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Towards the final fate of an unstable black string
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Black strings, one class of higher dimensional analogues of black holes, were shown to be unstable to long
wavelength perturbations by Gregory and Laflamme in 1992, via a linear analysis. We reexamine the problem
through the numerical solution of the full equations of motion, and focus on trying to determine the end state
of a perturbed, unstable black string. Our preliminary results show that such a spacetime tends towards a
solution resembling a sequence of spherical black holes connected by thin black strings, at least at intermediate
times. However, our code fails then, primarily due to large gradients that develop in metric functions, as the
coordinate system we use is not well adapted to the nature of the unfolding solution. We are thus unable to
determine how close the solution we see is to the final end state, though we do observe rich dynamical behavior
of the system in the intermediate stages.
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I. INTRODUCTION

The stability of four-dimensional black holes is a we
known and fundamental result of relativity theory@1#. The
picture in higher dimensional spacetimes was shown to
quite different by Gregory and Laflamme@2,3#, who demon-
strated the existence of unstable long wavelength mode
the black string in perturbation theory. This finding, coupl
to arguments based on entropy considerations, led to t
conjecture that black strings might bifurcate into higher
mensional analogues of spherical black holes. Cosmic c
sorship would be violated were this the case, since a sin
larity must be encountered by a bifurcating black ho
horizon, essentially as a consequence of the principle
equivalence@4#.

The existence of the Gregory-Laflamme instability h
been assumed in many subsequent studies of higher dim
sional gravity theory, including the classical limit of strin
theory ~see, for example,@5–8#!, some of which have also
assumed the validity of the bifurcation conjecture. Howev
a linearized analysis can say little, if anything, concern
the nature of the full non-linear evolution of an unstab
string, and the final end state of such a configuration
mained to be established.

Recently, Horowitz and Maeda were able to prove, un
some assumptions, that black strings cannot bifurcate in
nite time @9#. Furthermore, they conjectured that the syst
is likely to approach a new stationary solution which is n
translationally invariant along the string direction. Howev
even if the assumptions involved in the proof are sufficien
generic, their analysis cannot identify the final end-state
evolution. Partial answers can be sought via perturba
analysis as done by Gubser@10#. By assuming the Horowitz-
Maeda conjecture and linearizing the solutionat the critical
lengthto first order~and a partial extension to second orde!,
Gubser argued that the transition to the final solution mus
of second order type~i.e. discontinuous!. Despite these de
velopments, it seems clear that a convincing answer to
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question at hand can only be obtained by solving the
equations governing the problem. A step in this directi
would be to search for special solutions, such as station
ones, and compare the physical content of the obtained
figurations with the black string solutions. This has recen
been carried out by Wiseman@11#, who numerically solves
the equations resulting from a static ansatz. Interestingly
finds non-uniform solutions with mass larger than that of
black string for a given compactification radius. Thus,
concludes that the solutions he finds cannot be the end s
conjectured by Horowitz and Maeda~also see related work
by Kol @12#!.

Additional work by Unruh and Wald@13# studies the dy-
namics of a uniform cylindrical configuration of matter
Newtonian gravity. They observe that a perturbation of
density gives raise to a Jeans instability responsible for
collapse of the system along the cylinder’s length. They th
argue that if the main features of this model are robust in
passage to the general relativistic system, one possible
state for the perturbed black string would be collapse in
string direction, resulting in singularity formation. Note th
this collapse need not lead to violations of cosmic cens
ship, as the final singularity could still be hidden by an eve
horizon @14#.

Clearly there are several distinct viable possibilities
the final end-state of a perturbed black string, with rema
ably different consequences associated with the range of
tions. Current conjectures range from ‘‘nothing interesti
happens,’’ to violations of cosmic censorship, to the argua
more extreme case of a complete collapse of the spacet
In order to completely settle the issue, the full dynamics
the perturbed black string needs to be addressed. At lea
principle this will allow us to identify which of the above
possibilities ~if any! is actually realized. In this paper w
report on preliminary work in this direction—a program
simulate the dynamics of the black string through numeri
solution of the Einstein equations. At this stage of t
project, we cannot yet provide an answer to the question
©2003 The American Physical Society01-1
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the end state; however, we have tantalizing results that s
the spacetime going through a configuration resemb
5-dimensional spherical black holes connected by thin bl
strings that expand along the string dimension. Our simu
tions eventually crash while the spacetime is still fairly d
namical, and so we cannot determine whether what we se
near the end state, or merely an intermediate configuratio
a more complicated evolution. Underlying the current failu
of our simulations is the fact that the coordinate system e
ployed is not well adapted to the solution that unfolds at l
times, wherein fatally steep gradients develop in me
functions.1

The outline of the remainder of the paper is as follows.
Sec. II we begin by describing the equations of motion,
coordinate choices, the generation of initial data, as wel
our numerical solution scheme. Additionally, we also brie
mention the tools we employ to monitor the solution, def
ring details to the Appendixes. In Sec. III we discuss
results obtained with this code, and conclude in Sec. IV
mentioning directions for future work that may allow us
more definitively answer questions regarding the end stat
the Gregory-Laflamme instability.

