generally not sym
metric but it is well conditioned for the spacetimes that w
have considered. For a 33333 run the Jacobian has a cond
tion number,k, of about 104 to 105 wherek is defined by

k5iAiiA21i . ~33!

The condition number tells us how close the matrixA is to
being ‘‘numerically singular.’’ A very large condition numbe
or a reciprocal condition number close to machine eps
tells us thatA is effectively singular. An identity matrix has
condition number of 1. To estimatek we used theLINPACK

library routine,DGECO @17#. For completeness we note th
in their definition of the condition number, Dongarraet al.
@17# use theL1 norm.

3. Solution of the linear system

As stated before, to locate the apparent horizon using
technique, we have to obtain a solution,dr̂, to the linear
system

Ĵ•dr̂52F̂@ r̂#

which is the discrete form of Eq.~8!.
Since the properties of the matrix preclude the use

iterative methods such as SOR~not to mention that such
methods are not very efficient!, we use a modified conjugate
gradient method due to Kershaw@18#. ~The standard form of
the conjugate gradient method will not work sinceJ is not
symmetric.! Kershaw’s method, termed the incomplete LU
conjugate gradient method~ILUCG!, can solve any linear
08402
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system,A•x5b, with A a nonsingular, generally sparse m
trix. The method involves preconditioning the matrix via a
incomplete LU decomposition. This method has work
quite well for our purposes, although in principle other line
solvers could certainly be used.

4. Solution for the apparent horizon location

As a first test of our approach we carried out a basic
of the Newton solver’s ability to locate apparent horizons
Eddington-Finkelstein data. The test involved searching fo
solution using a set of different initial starting 2-spheres~pa-
rametrized by their radius,r 0) and examining the final solu
tion error and convergence properties. Table I shows the
ror and residual forr 050.5, . . .,3.0, Ns533 and stopping
criteria of idr̂i;10210. For each of the cases, once with
the basin of attraction, the solver converged quadratically
the finite difference solution, as is to be expected for a glo
Newton iteration.

As mentioned in the table caption, for this test we use
perturbation parameter,e51025. We found empirically that
for this problem, an optimum value ofe was between 1024

and 1026. In general,e must be chosen large enough su
that F̂@ r̂1e# andF̂@ r̂# are sufficiently different to prevent a
catastrophic loss of precision in the calculation of the Ja
bian. A contrasting requirement is that one must choose
small enough to produce a sufficiently accurate approxim
tion of the Jacobian.

5. Numerical metric data

For the tests discussed thus far we have used data an
cally computed at each point as needed. Since the ultim
goal is to incorporate this apparent horizon location alg
rithm into an evolution code, it is useful to gauge the perf
mance of the algorithm with ‘‘numerical’’ metric data~i.e.
tabulated data! and with the data structures expected in t
real application, where, for instance, part of the domain
excised from consideration. Thus we set up the sa
Eddington-Finkelstein data on a 3D Cartesian grid ofn3
4-6
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LOCATING BOOSTED KERR AND SCHWARZSCHILD . . . PHYSICAL REVIEW D66, 084024 ~2002!
points, with a region of this grid excised to emulate the si
ation in an evolution code where the interior of the bla
hole is excluded. The apparent horizon surface which is
bedded in this 3D Cartesian grid typically does not lie
Cartesian grid points and as a result an interpolation too
required. If the surface mesh, during the course of the N
ton iterations, overlaps the excised region then extrapola
is required. We make use of an interpolating routine writ
by Klasky @19# that can handle such situations. Using th
interpolator tool we can obtain the 3-metric, extrinsic curv
ture and the spatial derivatives of the 3-metric at any po
from a regularly spaced 3D array of values. Of course,
use of the interpolator brings in additional truncation err
associated with the interpolation or extrapolation operatio
However, in the following we show that even with extrap
lation errors, the solver works quite well in locating appare
horizons.

We excise the region of the 3D grid interior to a sphere
radiusRm centered at (xm ,ym ,zm) so that the metric data i
defined forr .Rm and undefined forr ,Rm . Here,r is the
Cartesian distance in Kerr-Schild coordinates from the e
sion center.

