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Locating boosted Kerr and Schwarzschild apparent horizons
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We describe a finite-difference method for locating apparent horizons in generic spacetimes and illustrate its
capabilities on boosted Kerr and Schwarzschild black holes. Our model spacetime is given by the Kerr-Schild
metric. We apply a Lorentz boost to this spacetime metric and then carry otflad@composition. The result
is a slicing of Kerr-Schwarzschild spacetime in which the black hole is propagated and Lorentz contracted. We
show that our method can locate distorted apparent horizons efficiently and accurately.
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[. INTRODUCTION ent horizon surface which is a local object, locataffet
existy with y;; andKj; on one time slice. The apparent ho-

Apparent horizon locators play an integral role in the ap-rizon is the outermost marginally trapped surface. It is a
plication of black hole excision techniques to computationalclosed spacelike 2-surface whose future-directed outgoing
evolutions of black hole spacetimes. The idea behind excinull normals have zero divergenf2]. The apparent horizon
sion techniques is to delete those regions of spacetime cois slicing dependent and may not necessarily exist even
taining curvature singularities from the computational do-though an event horizon does. An example of this is given by
main. This approach is viable since, assuming cosmigVald and lyef 3] through nonspherically symmetric slicings
censorship, such curvature singularities are expected to hsf the Schwarzschild spacetime. Providedom-pathological
located within event horizons. By definition, an event hori-sﬁcing is chosen the apparent horizon or any trapped surface
zon is a causal boundary whose interior does not causallyithin it may be used for excising the black hole singularity.
affect the exterior spacetime; as a result it is possible tornese surfaces define a local causal structure that distin-
excise a region within the event horizon—including the gishes instantaneously escaping null rays from those that
black hole singularity—yet still be able to faithfully compute 5.6 certain to collapse. This distinction makes their treatment

thel geometry of tf;]etspacetlm:a tc.)UtS'ﬁe th? .bIactI; hoég. e very amenable to computational black hole excision tech-
__/nour approach to computationally solving the EIns e'n.niques. Since these surfaces can be determined with geomet-
field equations we focus on the use of Cauchy techniques, in

) . L L ric information at one instant of time, they are used in prac-
which a 3+ 1 splitting of spacetime into a foliation of space- . . . : . .
: . o . ; tice as an inner boundary in Cauchy evolutions. With this
like hypersurface&, parametrized in time, is the basis for

an evolution in time. The result of this splitting is a system of PUrPOSE IN rmnd, we developed a :.,’D apparen’F horlz_on loca-
elliptic and hyperbolic partial differential equations in the ©F that utilizesy;; and K;; on a given spacelike slice of
3-metric ;; and extrinsic curvatur&;; . These are the four spacetime and locates an apparent horizon. Once it is located
constraint equations and 12 first-order-in-time evolution® r€gion contained within it is excised. Thus the method is
equations. The Cauchy approach starts with an initial spacd€@lly a trapped-surface excision. .
like slice with y;; and K;j; set by solving an initial value There has been a variety of work done on apparent hori-
problem(the elliptic constraint equationsOne then uses the zon location in spherical symmetry, axisymmetry and 3D.
evolution equations to evolve to the next spacelike slice obWe focus solely on the 3D locators. These can be classified
taining y; andK;; at the next time(see York[1] for a de-  into those that use finite difference methods, and those that
tailed discussion utilize pseudo-spectral schemes. Further, one can classify
In the evolution of black hole spacetimes in this mannereach of these finders in terms of those that use flow methods
we do not have a complete history of the entire spacetim@ersus those that directly solve the apparent horizon equation
and hence do not have knowledge of the location of the evertither via a minimization scheme or Newton’s method for
horizon. Since the event horizon is a global object that deroot finding.
pends on geometric information for all tinter at least until One of the first published 3D apparent horizon locators
the black hole becomes quiescdewe cannot use it to deter- was developed by Nakamuet al. [4]. Their method ex-
mine an inner excision boundary in our Cauchy evolution.pands theapparent horizon shape function=p(6,¢), in
However, there is an alternative, and that is to use the appaspherical harmonics to some maximuiml y:
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Imax | Il. FORMULATION AND SOLUTION OF THE ELLIPTIC
P(O.0)=2 2 &mYin(0,6). (0 PDE

On a particular 3D spacelike hypersurfagg, from our
foliation of spacetime, we are given the 3-metrjg, and the

ent horizon equation and solve for the coefficiems via a &Ny Pointp on S we can define an outward-pointing space-
“direct” functional iteration scheme. Bishop5] reimple- like normal,s®, to S, and a future-directed timelike normal,

s .
mented this approach and made modifications that led t8 @ t© E.afrgm ghese we can construct thea outgoing null
improved convergence and stability behavior. Annigogl, ~ normal,k*=t"+s", atp. If the divergenceVk™ (V, is the

[6] and Baumgartet al. [7] implement similar methods that covariant derivative compatible W@th the spacetime metric,
involve an expansion gb(6,¢): the primary differences in Oab) IS zeroeverywhereon S, thens is amarginally trapped

these later works is that they expand in terms of symmetri surface(MTS). The apparent horizon is the outermost such
TS. The equation for the vanishing of the divergeitee-

trace-free tensors and use Powell’s method for minimizatio ansion of the outgoing null normalsy,k?=0, can be re-

of .the square of the apparent. horizon equal{ﬁrq. (2)], written entirely in terms of quantities defined an[1]:
which is related to the expansion of the outgoing null nor-
mals. D;s' +Kj;s's—K=0. )
Thornburg[8] gives a very good treatise on the use of

finite differencing to solve the apparent horizon equation usHere D; is the covariant derivative compatible with the
ing spherical coordinates (¢, ¢) via Newton's method. He 3-metric y;; andK is the trace of the extrinsic curvature.
discusses in general how algebraic Jacobians may be applied Given a specific coordinatization of the 2-surfagethe

in a full 3D context. His implementation for horizon finding apparent horizon equation becomes an elliptic partial differ-
is, however, axisymmetric; his full 3D finder suffers from ential equation. This can be made manifest by noting that a
problems with thez axis (6=0,7). Our method for finding MTS is a closed 2-surface; spherical coordinates thus pro-
horizons uses closely related concepts except that we udéde & natural labelling of points ofi. The embedding of
finite differences in Cartesian coordinates, eliminating any" = c¢an then be expressed in terms of the radial displace-
potentialz-axis problems. ment,p(6,¢), measured from some origin in the interior of

Another class of apparent horizon locators casts the ellipS- [N general one can generate a foliation of such closed
tic apparent horizon equation into a parabolic one as su spacelike 2-surfaces parametrized by their distapcdrom
gested by Tod9], via the use of flow methods in locating he MTS:
apparent horizons. Bernstej0] implemented Tod’s algo- o(1.0.)="r—p(6.8). @
rithm in axisymmetry using finite differences, but encoun- T '

tered problems with differencing on a sphere in sphericatiearly, thep=0 level surface is the MTS. From this scalar

coordinates in the general case. function ¢ we can construct the outward-pointing spacelike
The advantage of flow methods is that one can start witlyector field,s', which is normal to the constagt-surfaces:

an arbitrary initial guess and flow towards the apparent ho-

rizon(s). In some implementations it is possible to find mul- s'=v10,0/ Yo pdre. (4)

tiple apparent horizon surfaces starting from a single initial

guess surfacé.e., there is a topology change in the course ofSubstitution of the above expression into E2). results in a

location of the apparent horizbrPasch11] uses a level-set second order elliptic partial differential equation 8n

method to locate multiple apparent horizons in 3D. He dem-

onstrates his method utilizing time-symmetric conformally

flat initial data for multiple black holes. A hybrid flow or

level-set-like method utilizing our approach of evaluating the 1 b cd a be

outgoing null expansions via Cartesian finite differences has — @ Yy O pdade@dapt Iapy e

been implemented by Shoemakefral. [12]. That method —1/2 ac,, bd 2

flows towards the apparent horizghfrom an arbitrary ini- o ey Ty e dae— K =0, ©

tial guess allowing for topology changes. GundigtB] has  \yhich, as we have indicated, is to be interpreted as an equa-

implemented a “fast flow” method for finding apparent ho- iy, for p(6,¢) and wherew=y"%9.¢dqe, andT'? _ are the

rizons. Alcubierreet al.[14] present a series of results for the connection coefficients associated with the 3-mg:ygg.

1
FLp]= Y da0p0+ ¥ 20p0— Ew’lyabvgdﬁbcpﬁcwd@

pseudo-spectral method and the fast flow method for a series Our approach involves the direct solution of E§) using

of “testbed” data sets. finite-difference techniques and a global Newton iteration.

In the sections that follow we give a brief discussion of 1 yhat end,s is replaced with a uniform finite-difference
the algorithm used and relegate the details to the Appendix. - - .
esh, S, containingN,xXN, points whereN,=N ,=Njs.

The model spacetime in which all of the results are presente .
is discussed in Sec. IIl. In Sec. IV we discuss tests of the \Ot€ that here and below we adopt the notation whereby a

algorithm and demonstrate that the algorithm fares well fodiscrete version of a continuum quantity,is denoted byf.)
distorted apparent horizons in boosted Kerr spacetimes. The range of coordinates ahis O< < and O< ¢p<27.
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At the poles,#=0 and 6=, all N, points are identified. . 1 . . o

The ¢=2 branch cut is identified with theéé=0 line. The Jo= ARt el=Fulpul} €)
“boundary conditions” are periodicity ap= 27 and ¢ iden-

tification at0=0,7r. These conditions are key to dealing with where €, which we will call theperturbation parameteris

the coordinate singularities at the poles in combination withthe amount by which we perturb the surface. We note that the
the use ofCartesiancoordinates to discretize partial deriva- process of generating the non_vanishing Jacobian elements
tives onS. We treate as a function of Cartesian coordinates involves an evaluation df in only a small neighborhood of

x,y,z and center on each mesh point 8fa 3D Cartesian the yth point sinceF has a local domain of dependence
difference stencil of 27 points. Using the form E§) we  (dependent on the discrete operators used, in our case these
interpolate values ofy(x,y,z) onto each of the 26 stencil are finite differences convolved with interpolationalota-
points surrounding each stencil point.(See the Appendix bly, the computational cost for the Jacobian computation is
for more details. Using this difference stencil we can evalu- O(N), and the Jacobian h&3(N) non-zero elements.
ate first, second and mixed derivatives ofx,y,z) as re- Once we have solved the linear system &, the esti-
quired by the discretized version of E(). At every point a0 of is updated viay=p— 5p, and the Newton iteration
on S we can then construct the residiglp] on S. is repeated until the solution is deemed converged. In prac-

The problem at hand is to solve f@(0,¢) that yields tice we demand that the, norm of the change of the solu-
Flp]=0. SinceF[p] is a nonlinear operatd@s shown in 5 11551 [15], be driven below a chosen stopping crite-
Eqg. (5)], we use a global Newton iteration, with an approxi- rion.
mately computed Jacobian, to determmeGiven an initial Further implementation details concerning our method are
guess surfacey=po, we wish to find adp (the change inthe ¢4 n4 in the Appendix. We now direct attention to the model
surface that leads td=[po+ 6p]=0 or, to lowest order, spacetime which we use for our numerical experimentation

with the technique.
dF[p]

Flpo+ dp]=Flpol+———,=p,0p+O(p*)=0. (6)
p lll. 3 +1 SPLITTING OF THE KERR-SCHILD METRIC

Now, J defined by In the remainder of the paper we focus on tests of our
algorithm which use Kerr black holéscluding the limiting
case of Schwarzschild black hole§he particular form of

(7)  the Kerr solution that we use is the Kerr-Schild line element:

i
s/%

. =7+ 2H0 L, 10
is the Jacobian associated wihand in the discrete casé, 9uv™= " # (10

is an NXN matrix, whereN is the total number of points wherel , is an ingoing null vectori.e. g*’l I,= 7*"l I,

used in the discretization. To obtain & that givesF[p ~ =0), H is a scalar function of the spacetime coordinates and
+0p]=0 to leading order, we must solve 7, is the Minkowski spacetime metric. We note that the
above form of the Kerr metric is form invariant under a
J-op=—F[p] (8  Lorentz transformation. By definition such a transformation
takesz,,— 7,, andl* andH are transformed to a new null
for &p. vector and left unchanged@hough evaluated at the new co-

Computationally, each iteration of the Newton method in-ordinate labels for the same evenespectively. This prop-
VO|VeS(1) the evaluation of the discrete form of the JaCObianerty makes our ana|ysis easier Since—ﬁBdecomposition of
matrix, J and (2) the solution of the discrete form of E®). Eqg. (10) has the same form as a3 decomposition of the
We numerically compute the Jacobian matrix by perturbingooosted metric. As we shall see, we only need to spédtjfy
the surface pointwise and examining the effect of the perturt, and their spacetime derivatives in order to obtain the
bation on the residuaF. Let u label “independent” points ~ 3-metric and extrinsic curvature dn. _
in the computational mests, By independent we mean the . Ve also note that” is the tangent field to a family of
unique points in the mesh, that is mesh-points moduld?90ing null geodesics, and thus EQO) leads to a 31
boundary identifications. In particular, given the identifica-Sicing of Kerr spacetimes that is well behaved at the hori-
tions discussed above, there ade=N2—2N.+2 indepen- zon. That |s,_spacel_|ke sllt_:e_s penetrate the horizon and hit the