In the following discussion on radial and offset appare
horizon locations we taken565 for the Cartesian grid~with
h51/8) andNs533 for the surface mesh. The stopping c
terion used in the horizon finder isb51024. That is, if
idri2,b then the Newton iterations are stopped. The p
turbation parameter,e, is taken to be 1024. Interpolations
are performed toO(h4). The initial guess surface used is
sphere of radiusr 052.1M centered at the origin of the Ca
tesian grid. With these parameters we carry out two se
tests. The first is a radial test of the horizon locator with
use of the interpolator, and the second is an offset test. T
tests examine the effect of extrapolation of metric data on
evaluation of residual,F̂, and on the solution of the appare
horizon equation.

6. Apparent horizon location (radial tests with excision)

In this test case we center the black hole at (0,0,0). T
masked region is also centered at (0,0,0). We carry o
series of tests with the excision radius,Rm , varying from 1.5
to 2.6. Thus the apparent horizon is in the defined reg
(Rm,2M ) for some of the tests, and for others it is insi
the excised region (Rm.2M ). This provides evidence of th
effect of extrapolations on the residual of the apparent h
zon equation,F̂, and the error in its solution. Figure 2 illus
trates the behavior of theL2 norm of the residual,iF̂i2, as a
function ofRm . Figure 3 shows the percentage relative er
of the solution of the apparent horizon equation as a func
of Rm . The percentage relative error is calculated using
exact solution for the location of the apparent horizonr

5r(u,f)5 r̄52M , ase[ir2 r̄i / r̄3100%. ForRm,2M
the interpolator uses interpolation for regions near the ap
ent horizon location (r 52M ), while for Rm.2M it uses
extrapolation. AsRm increases beyond 2M , the errors due to
extrapolation increase, as expected. This can be seen in
2 where iF̂i2 increases quickly forRm*2.4, as does the
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solution error per se, which is shown in Fig. 3. AtRm
52.5M , the solver cannot driveidri2 below 1024, and so
fails to meet the stopping criterion. This can be understoo
terms of the Cauchy-Schwarz inequality@16#. Since iJ

•dri25iF̂i2 we have that

idri2>
iF̂i2

iJi2
. ~34!

At Rm52.2 whereiF̂i2;1023 and idri2;1025, we have
from Eq. ~34! that iJi2;102. Therefore atRm52.5M we
expect withiF̂i2;1022 that idri2;1024. By relaxing the
criterion for 2.5M<Rm<2.6M we can still obtain a solu-
tion. ForRm.2.6M , the convergence progressively worsen
For example, atRm52.9, iF̂i2 could not be brought below

FIG. 2. Graph of theL2 norms of the residual,iF̂@w#i , versus
the mask radius,Rm.

FIG. 3. Percentage relative error inr versus mask radius. Pas

Rm.2.5 the Newton solver could not reduceiF̂i2 below 1024.
4-7
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1023, and the solution error is 5%. The amount of err
sustained from interpolation of the metric data is depend
on the resolution of the Cartesian grid and the behavio
the functions being interpolated. If the gradients ofg i j and
Ki j are large near the horizon then a larger interpolation e
results. This in turn leads to a larger truncation error inF̂. In
the numerical evolution of black hole spacetimes with ex
sion we conclude from this experiment that buffer zones m
not be necessary for the location of apparent horizons. H
ever, in an evolutionary context, buffer zones might be n
essary for other reasons.

7. Locating offset apparent horizons

We now consider a situation where we have an ‘‘offse
black hole such that the apparent horizon overlaps the
cised region. This is an important case to consider becau
is relevant for the tracking of moving black holes@20#.

The center of the masked region is at (0,0,0) and
black hole of radius 2M is centered at (d/A3,d/A3,d/A3),
so that the radial distance between the mask center and
hole isd. With a grid spacing ofh51/8, an offset ofd51
thus corresponds to approximately 8 grid zones. Figur
shows the percentage relative error in the apparent hor
location as a function of the offsetd. As the graph illustrates
up to d50.7 the percentage relative error is below 1%.~At
d50.7 the percentage error is 0.6%.! From d50.7 onwards,
however, the solver becomes sensitive to initial conditio
and extrapolation errors, and quickly ceases to converge

At d50.7, about 5–6 grid points offset, we are still ab
to find horizons. Generally, in explicit time-evolution cod
the Courant-Friedrich-Levy~CFL! condition @21# restricts
the black hole motion from one time slice to another, to
less than one zone (d,h or aboutd;0.1 in our test case!.
Hence we expect, based on the results for our model sp
time as shown in Fig. 4, that in such an evolutionary sche
with a similar resolution we will be able to locate black ho
apparent horizons to a precision of order 0.1%.