] oA ' s TS black hole singularity. This is a desirable property for black
dent points inS, sinceNg=N,=N, points at each of the

) 0 ) ; hole excision in computational applications and, indeed, this
poles are identified. Equatid@) then becomes a linear sys- metric has proved to be a good choice for the study of single

tem of equations wheré is anNX N matrix andF andsp  and multiple black hole evolutions with exicision.
are lengthN vectors. Thewr component of the Jacobian is ~ Adopting “Cartesian” coordinatest(x,y,z), H andl , are
then computed by perturbingat thevth point and comput-  9iven by

ing the change in the residud, at the;th point. Specifi- M3
cally, using a first order forward difference approximation — r (12)
we calculate r4+a?z?
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and (20)

=A% (A%,).
rx-+ay ry—ax z

r2+a?'r24a2’'r)’

| — As stated previously, these transformations preserve the form
o of Eq. (10).

0

(12

wherer is given by 3+1 decomposition

2 The standard Arnowitt-Deser-MisnéADM) 3+ 1 form

24,2
Xty + Z_:1 (13 of the spacetime metric is given by
r2+a? r2 o o
ds?=— a?dt?+ y;;(dX + g'dt)(dxX + gldt). (21
or
If we compare Eq(10) to Eq.(21) and use the property that
1 1 I#1,=0, we find that the lapse is given by
r’==(p?—a?+ \/—(pz—a2)2+a222. (14)
2 4 1
_ a=——, (22)
In the above,M is the mass of the Kerr black hole, V1+2HI;
=J/IM is the hole’s angular momentum, ang S
= X2+ yZ+ 22 and the shift is given by
In thea— 0 limit we recover the Schwarzschild metric in Bi=2HI, 23)
ingoing Eddington-Finkelstein coordinates wherein : t
or
M
H=1 (19 Bi=2H1,81,/(1+2HI2). 24)
Xy z The 3-metric is
|M:(11 1_1_> (16)
rrr ’)/”:7]|J+2HI||] (25)
andr = \)®+y?+7°. and the extrinsic curvature is determined from
In a t=const slice of a Kerfor Schwarzschilg space-
time, the apparent horizon is known to coincide with the Kij=—dvij/2a+D;B;+D;B; (26)
intersection of the event horizon with that slice. In the Kerr
spacetime, then, the apparent horizon is a surface of radius =—dy(HIlil))/a+2[Di(HI{1;)+D;(HId) ] (27)
r=r,:
i and
=M+ +/M?2—a? . . o
f+=M+VM"—a 17 yi= 8l = 2H 8" 5,1, /(14 2HI2), (28)
and area Note that
_ 2 .2
A=4m(re+a%). (19 detyij :1+2H|t2- (29)

In the more general nonstationary case the apparent Norizon 1, ghtain explicit expressions for the 3-metric and extrin-

and event horizon will not coincide. We thus emphasize thagic curvature we simply substitute Eq4$1) and(12) [or Egs.

we use the special properties of the Kerr and Schwarzschilgils) and (16) for the case of Schwarzschilcalong with Eq.
spacetimes described here solely to test and calibrate oW into Egs.(25) and (27).

scheme for locating apparent horizons.
To get the spacetime metric for a boosted Kerr hole, con-

sider O to be the rest frame of the black hole, with coordi-
nates €,x'). Let O be the “Ia_b" frame with coordinates
(t,x') such that® is related to® via a Lorentz boost along

IV. RESULTS

In the discussion that follows we present results from tests
done with the locator using the metric data discussed in the
preceding section. We set up a 3-dimensional Cartesian grid,

the v=(vy,vy,0,) direction: in theO frame the black hole

moves in thev direction with boost velocityy (&;;v'v!
=1). As usual, we definey=1/J1—v2 H(x,) and |,
(where a bar denote® frame now transform as

H(x,)=H(A ;X)) (29

and

3., of n® points on which we define a coordinate system. The
black hole (either Kerr or Schwarzschildis placed at the
origin of this coordinate system. Using E@5) and Eq.(27)

we computey;; and Kj; at each grid point except in the
region that contains the curvature singularity of the black
hole (for Schwarzschildx?+y2+2z?=0 and for Kerr p

= x?+y?+7?<a). That is, we explicitly excise the singu-
larity from the computational grid.
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With this setup we consider two groups of tests. The first
uses Schwarzschild data to conduct some basic tests of the
locator and to illustrate some of its properties. The second
part of this section examines apparent horizons for boosted
Schwarzschild and Kerr black holes and illustrates the loca-
tor’s ability to locate extremely distorted apparent horizons.
Specifically we consider(1) v=0, a=0 (unboosted
Schwarzschild (2) v=0, a#0 (unboosted Keir (3) v
#0, a=0 (boosted Schwarzschildand (4) v#0, a#0
(boosted Kern. From this point forward we also work in
units yielding unit black hole mass, i.e. in units such that
M=1.

Least Squares Fit|
Slope -2.11

|
kS
I

|
by
o

I

|
[+)]
I

A. Tests with Eddington-Finkelstein metric data

Log of L2 Norm of solution error |o— 2M||,

In this section we discuss some basic tests of the apparent
horizon locator including a demonstration that the solutions
obtained areO(h?), whereh is the mesh spacing of the
Cartesian grid. We takéx=0, {;y=0, {,Z:o and a=0, FIG. 1. This grapAh shows the logarithm of the error norm of the
which generates metric data for an unboosted Schwarschildimerical solution|p—pl|, versus logkly). Note thatM=1. The
black hole in ingoing Eddington-Finkelstein coordinates. De-slope of the graph is-2.1 and hence we conclude that the solution
spite the simplicity of the setup, we note that all componentss O(h?).
of y;; andK;; are non-zero. The latter property makes this a

good initial model problem to work with, because the com-qateq via a least squares fit. A closely related test is to also

putation is fully exercised in an analytically tractable S'tua'evaluate |0¢5—p\|2 versus logN;, wherep is the numerical

tion. As stated earlier, the apparent horizon is expected to bseolution from the apparent horizon locator anik the exact
located atr =2M, and we conduct the tests with ddize. bp aﬂ

metric and extrinsic curvature componergpecified analyti- horizon location. Figure 1 shows the result. From a least
; P P y squares fit to a straight line, the slope is found to be about
cally where required.

—2.1 which again validates our solution @§h?).

1.4 1.6 1.8
Log(N) N:=No. of points to a side

1. Residual evaluation and second order convergence

We place the black hole at the origin of the computational 2. Jacobian

domain &=0y=0,z=0). For the spherically symmetric For the 2D meshusing Ng=33) discussed above, we
line element currently under consideration the horizon equagenerate the Jacobian matrix for a single Newton step. There

tion becomes the algebraic equation, are N=1025 independenpoints onS and hencel,, is a
1025x 1025 matrix. There are seven non-zero bands in this
F(r)= 1-2M/r 0 (30 matrix with two additional ones in the vicinity of the poles at

r\/m_ w=1 and u=1025. The structure reflects the domain of
dependence of the finite difference operators used in the
As follows immediately from the above expressionrat evaluation ofF. Here it comes from a combination of inter-
=2M we haveF=0. A useful test of the evaluation of the polations and finite differencing in the Cartesian mesh. Near
expansion of the outgoing normafigr) is to see if indeed —1 andy,=1025 the additional bands come from our spe-

the residuaF[p] is correctly evaluated t®(h?) as cial choice of interpolation stencils at the poles, as discussed
. in the Appendix.
F=F+eh’+. -, (31 The structure reflects the fact that a perturbation at a

single mesh point affects the residual in a small neighbor-
wheree,h? is the leading order truncation error term. Given hood around it so we can optimize the generation of the
that the exact value is known f@l{;}] we can approximately Jacobian toO(N) by evaluatingF[p+ 8p] only in a small
compute the leading order truncation error. We carry out aneighborhood of the perturbed point. In practice, the Jaco-
convergence test by evaluating[p] on a 2-sphere bian generation was found to be ord&x(NP) where p

of r=2M for a series of mesh sizes, Ny ~11. _ . o
=17,25,33,49,65,97,129. We examined the behavior of AmatrixAis defined to be diagonally dominait6] if its

log|E|l, versus log\,, where N is the number of mesh El€MentsA;, satisfy

points on one side of the&l,xNg mesh. Atr=2M F

~e,h? and so thel, norm, ||F|,~||e,||,h?. Sincehs1/N n

we expect that if the residual ®(h?) then the slope of a > |Aj|=<|Ajforall i. (32
plot of log|F|,, versus lod\s should be— 2.0, which we vali- "
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TABLE I. This table summarizes results from a test of our apparent hotixbin locator’s ability to find the AH in Schwarzschild data,
starting from various initial conditions. In each case the initial surface is a 2-sphere of rgdiike number of iterations taken for the
solution to achievd 6p|,<107 1 is listed in the second column. Note that the final error in the solution remains a constant provided the
solver is able to drivél 5p||, below the specified stopping criterion. The perturbation parameter used to generate the Jacobiar’ was 10

o No. iterations Final ||F|, lo—pll % error
0.5 10 2.x10°1° 3.0x10°° 1.5x10°3
0.75 9 2.5¢10°1° 3.0x10°° 1.5x10°3
1.00 9 9.%10 1 3.0x10°° 1.5x10°3
1.25 8 9.5¢10 ! 3.0x10°° 1.5x10°3
1.50 7 1.6<10°1° 3.0x10°° 1.5x10°3
1.75 7 9.6<10° 1! 3.0x10°° 1.5x10°2
2.00 4 9.% 10" 3.0x10°° 1.5x10°2
2.25 7 9.810° 3.0x10°° 1.5x10°3
2.50 8 1.x10° %0 3.0x10°° 1.5x10°3
2.75 9 9.5¢10 1 3.0x10°° 1.5x10°3
3.00 12 9.%x10 1 3.0x10°° 1.5x10°2

We found that our Jacobians wenet diagonally dominant

in general.

niques (Gauss-Seidel and SOR, for exampke sufficient
condition for the solution of a linear systedy; x=Db, is that

systemA-x=b, with A a nonsingular, generally sparse ma-

et i . . i . trix. The method involves preconditioning the matrix via an
This is of interest since for some iterative solution tech-jncomplete LU decomposition. This method has worked

the matrix,A, be diagonally dominant. In our case we con-
cluded from early experiments that indeed such simple itera-

tive solvers did not converge for this problem.

Additionally, the Jacobian matrix is generally not sym-

metric but itis well conditioned for the spacetimes that we
have considered. For a 3383 run the Jacobian has a condi-
tion number,x, of about 10 to 1 wherex is defined by

w=[AllA~.

The condition number tells us how close the magixs to

(33

quite well for our purposes, although in principle other linear
solvers could certainly be used.

4. Solution for the apparent horizon location

As a first test of our approach we carried out a basic test
of the Newton solver’s ability to locate apparent horizons in
Eddington-Finkelstein data. The test involved searching for a
solution using a set of different initial starting 2-sphefes-

rametrized by their radiusy) and examining the final solu-

tion error and convergence properties. Table | shows the er-

ror and residual fory=0.5,...,3.0, Ng=33 and stopping

criteria of | 8p||~1071°. For each of the cases, once within

being “numerically singular.” A very large condition number the basin of attraction, the solver converged quadratically to
or a reciprocal condition number close to machine epsilorthe finite difference solution, as is to be expected for a global
tells us thatA is effectively singular. An identity matrix has a Newton iteration.
condition number of 1. To estimate we used thaINPACK
library routine,bGECO [17]. For completeness we note that perturbation parametee=10 °. We found empirically that

in their definition of the condition number, Dongareaal.

[17] use theL, norm.

3. Solution of the linear system

technique, we have to obtain a solutiofp, to the linear

system

J-8p=—F[p]

which is the discrete form of Ed8).

iterative methods such as SQORot to mention that such

As mentioned in the table caption, for this test we used a

for this problem, an optimum value efwas between 10*

and 10°®. In general,e must be chosen large enough such
thatF[p+ €] andF[p] are sufficiently different to prevent a
catastrophic loss of precision in the calculation of the Jaco-
As stated before, to locate the apparent horizon using ouian. A contrasting requirement is that one must choese

tion of the Jacobian.