FIG. 4. Percentage relative error in the apparent horizon lo
tion as a function of the offsetd.
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B. Apparent horizons in Kerr data

In this section we focus on the apparent horizon locat
in Kerr, boosted Schwarzschild, and boosted Kerr spa
times. We begin with the Kerr case, where we excise
2-sphere of radiusr .a centered about the origin from th
computational domain to avoid the ring singularity structu
of the Kerr black hole. Using the apparent horizon locat
we find horizons for various values of the angular mome
tum parameter:a50.0,0.1,0.2, . . . ,0.9. In each case, the lo
cator begins with a trial surface that is a 2-sphere of rad
r 052M and we useNs533, e51025 andb510211. Figure
5 shows a cross section of the computed horizon in thexz
plane as a function ofa. For non-zeroa the apparent horizon
apparently has the shape of an oblate spheroid.

In order to perform a convergence test we carried ou
series of runs witha50.9 and Ns517,25,33,49,65. We
found that the error in the solution,i( r̂ 2r 1)/r 1i2, was
O(h2). Here r 1 is given by Eq.~17!, and r̂ is computed
from the discrete form of Eq.~14!.

We compute the area of the apparent horizon by proje
ing g i j onto the 2D mesh to obtain an area eleme
A (2)g du df. We integrate this element over the discre
2-surface,Ŝ, to obtain the numerically computed area,Â.
Figure 6 shows the percentage errors in the area as a fun
of mesh size.

We now consider Schwarzschild and Kerr black ho
boosted in theyz direction. Specifically, we takev̂x50,v̂y

51/A2 v,v̂z51/A2 v and a50 or a50.9. For both values
of a, we locate apparent horizons forv50,0.1, . . . ,0.9.
From 0<v<0.8, we started with a two-sphere of radius 2M

a-

FIG. 5. u5p/2 andf5p cross sections of apparent horizon
located are shown for various values ofa. The solid line shows the
f5p slice of the apparent horizon. The dashed line shows thu
5p/2 slice of the horizon. As expected thef5p slices show in-
creasing deformation for increasinga.
4-8
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and found an apparent horizon with outgoing expansi
driven down to 10212. For v.0.8 we had difficulty achiev-
ing this convergence criterion. As a result we utilized t
solution atv50.8 as an initial guess and were subsequen
able to find horizons by stepping every 0.25 fromv50.8 to
v50.9. For these runs, we again usede51025. At v50 the
initial guessis the apparent horizon, and, in this case, t
expansions were driven to;10212 within six Newton itera-
tions. The first Newton iteration took the expansions
;1026. For v50.5 starting from an initial guess of a sphe
of radiusr52M , it took four Newton iterations to drive the
expansions to;1026 and nine Newton iterations to ge
down to;10212. Typically, in a numerical time evolution o
such a spacetime we would not need to drive the expans
down to this level. In particular, if we are utilizing a surfac
within the apparent horizon as an excision boundary then
need only to drive the expansions down far enough to
certain an apparent horizonis present outside ofŜ. Figure 7
shows theyz cross section of the apparent horizon for va
ous boost velocities compared with an unboosted black h
apparent horizon cross section. We find that the appa
horizon is Lorentz contracted in theyz direction in the
boosted coordinates. This is consistent with the slicing t
we have chosen where the event horizon appears Lor
contracted. We know that in these spacetimes the appa
horizon coincides with the event horizon and we find th
this is indeed the case. First, the area of the apparent hor
coincides with the area of the event horizon which is inva
ant under a boost. Figure 8 shows the error in the appa
horizon area as a function ofv for various resolutions. We
find that with increasing resolution the error in the area c
verges towards zero. This demonstrates that the area o
apparent horizon foundis approximately invariant under
boost. Additional evidence is provided by Fig. 9 where
show the error in the radial coordinate,r 52M , on the ap-
parent horizon for various boost velocities. In this case
black hole is boosted in thexyzdirection for generality. That

FIG. 6. The percentage error in the area of the apparent hor
for a Kerr hole versusa is shown forNs517,25,33,41,49,65.
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is, v̂x51/A3,v̂y51/A3,v̂z51/A3 and a50. Here r
5Ax21y21z2 is computed using the boosted coordinat
xm5Ln̄

m
x̄n̄, wherex̄n̄ are the unboosted coordinates.