5. Numerical metric data

small enough to produce a sufficiently accurate approxima-

For the tests discussed thus far we have used data analyti-

cally computed at each point as needed. Since the ultimate
Since the properties of the matrix preclude the use ofjoal is to incorporate this apparent horizon location algo-

rithm into an evolution code, it is useful to gauge the perfor-

methods are not very efficienwe use a modified conjugate- mance of the algorithm with “numerical” metric datae.

gradient method due to Kershdw8]. (The standard form of
the conjugate gradient method will not work singés not

tabulated dataand with the data structures expected in the
real application, where, for instance, part of the domain is

symmetric) Kershaw's method, termed the incomplete LU- excised from consideration. Thus we set up the same
conjugate gradient methodLUCG), can solve any linear Eddington-Finkelstein data on a 3D Cartesian gridndf
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points, with a region of this grid excised to emulate the situ-
ation in an evolution code where the interior of the black
hole is excluded. The apparent horizon surface which is em-
bedded in this 3D Cartesian grid typically does not lie on
Cartesian grid points and as a result an interpolation tool is
required. If the surface mesh, during the course of the New-
ton iterations, overlaps the excised region then extrapolation
is required. We make use of an interpolating routine written
by Klasky [19] that can handle such situations. Using this
interpolator tool we can obtain the 3-metric, extrinsic curva-
ture and the spatial derivatives of the 3-metric at any point
from a regularly spaced 3D array of values. Of course, the
use of the interpolator brings in additional truncation errors
associated with the interpolation or extrapolation operations.
However, in the following we show that even with extrapo-
lation errors, the solver works quite well in locating apparent
horizons.

We excise the region of the 3D grid interior to a sphere of
radiusR,, centered atX,,Ym,Zn) SO that the metric data is
defined forr>R,, and undefined for<R,,. Here,r is the
Cartesian distance in Kerr-Schild coordinates from the exci-
sion center.

In the following discussion on radial and offset apparen
horizon locations we take= 65 for the Cartesian grifvith
h=1/8) andN¢=33 for the surface mesh. The stopping cri-
terion used in the horizon finder i8=10"%. That is, if
| 6pllo< B then the Newton iterations are stopped. The per-
turbation parametere, is taken to be 10*. Interpolations
are performed t@(h*). The initial guess surface used is a
sphere of radius,=2.1M centered at the origin of the Car-

o
o —
— o

L2 Norm of Residual ||F||,
o
o
O

PHYSICAL REVIEW [®6, 084024 (2002

Cartesian grid spacing 1/8
Flp] evaluated at r=2N

2.5
Mask Radius R |

FIG. 2. Graph of the_, norms of the residual,F[¢]||, versus

the mask radiusik,,.

solution errorper se which is shown in Fig. 3. AtR,,
= 2.5M, the solver cannot drivgsp|, below 104, and so
fails to meet the stopping criterion. This can be understood in
terms of the Cauchy-Schwarz inequalifi6]. Since |J

- 8p|l,=||F|l, we have that

IFl,

opllr=7——. (34)
” P”Z H‘]HZ

tesian grid. With these parameters we carry out two set oAt R ,=2.2 where||l5|\2~10‘3 and||8p|,~10"°, we have
tests. The first is a radial test of the horizon locator with thefrom Eq. (34) that [J]|,~1C. Therefore atR,,=2.5M we

use of the interpolator, and the second is an offset test. The%‘?(pect with|||3||2~10‘2 that|| 8p||,~ 10

tests examine the effect of extrapolation of metric data on th%

4. By relaxing the

riterion for 2.5M<R,<2.6M we can still obtain a solu-

evaluation of reSidual’,i, and on the solution of the apparent tion. ForRm> 2.6M, the convergence progressive|y worsens.

horizon equation.

6. Apparent horizon location (radial tests with excision)

In this test case we center the black hole at (0,0,0). The
masked region is also centered at (0,0,0). We carry out a
series of tests with the excision radil,, varying from 1.5
to 2.6. Thus the apparent horizon is in the defined region
(Rn<2M) for some of the tests, and for others it is inside
the excised regionR,,>2M). This provides evidence of the
effect of extrapolations on the residual of the apparent hori-

zon equationfF, and the error in its solution. Figure 2 illus-

trates the behavior of the, norm of the residual|F||,, as a
function of R,,. Figure 3 shows the percentage relative error
of the solution of the apparent horizon equation as a function
of R,. The percentage relative error is calculated using the
exact solution for the location of the apparent horizon,
=p(6,6)=p=2M, ase=|p—p|/p*x100%. ForR,<2M

the interpolator uses interpolation for regions near the appar-
ent horizon location (=2M), while for R,,>2M it uses
extrapolation. AfRR,, increases beyond\2, the errors due to
extrapolation increase, as expected. This can be seen in Fig

084024-

For example, aR,=2.9, ||, could not be brought below

% error in solution e

Interpolation

Extrapolation

1

1.5 2
Mask Radius R |

- FIG. 3. Percentage relative error gnversus mask radius. Past
2 where||F|, increases quickly folR,,=2.4, as does the R,>2.5 the Newton solver could not redug||, below 10°%.
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% relative error e

0.2 0.4
Radial offset &

FIG. 4. Percentage relative error in the apparent horizon Ioca-_l 3
tion as a function of the offsei. F

103, and the solution error is 5%. The amount of error _ B . .
. . X . . FIG. 5. 8==/2 and ¢ =7 cross sections of apparent horizons
sustained fro”.‘ interpolation of '.{he mgtrlc data is depe.nder‘bcated are shown for various valuesafThe solid line shows the
on the re_SOIUtlor_] of_the Cartesian grid and_the behavior O¢=7r slice of the apparent horizon. The dashed line showsbthe
the functions being Interpolated. If the gra@entsmf gnd = /2 slice of the horizon. As expected tlge= 7 slices show in-
Kij are large near the horizon then a larger interpolation errogreasing deformation for increasiag
results. This in turn leads to a larger truncation errdfinn
the numerical evolution of black hole spacetimes with exci-
sion we conclude from this experiment that buffer zones may ] . ] ]
not be necessary for the location of apparent horizons. How- In this section we focus on _the apparent horizon location
ever, in an evolutionary context, buffer zones might be necin Kerr, boosted Schwarzschild, and boosted Kerr space-
essary for other reasons. times. We begin with the Kerr case, where we excise a

2-sphere of radius>a centered about the origin from the
computational domain to avoid the ring singularity structure
of the Kerr black hole. Using the apparent horizon locator,
We now consider a situation where we have an “offset” we find horizons for various values of the angular momen-
black hole such that the apparent horizon overlaps the exum parametera=0.0,0.1,0.2...,0.9. In each case, the lo-
cised region. This is an important case to consider becausedator begins with a trial surface that is a 2-sphere of radius
is relevant for the tracking of moving black holg20]. ro=2M and we us&N,=33, e=10"° and=10"1L. Figure
The center of the masked region is at (0,0,0) and thé shows a cross section of the computed horizon inxthe
black hole of radius ®1 is centered atd&//3,5/1/3,5//3), plane as a function cd. For non-zera the apparent horizon
so that the radial distance between the mask center and tlag@parently has the shape of an oblate spheroid.
hole is 6. With a grid spacing oh=1/8, an offset of6=1 In order to perform a convergence test we carried out a
thus corresponds to approximately 8 grid zones. Figure 4eries of runs witha=0.9 and Ng=17,25,33,49,65. We
shows the percen.tage relative error in the app.arent horizofpund that the error in the squtiorﬂ(F—r+)/r+||2, was
location as a function of the offsét_As the gr_aph illustrates, O(h?). Herer, is given by Eq.(17), andf is computed
up to 5=0.7 the percentage relative error is below 1%t fom the discrete form of Eql14).

6=0.7 the percentage error is 0.§%rom 6=0.7 onwards, We compute the area of the apparent horizon by project-
however, the solver becomes sensitive to initial COI’IdItIOhSmg ¥, onto the 2D mesh to obtain an area element

and extrapolation errors, and quickly ceases to converge. J@dode. We integrate this element over the discrete

At 6=0.7, about 5—-6 grid points offset, we are still abIe2 tace & 1o obtain th call ted area

to find horizons. Generally, in explicit time-evolution codes -surtace,o, o obtain the numerically computed area,
the Courant-Friedrich-Levy(CFL) condition [21] restricts Figure 6 shows the percentage errors in the area as a function
the black hole motion from one time slice to another, to beOf mesh size. . .

less than one zones&h or abouts~0.1 in our test cage We now consider Schwarzschild and Kerr black holes
Hence we expect, based on the results for our model spacBoosted in theyz direction. Specifically, we take,=0v,
time as shown in Fig. 4, that in such an evolutionary scheme= 1/\/§v,vz= 1/\/50 anda=0 or a=0.9. For both values
with a similar resolution we will be able to locate black hole of a, we locate apparent horizons fer=0,0.1...,0.9.
apparent horizons to a precision of order 0.1%. From O<v=<0.8, we started with a two-sphere of radiugl 2

B. Apparent horizons in Kerr data

7. Locating offset apparent horizons
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for a Kerr hole versus: is shown forNg=17,25,33,41,49,65. 2 -1 0 1

and found an apparent horizon with outgoing expansions F!G- 7. This series of plots shows-z cross sections of a
driven down to 102 Forv>0.8 we had difficulty achiev- ?chw?rz_sghal% black goge. aﬁﬁarenghontz‘on I;’_Eatzd f?]r EOQStlve.IOC"
ing this convergence criterion. As a result we utilized the les ofv =0.0,0.1 ....,0.9 In they-z direction. The dashed circle in
. _ S each of these figures is the apparent horizon for an unboosted

solution atv =0.8 as an initial guess and were subsequently, . :

ble to find hori by st ; 0.25 f 08t Schwarzschild black hole. Note that the points of contact of the
a_e oin horlzons ys eppmg every s rmrﬁ_ : ho dashed and solid curves lie along a line in gneplane which is
V,_,O'g' For these runs, we again used10 - At ‘,’_0 the " grthogonal to the direction of the boost.
initial guessis the apparent horizon, and, in this case, the
expansions were driven to 10~ within six Newton itera- . A
tions. The first Newton iteration took the expansions tois, vx=1/\3,0,=1/3,0,=1/J3 and a=0. Here r
~1078. Forv=0.5 starting from an initial guess of a sphere = \/X2+XE+ Z%is computed using the boosted coordinates,
of radiusp=2M, it took four Newton iterations to drive the x#=AZx", wherex” are the unboosted coordinates.

expansions to 10°° and nine Newton iterations to get  Figure 10 shows surface plots of the apparent horizon for
down to~10" "< Typically, in a numerical time evolution of ;,=0,0.3,0.6 and 0.9 displayed in Kerr-Schild Cartesian co-
such a spacetime we would not need to drive the expansionsydinates. Note how distorted the apparent horizon gets with

down to this level. In particular, if we are utilizing a surface jncreasing boost velocities. As also seen in the figures for the
within the apparent horizon as an excision boundary then we

need only to drive the expansions down far enough to be

certain an apparent horizés present outside af. Figure 7 05F [—nN
shows theyz cross section of the apparent horizon for vari-
ous boost velocities compared with an unboosted black hole
apparent horizon cross section. We find that the apparent
horizon is Lorentz contracted in thgz direction in the
boosted coordinates. This is consistent with the slicing that
we have chosen where the event horizon appears Lorentz
contracted. We know that in these spacetimes the apparent
horizon coincides with the event horizon and we find that
this is indeed the case. First, the area of the apparent horizon
coincides with the area of the event horizon which is invari-
ant under a boost. Figure 8 shows the error in the apparent
horizon area as a function of for various resolutions. We
find that with increasing resolution the error in the area con-
verges towards zero. This demonstrates that the area of the

Error in area

. . . . . 1 I 1 1 1 I 1
apparent horizon founds approximately invariant under a 0 0.2 0.4 0.6 08

boost. Additional evidence is provided by Fig. 9 where we Boost velocity (v)

show the error in the radial coordinatess2M, on the ap-

parent horizon for various boost velocities. In this case the FIG. 8. Error in the areas of apparent horizdhd— A4||,, found
black hole is boosted in theyz direction for generality. That for a Schwarzschild black hole boosted in the direction.
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FIG. 9. Error in the radial coordinate,wherer ¢y,.—=2M for a =
Schwarzschild black hole apparent horizonde+0.0, . . .,0.9. The
black hole is boosted in theyz direction.

T

yz boosts, the boosted apparent horizons in this generic case
are always contained within the apparent horizonufer0.

That is, the boost contracts the apparent horizon in the boost
direction. Again for a boost velocity af=0.5 it took the
solver eight Newton steps to drive the expansions to the
stopping criterion3=10"2. On average it took four Newton 5
steps to drive the expansions t910°° and nine Newton s
steps to~10"12, starting from an expansion of 0.1. {*ﬁ\

—
(=)
~

For the case of a boosted Kerr black hole vtk 0.9, the
results are very similar to those of the Schwarzschild black W
hole just discussed. Note that in this case, v&th0.9 and : —
v—0.9, the apparent horizons are even more distqiried-
spherical. These results show that our algorithm for finding
apparent horizons does quite well with such large distortions.
In addition the cost of finding these surfaces increases by
only two additional Newton steps. Figure 11 shows jtre
cross sections for the apparent horizon foundafer0.9 as a
function of v. Again the boosted apparent horizon is con-
tained within the unboosted one and Lorentz contracted. Fig-
ure 12 shows the error in the area for the same data. With
a=0.9 we expect that the area should b&6. The graph
shows that for increasing resolution the error in the area
tends towards zero. Hence the area remains fixed with in-
creased boost velocity as expected.