Figure 10 shows surface plots of the apparent horizon
v50,0.3,0.6 and 0.9 displayed in Kerr-Schild Cartesian
ordinates. Note how distorted the apparent horizon gets w
increasing boost velocities. As also seen in the figures for

on

FIG. 7. This series of plots showsy-z cross sections of a
Schwarzschild black hole apparent horizon located for boost vel
ties ofv50.0,0.1, . . . ,0.9 in they-z direction. The dashed circle in
each of these figures is the apparent horizon for an unboo
Schwarzschild black hole. Note that the points of contact of
dashed and solid curves lie along a line in theyz plane which is
orthogonal to the direction of the boost.

FIG. 8. Error in the areas of apparent horizons,iÂ2Ai2, found
for a Schwarzschild black hole boosted in they-z direction.
4-9
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HUQ, CHOPTUIK, AND MATZNER PHYSICAL REVIEW D66, 084024 ~2002!
yz boosts, the boosted apparent horizons in this generic
are always contained within the apparent horizon forv50.
That is, the boost contracts the apparent horizon in the b
direction. Again for a boost velocity ofv50.5 it took the
solver eight Newton steps to drive the expansions to
stopping criterionb510212. On average it took four Newton
steps to drive the expansions to;1026 and nine Newton
steps to;10212, starting from an expansion of 0.1.

For the case of a boosted Kerr black hole witha50.9, the
results are very similar to those of the Schwarzschild bl
hole just discussed. Note that in this case, witha50.9 and
v→0.9, the apparent horizons are even more distorted~non-
spherical!. These results show that our algorithm for findin
apparent horizons does quite well with such large distortio
In addition the cost of finding these surfaces increases
only two additional Newton steps. Figure 11 shows theyz
cross sections for the apparent horizon found fora50.9 as a
function of v. Again the boosted apparent horizon is co
tained within the unboosted one and Lorentz contracted.
ure 12 shows the error in the area for the same data. W
a50.9 we expect that the area should be;36. The graph
shows that for increasing resolution the error in the a
tends towards zero. Hence the area remains fixed with
creased boost velocity as expected.

Similarly, the error inr @computed from Eq.~14! using
boosted coordinates# tends to zero with increasing resolutio
as shown by Fig. 13. The apparent horizons found here w
obtained with v̂x51/A3,v̂y51/A3,v̂z51/A3 and a50.9.
That is, the boost was in thexyzdirection with magnitudev.
Again we find thatr on the apparent horizon converges
r 1;1.4 with increasing resolution for all boost velocities.
a resolution of 33333 we find about 8% error, and 1% a
65365. Figure 14 shows surface plots of the apparent h
zon for the boosted Kerr black hole forv50,0.3,0.6 and 0.9.
For v50, our algorithm required one less Newton step
drive the expansions down to 10212 than it did forv50.9. In

FIG. 9. Error in the radial coordinate,r wherer exact52M for a
Schwarzschild black hole apparent horizon forv50.0, . . .,0.9. The
black hole is boosted in thexyz direction.
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FIG. 10. Plots of the apparent horizon for thea50.0 runs for

v50.0,0.3,0.6 and 0.9~left to right, top to bottom! for boosts in the
xyz direction. The mesh used to find the apparent horizon is sho
from a top perspective. As the boost velocity is increased we
that the surface is contracted in thexyz direction.
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LOCATING BOOSTED KERR AND SCHWARZSCHILD . . . PHYSICAL REVIEW D66, 084024 ~2002!
both instances, it took six Newton iterations to drive t
expansion from about 0.2 at the inital step to 1026. Hence,
this algorithm has the advantage that given sufficient res
tion on the computational mesh, the work done does
drastically increase for increasing distortions.

V. COMPUTATIONAL EFFICIENCY

Our algorithm is dominated primarily by computations
the Jacobian matrix in the use of Newton’s method. As d

FIG. 11. They-z cross section of Kerr (a50.9) black hole
apparent horizons located for boost velocities ofv
50.0,0.1, . . . ,0.9 in they-z direction. The dashed circle in each o
these figures is the apparent horizon for an unboosted Schw
child black hole. As in Fig. 8, note that the points of contact of t
curves lie along a line in theyz plane which is orthogonal to the
direction of the boost.