Similarly, the error inr [computed from Eq(14) using
boosted coordinatésends to zero with increasing resolution
as shown by Fig. 13. The apparent horizons found here were
obtained with v,=1/\/3,0,=1/3,0,=1/1/3 and a=0.9.

That is, the boost was in theyz direction with magnitude .
Again we find thatr on the apparent horizon converges to

r . ~1.4 with increasing resolution for all boost velocities. At

a resolution of 3% 33 we find about 8% error, and 1% at  FIG. 10. Plots of the apparent horizon for the=0.0 runs for
65X 65. Figure 14 shows surface plots of the apparent horip =0.0,0.3,0.6 and 0.@eft to right, top to bottorfor boosts in the
zon for the boosted Kerr black hole for=0,0.3,0.6 and 0.9. xyzdirection. The mesh used to find the apparent horizon is shown
For v=0, our algorithm required one less Newton step tofrom a top perspective. As the boost velocity is increased we see
drive the expansions down to 18 than it did forv =0.9. In  that the surface is contracted in tkgz direction.

i

1

[T
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FIG. 13. This figure shows the error in the spheriodal radial
coordinate location for a Kerr black hole apparent horizen (
=0.9) forv=0.0,...,0.9. The black hole is boosted in thegz
FIG. 11. They-z cross section of Kerrg=0.9) black hole direction.

apparent horizons located for boost velocities of . o
=0.0,0.3...,0.9 in they-z direction. The dashed circle in each of Cussed above, these operations are optimized such that they

these figures is the apparent horizon for an unboosted Schwarzscale as approximatel§(N), whereN is the total number of
child black hole. As in Fig. 8, note that the points of contact of thepoints on the two-dimensional solution mesh. The time taken
curves lie along a line in thgz plane which is orthogonal to the per Newton iteration is independent of the distortion of the
direction of the boost. apparent horizon. However, the number of Newton iteration
. . . . . . steps is determined by the “distance” of the initial starting
both instances, it took six Newton iterations to drive theg ace from the final solution. During the course of an evo-

expansion from about 0.2 at the inital step to $OHence, LT :
this algorithm has the advantage that given sufficient resolul—!J tion it is expected that the apparent horizons over several

tion on the computational mesh. the work done does not™e slices will be “close” enough to each other that two to
; i P ) A : ree Newton iterations will be sufficient to locate the hori-
drastically increase for increasing distortions.

zon at low accuracy with the expansion of the outgoing null
V. COMPUTATIONAL EFFICIENCY rays on its surface being at the level of Poor 1.0*6. Ob-
taining better accuracy requires more Newton iterations, and

Our algorithm is dominated primarily by computations of the convergence rate also depends on the accuracy of the
the Jacobian matrix in the use of Newton’s method. As diS‘background metric data. Typ|ca||y in our model pr0b|em5,
eight iterations drive the residuals below 18

One of the drawbacks of a Newton method for finding
apparent horizons is its sensitivity to the initial guess. An
initial guess outside of the radius of convergence will not
lead to a solution. Additionally, Newton methods are known
to be sensitive to high frequency components in the solution.
This has been demonstrated in an axisymmetric context by
Thornburg[8]. Sensitivity to the initial guess can be easily
handled by combining the Newton method algorithm with
apparent horizon trackers that are based on flow methods.
The flow finder is used to obtain an initial guess for the
Newton method which then converges on the solution very
quickly.

The efficiency of our method can be compared to the
efficiency of other approachdsariations of flow methods
due to Tod, as developed by Shoema&eal. [12] and fast
flow methods developed by Gundlaits]. The flow method
is based on a parabolic partial differential equation whose
rate of convergence to the solution slows as the solution is

FIG. 12. The error in the areas of apparent horizons found for @pproached. Typically for a 3833 run the flow method
Kerr black hole boosted in thg-z direction witha=0.9. takes hundreds of times longer than our method to converge
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™ composition methods. We concentrate on a method similar to
SN that of Nakamureet al. [4] in which the equation for the
apparent horizon surface is written
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We do not have access to an apparent horizon finder based
on pseudo-spectral methods but we will analytically compute
the coefficients for the case of a boosted Schwarschild black
hole; this will give some insight into the range of harmonics
required, and some idea of what scaling of these methods
might be.

In Kerr-Schild coordinates, the hole, with a boost in the
direction, has the shape of a spheroid,
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where we have suppressed thdirection.

Notice that the axes,b of the ellipsoid obeyb?/a?=1
—v2, which demonstrates that the eccentricity is equal to the
boost velocity,e=uv, for this case. Hence even ellipses with
a moderate ratio of axes, such as thatde+0.9, where the
ratio is a little less than 0.5, have moderately large eccen-
tricities. We will approximate the form Eq36) with an axi-
symmetric series of the form E@35) (the general case of
locating an apparent horizon would have nonaxisymmetric
terms alsg. We find it more convenient to work with Leg-
endre polynomials than with the spherical harmonics di-
rectly.

Since we work with Legendre polynomials, we drop the
¢ dependence in the spheroid expression, to obtain
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whereq= cosé.
To obtain the expansion of expression E2f) in terms of
Pn, we first expand using the binomial theorem,
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@ This converges for alb <1.
Using the binomial theorem again for €lg?)S we sub-

FIG. 14. This figure shows plots of the apparent horizon for thestitute
a=0.9 runs forv =0.0,0.3,0.6 and 0.9 for boosts in tkegz direc-
tion. The mesh used to find the apparent horizon is shown from a pis S o
top perspective. As the boost velocity is increased we see that the (1-g?»)s=2 ; (=1)'q (40

surface is contracted in theyz direction.

r=0

down to expansions of Id. The advantage of the flow N EQ. (39 to obtain
method, however, is its ability to find multiple apparent ho- o 12 s g
rizons from an arbitrary initial guess. A hybrid flow or direct- R(6)/b= B ) —1)5¢2S —1) 41
Newton solver should thus result in a robust apparent hori- (9) 520 S (—1)% 20 r (=1asr (4
zon finding scheme.

We can also compare our implementation to spectral dewhere
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n

FIG. 15. log«C,,) for n=1 to 10 are shown fov=0.1, v
=0.5,v=0.7 andv =0.9. The coefficients scale as¥" wherek is
determined by the shape of the horizon. ber0.1 we havek~6
and forv =0.9 k~0.9.

227(4n+1)(2r)!(r +n)!

and we made the substitution
22"(4n+1)(2r)!(r+n)!
q¥=2 P2n(0).

n=o (2r+2n+21)I(r—n)!

By exchanging the summations oveandn and thenn and
sit is possible to rewrite Eq41) as

r<0>:n§O ConPan(6),

(43
where
co =172
Czn:22n(4n+1)2< < )(_1)3623
s\ (=1)7(2r)!(r+n)!
Xr—n(r (2r+2n+1)!(r—n)!" (44)

Figure 15 gives the coefficien&,, forn=1, ...,10, and
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VI. DISCUSSION

We have demonstrated in this paper that our method based
on finite difference techniques is viable for locating very
distorted boosted Kerr black hole apparent horizons. We
have shown that the located horizons obey the expected ana-
lytical rule of invariance of the area of the event horizon, in
cases corresponding to at-rest or boosted single black holes,
where the apparent horizon is known to coincide with the
event horizon. We have additionally given a number of com-
putational tests demonstrating the behavior of the locator on
interpolated or extrapolated data which are similar to realis-
tic data obtained from evolutions. In other contexts the algo-
rithm has been thoroughly tested with a canonical set of test
problems such as two- and three-black-hole initial data sets.
Additionally, it has been successfully used to track apparent
horizons in the evolution of geodesically sliced Schwarzs-
child black hole dat422,23, as well as in the evolution of
boosted Schwarzschild daf20]. Those tests and the tests
given here show its viability as a method for locating black
hole apparent horizons and using them for black hole exci-
sion. Since black hole excision would appear to be vital for
long-term evolutions of single or multiple black hole space-
times, it is very useful to have efficient apparent horizon
locators that can locate apparent horizons quickly, relative to
the time taken for an evolution time step.

It is a fact that our method as currently implemented can
find only asingle, isolatecapparent horizon. Thus, its speed
is counteracted by the impossibility of its use in generic
2-hole cases. However, it may be possible to use a flow
method which would recognize the existence of separate
black holes, and roughly locate the two holes to some accu-
racy. These approximate solutiof®&ssurfacescould then be
used as initial conditions for the current algorithm, which
should then quickly converge to a highly accurate result. We
are confident that a tool based on the combination of the two
methods would be of great utility.
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order, and for eacl, a set of azimuthal quantum numbers The evaluation of Cartesian derivatives 8is carried out
spanning—2n to 2n.) Hence in general, to compute the by constructing 3D finite difference stencils at each mesh
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rameters in a minimization routine. This is equivalent to in-sists of 26 additional points around each mesh point. These
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slow. The elliptic PDE solver is expected to be much fastermesh point. These points, as shown, are organized into three
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FIG. 18. This figure shows the choice of stencil points for bi-
) ) ) ) ) quartic interpolation for interpolation points that are near the poles.
FIG. 16. P is the point at which we wish to estimate The  \yg view the pole points from a 3-dimensional perspective where
dashed line is the radial line from the origin of our spherical coor-yhe igentifications of points in the direction is taken into account.
dinate system to P. The filled square on the surface is the interperps |eads to the special choice of interpolation stencil points as
lation point where we evaluajg( 6y , ) shown. This leads to fourth order truncation error in the interpolant
at the poles. The interpolation point is labelled by a filled circle and
planes of constart z=z,— 6z,2,,2,+ 6z. Each plane con- the mesh points that are used as an interpolation stencil are denoted
tains nine nearest neighbors of the center point, including theY filled squares.

center point itself in the case at=z,. We use a single dis- ) ) o
cretization scaléh (8x=dy=dz=h) which is always pro- that the truncation error has a leading order term which is

portional to the mesh spacingy= m/(Ng—1). fourth order in the grid spacing The interpolation is carried
To defineg(x,y,z) at each stencil pointe \'we use its  out with values ofp defined on mesh points ¢f using a 16
split into radial and angular partsz(x,y,z)=r—p(6,¢).  point stencil. Figure 17 shows the choice of these stencil

For each stencil poink we compute the corresponding points in the interior of the mesh. At the poles a special
spherical coordinates {, 6, , ¢,). This point can be thought choice is made of stencil points which takes into account the
of as a ray emanating from the origin of our spherical coorindentifications made at the poles. Figure 18 shows a choice
dinate systentwhich coincides with the origin of our Carte- Of stencil points for an interpolation point near the pole. This
sian coordinate systenalong (6, ¢,) of lengthr,. Figure  approach leads to a fourth order truncation errqs(ifiy , ¢,)
16 labels the poink as P. The dashed line from P to the at all points onS. Then ¢ can be constructed for every
origin is the ray from the origin. Its intersection withis €N ase=r,—p(6y,¢,). Using this approack is defined
denoted by a filled square. The value gfat x can be ob-  at any finite difference stencil point for every mesh point on
tained by computing( 6y, ¢,) via biquartic interpolation so  S. The finite difference expressions fAFcp, APA?QD (corre-
sponding to first and second derivativeme computed at
each of the mesh points. The residual is then evaluate$l on
using these finite difference approximations for the deriva-
tives to O(h?), and metric data %ij 9 vij Kij) which are
N | | N specified either analytically or interpolated from an envelop-
ing 3D Cartesian grid.

Because we us@®(h?) finite difference approximations
o o w o Ale, AfAT to the derivatives, this approach leads to an

O(h?) truncation error in evaluating[p] . Because of our
special attention to points near the pole,is evaluated
smoothly everywhere o8.

With a means for evaluating at any point in the domain

| L L | of Siit is straightforward to generaﬁe; numerically using
Eq. (9). The algorithm for this is summarized as follows:

Specify metric data everywhere ¢h
EvaluateF[p] everywhere orS

FIG. 17. The choice of stencil points for biquartic interpolation For each pointlabeled byw) in 3
for interpolation points that are on the interior of the grid. The N
interpolation point is labelled by a filled circle and the mesh points Perturbp,=p,+ € )
that are used as an interpolation stencil are denoted by filled Specify metric data on perturbed point
squares. EvaluateF[ p,+ €] at the uth point.
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Compute thqﬁ component of the Jacobian matrix Start with an initial guess surfaée= ;30
using Eq.(9) while |F||> stopping criterion

End loop over points 0. Compute the Jacobialy,, for the currentp
This gives the Jacobian matri,, for F evaluatedJ,, EvaluateF[p] A

is a (N2—2Ng+2) X (N2—2Ng+2) matrix which is used in SolveJ- 5p=—F[p] for 5p

Newton’s method as follows: Update the surfacp=p+ dp.
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