FIG. 12. The error in the areas of apparent horizons found f
Kerr black hole boosted in they-z direction witha50.9.
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cussed above, these operations are optimized such that
scale as approximatelyO(N), whereN is the total number of
points on the two-dimensional solution mesh. The time tak
per Newton iteration is independent of the distortion of t
apparent horizon. However, the number of Newton iterat
steps is determined by the ‘‘distance’’ of the initial startin
surface from the final solution. During the course of an ev
lution it is expected that the apparent horizons over sev
time slices will be ‘‘close’’ enough to each other that two
three Newton iterations will be sufficient to locate the ho
zon at low accuracy with the expansion of the outgoing n
rays on its surface being at the level of 1025 or 1026. Ob-
taining better accuracy requires more Newton iterations,
the convergence rate also depends on the accuracy o
background metric data. Typically in our model problem
eight iterations drive the residuals below 10210.

One of the drawbacks of a Newton method for findi
apparent horizons is its sensitivity to the initial guess.
initial guess outside of the radius of convergence will n
lead to a solution. Additionally, Newton methods are know
to be sensitive to high frequency components in the solut
This has been demonstrated in an axisymmetric contex
Thornburg@8#. Sensitivity to the initial guess can be easi
handled by combining the Newton method algorithm w
apparent horizon trackers that are based on flow meth
The flow finder is used to obtain an initial guess for t
Newton method which then converges on the solution v
quickly.

The efficiency of our method can be compared to
efficiency of other approaches~variations of flow methods!
due to Tod, as developed by Shoemakeret al. @12# and fast
flow methods developed by Gundlach@13#. The flow method
is based on a parabolic partial differential equation who
rate of convergence to the solution slows as the solutio
approached. Typically for a 33333 run the flow method
takes hundreds of times longer than our method to conve

zs-

a

FIG. 13. This figure shows the error in the spheriodal rad
coordinate location for a Kerr black hole apparent horizona
50.9) for v50.0, . . .,0.9. The black hole is boosted in thexyz
direction.
4-11
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HUQ, CHOPTUIK, AND MATZNER PHYSICAL REVIEW D66, 084024 ~2002!
down to expansions of 1024. The advantage of the flow
method, however, is its ability to find multiple apparent h
rizons from an arbitrary initial guess. A hybrid flow or direc
Newton solver should thus result in a robust apparent h
zon finding scheme.

We can also compare our implementation to spectral

FIG. 14. This figure shows plots of the apparent horizon for
a50.9 runs forv50.0,0.3,0.6 and 0.9 for boosts in thexyz direc-
tion. The mesh used to find the apparent horizon is shown fro
top perspective. As the boost velocity is increased we see tha
surface is contracted in thexyz direction.
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composition methods. We concentrate on a method simila
that of Nakamuraet al. @4# in which the equation for the
apparent horizon surface is written

r~u,f!5(
l 50

l max

(
m52 l

l

almYlm~u,f!. ~35!

We do not have access to an apparent horizon finder b
on pseudo-spectral methods but we will analytically comp
the coefficients for the case of a boosted Schwarschild b
hole; this will give some insight into the range of harmoni
required, and some idea of what scaling of these meth
might be.

In Kerr-Schild coordinates, the hole, with a boost in thez
direction, has the shape of a spheroid,

x2

a2
1

z2

b2
51, ~36!

where we have suppressed they direction.
Notice that the axesa,b of the ellipsoid obeyb2/a251

2v2, which demonstrates that the eccentricity is equal to
boost velocity,e5v, for this case. Hence even ellipses wi
a moderate ratio of axes, such as that forv50.9, where the
ratio is a little less than 0.5, have moderately large ecc
tricities. We will approximate the form Eq.~36! with an axi-
symmetric series of the form Eq.~35! ~the general case o
locating an apparent horizon would have nonaxisymme
terms also!. We find it more convenient to work with Leg
endre polynomials than with the spherical harmonics
rectly.

Since we work with Legendre polynomials, we drop t
f dependence in the spheroid expression, to obtain

R~u!5b/A12e2sin2u ~37!

5b/A12e2~12q2!, ~38!

whereq5cosu.
To obtain the expansion of expression Eq.~38! in terms of

Pm , we first expand using the binomial theorem,

R~u!/b5(
s50

` S 21/2

s D ~21!se2s~12q2!s. ~39!

This converges for allv,1.
Using the binomial theorem again for (12q2)s we sub-

stitute

~12q2!s5(
r 50

s S s

r D ~21!rq2r ~40!

in Eq. ~39! to obtain

R~u!/b5(
s50

` S 21/2

s D ~21!se2s(
r 50

s S s

r D ~21!rasr ~41!

where

e

a
he
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asr~q!5 (
n50

r
22n~4n11!~2r !! ~r 1n!!

~2r 12n11!! ~r 2n!!
P2n~q! ~42!

and we made the substitution

q2r5 (
n50

r
22n~4n11!~2r !! ~r 1n!!

~2r 12n11!! ~r 2n!!
P2n~q!.

By exchanging the summations overr andn and thenn and
s it is possible to rewrite Eq.~41! as

r ~u!5 (
n50

`

C2nP2n~u!, ~43!

where

C2n522n~4n11!(
s5n

` S 21/2

s D ~21!se2s

3(
r 5n

s S s

r D ~21!r~2r !! ~r 1n!!

~2r 12n11!! ~r 2n!!
. ~44!

Figure 15 gives the coefficientsC2n for n51, . . . ,10, and
for several values ofv. While Fig. 15 shows the exponentia
convergence of algorithm withn, it also shows that the co
efficient of the convergence is small forv;0.9. It can be
seen that the number of required terms approaches 20 fv
50.9 if the error is required to be less than 1023. ~The
general sum would have polynomials of odd as well as e
order, and for eachl, a set of azimuthal quantum numbe
spanning22n to 2n.) Hence in general, to compute th
distorted apparent horizon would take a search over 202 pa-
rameters in a minimization routine. This is equivalent to
verting a full matrix of this size, and would be expected to
slow. The elliptic PDE solver is expected to be much fas

FIG. 15. log10(C2n) for n51 to 10 are shown forv50.1, v
50.5, v50.7 andv50.9. The coefficients scale ase2kn wherek is
determined by the shape of the horizon. Forv50.1 we havek;6
and forv50.9 k;0.9.
08402
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VI. DISCUSSION

We have demonstrated in this paper that our method ba
on finite difference techniques is viable for locating ve
distorted boosted Kerr black hole apparent horizons.
have shown that the located horizons obey the expected
lytical rule of invariance of the area of the event horizon,
cases corresponding to at-rest or boosted single black h
where the apparent horizon is known to coincide with t
event horizon. We have additionally given a number of co
putational tests demonstrating the behavior of the locator
interpolated or extrapolated data which are similar to rea
tic data obtained from evolutions. In other contexts the al
rithm has been thoroughly tested with a canonical set of
problems such as two- and three-black-hole initial data s
Additionally, it has been successfully used to track appar
horizons in the evolution of geodesically sliced Schwar
child black hole data@22,23#, as well as in the evolution o
boosted Schwarzschild data@20#. Those tests and the tes
given here show its viability as a method for locating bla
hole apparent horizons and using them for black hole e
sion. Since black hole excision would appear to be vital
long-term evolutions of single or multiple black hole spac
times, it is very useful to have efficient apparent horiz
locators that can locate apparent horizons quickly, relative
the time taken for an evolution time step.

It is a fact that our method as currently implemented c
find only asingle, isolatedapparent horizon. Thus, its spee
is counteracted by the impossibility of its use in gene
2-hole cases. However, it may be possible to use a fl
method which would recognize the existence of sepa
black holes, and roughly locate the two holes to some ac
racy. These approximate solutions~2-surfaces! could then be
used as initial conditions for the current algorithm, whi
should then quickly converge to a highly accurate result.
are confident that a tool based on the combination of the
methods would be of great utility.
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APPENDIX: EVALUATION OF THE RESIDUAL

The evaluation of Cartesian derivatives onŜ is carried out
by constructing 3D finite difference stencils at each me
point onŜ. The finite difference stencil, denoted byN, con-
sists of 26 additional points around each mesh point. Th
26 points are6dx, 6dy and 6dz away from the central
mesh point. These points, as shown, are organized into t
4-13
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HUQ, CHOPTUIK, AND MATZNER PHYSICAL REVIEW D66, 084024 ~2002!
planes of constantz: z5z02dz,z0 ,z01dz. Each plane con-
tains nine nearest neighbors of the center point, including
center point itself in the case ofz5z0. We use a single dis
cretization scaleh (dx5dy5dz5h) which is always pro-
portional to the mesh spacingdu5p/(Ns21).

To definew(x,y,z) at each stencil pointxPN we use its
split into radial and angular parts,w(x,y,z)5r 2r(u,f).
For each stencil pointx we compute the correspondin
spherical coordinates (r x ,ux ,fx). This point can be though
of as a ray emanating from the origin of our spherical co
dinate system~which coincides with the origin of our Carte
sian coordinate system! along (ux ,fx) of length r x . Figure
16 labels the pointx as P. The dashed line from P to th
origin is the ray from the origin. Its intersection withŜ is
denoted by a filled square. The value ofw at x can be ob-
tained by computingr(ux ,fx) via biquartic interpolation so

FIG. 16. P is the point at which we wish to estimatew. The
dashed line is the radial line from the origin of our spherical co
dinate system to P. The filled square on the surface is the inte
lation point where we evaluater(ux ,fx).

FIG. 17. The choice of stencil points for biquartic interpolati
for interpolation points that are on the interior of the grid. T
interpolation point is labelled by a filled circle and the mesh poi
that are used as an interpolation stencil are denoted by fi
squares.
08402
e
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that the truncation error has a leading order term which
fourth order in the grid spacingh. The interpolation is carried
out with values ofr̂ defined on mesh points ofŜ using a 16
point stencil. Figure 17 shows the choice of these ste
points in the interior of the mesh. At the poles a spec
choice is made of stencil points which takes into account
indentifications made at the poles. Figure 18 shows a ch
of stencil points for an interpolation point near the pole. Th
approach leads to a fourth order truncation error inr(ux ,fx)
at all points onŜ. Then w can be constructed for everyx
PN asw5r x2r(ux ,fx). Using this approachw is defined
at any finite difference stencil point for every mesh point
Ŝ. The finite difference expressions forD i

hw, D i
hD j

hw ~corre-
sponding to first and second derivatives! are computed at
each of the mesh points. The residual is then evaluated oŜ
using these finite difference approximations for the deri
tives to O(h2), and metric data (g i j ,]kg i j ,Ki j ) which are
specified either analytically or interpolated from an envelo
ing 3D Cartesian grid.

Because we useO(h2) finite difference approximations
D i

hw, D i
hD j

hw to the derivatives, this approach leads to

O(h2) truncation error in evaluatingF̂@ r̂# . Because of our
special attention to points near the pole,F̂ is evaluated
smoothly everywhere onŜ.

With a means for evaluatingF̂ at any point in the domain
of Ŝ it is straightforward to generateĴm̄n̄ numerically using
Eq. ~9!. The algorithm for this is summarized as follows:

Specify metric data everywhere onŜ
EvaluateF̂@ r̂# everywhere onŜ
For each point~labeled byn̄) in Ŝ

Perturbr̂ n̄5 r̂ n̄1e
Specify metric data on perturbed point
EvaluateF̂@ r̂ n̄1e# at them̄th point.

-
o-

s
d

FIG. 18. This figure shows the choice of stencil points for
quartic interpolation for interpolation points that are near the po
We view the pole points from a 3-dimensional perspective wh
the identifications of points in thef direction is taken into account
This leads to the special choice of interpolation stencil points
shown. This leads to fourth order truncation error in the interpol
at the poles. The interpolation point is labelled by a filled circle a
the mesh points that are used as an interpolation stencil are den
by filled squares.
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Compute them̄n̄ component of the Jacobian matrix
using Eq.~9!

End loop over points onŜ.
This gives the Jacobian matrix,Ĵm̄n̄ , for F̂ evaluated.Ĵm̄n̄

is a (Ns
222Ns12)3(Ns

222Ns12) matrix which is used in
Newton’s method as follows:
e-

an

.A

fo

J

08402
Start with an initial guess surfacer̂5 r̂0

while iF̂i. stopping criterion
Compute the JacobianĴm̄n̄ for the currentr̂
EvaluateF̂@ r̂#

Solve Ĵ•dr̂52F̂@ r̂# for dr̂

Update the surfacer̂5 r̂1dr̂.
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