II. EQUATIONS, BLACK STRINGS AND NUMERICS

We wish to solve the vacuum Einstein equations in hig
dimensional settings. For simplicity, and without loss of ge
erality in studying the Gregory-Laflamme instability, we on
consider the 5-dimensional case, and restrict attention
spherical symmetry within the 4-dimensional subspace
gent to the ‘‘extra’’ dimension. We also use the natural ge
eralization of the Arnowitt-Deser-Misner~ADM ! decompo-
sition to derive the system of equations that we then so
numerically. Choosing units in whichG5c51, and adopt-
ing Misner-Thorne-Wheeler~MTW! @15# conventions, our
starting point is thus a metric element given by

ds25~2a21gABbAbB!dt212gABbAdxBdt

1gABdxAdxB1gVdV2 ~1!

where xA5(r ,z), and dV2 is the 2-spherical line elemen
with coordinates chosen orthogonal to thet5const congru-
ences~hence there is no shift corresponding to angular dir
tions!. All metric components defined via Eq.~1! depend
upon (t,r ,z): t is a time-like coordinate,r is a radial coordi-
nate, andz is the coordinate along the length of the string.
further expedite the numerical implementation, we makez a
periodic coordinate by identifyingz50 andz5L. Then, fol-
lowing the results of Gregory and Laflamme, we exp
black strings to be unstable only forL greater than some
critical lengthLc .

1This divergence of metric gradients does not happen earlie
resolution is increased, and is not accompanied by divergenc
curvature invariants such as the Kretschmann scalar. This sug
that the code is evolving to a coordinate, rather than a geome
singularity.
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The vacuum Einstein equations, written in ADM form
@15,16#, are~1! the Hamiltonian constraint

H[ (4)R1K22KabK
ab50, ~2!

~2! the momentum constraints

Ma[Kaub
b 2K ua50, ~3!

~3! the evolution equations for thegab

]gab

]t
522aKab1baub1bbua , ~4!

that follow from the definition of the extrinsic curvatureKab
associated witht5const slices, and~4! the evolution equa-
tions for the extrinsic curvature

]Kab

]t
5a~ (4)Rab1KKab!22aKacK

c
b2a uab1bc

uaKcb

1bc
ubKca1bcKabuc1aFa

cFb
dgcdH. ~5!

In the above,a,b, . . . are four-dimensional~spatial! indices,
(4)Rab and (4)R are, respectively, the Ricci tensor and Ric
scalar intrinsic to the four-dimensional spatial hypersurfac
a is the lapse function,bc is the shift vector, the vertical ba
denotes covariant differentiation in the spatial hypersurfa
~compatible withgab), andFa

c522d r
cda

r . We note that the
term proportional toH in Eq. ~5! has been added as a resu
of stability considerations; see, for instance, the discuss
in @17–19#. To simplify the final set of equations solved nu
merically, as well as to regularize certain terms that oth
wise diverge at spatial infinity~see the discussion of ou
coordinate system in the next section!, we define the follow-
ing variables:

grr [g rr , grz[g rz , gzz[gzz,

guu[gV /r 2, gff[gV /~r 2sin2u!,

krr [r 2Krr /a, krz[Krz , kzz[Kzz,

kuu[Kuu /a, kff[Kuu /~a sin2u!, ~6!

and use them as the fundamental dynamical quantities in
numerical code. As discussed in the following sections,
complete the prescription of the evolution problem we ne
to choose a suitable lapse and shift, specify initial a
boundary conditions, and then implement these choices
specifications consistently.

A. Boundary and coordinate conditions

A particular concern here is that ‘‘standard’’ outer boun
ary conditions@17#, often imposed during numerical evolu
tion of Einstein’s equations, might not be well suited f
studying the string instability. In particular, we must be ab
to evolve for very long times while absolutely minimizin
spurious influences from the outer boundary of the compu
tional domain. In addition, in the present case we can

as
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TOWARDS THE FINAL FATE OF AN UNSTABLE BLACK . . . PHYSICAL REVIEW D68, 044001 ~2003!
assume,a priori, that any given initial configuration will
settle down to some stationary solution; thus, boundary c
ditions predicated on such assumptions~such as a 1/r fall-off
condition in a metric component!, when imposed at a finite
proper distance from the black string, could very well a
versely affect the numerical results.2 To ensure minimal
boundary influence we therefore extend the domain of in
gration to i o by radially compactifying the spacelike hype
surfaces via the introduction of a new coordinate,x, defined
by

x[
r

11r
. ~7!

As might be expected, this transformation causes comp
tional problems of its own—most notably decreased spa
resolution at large distances—but, as discussed in Sec.
we can deal with these difficulties using numerical dissi
tion. Having introduced the new compactifying coordina
we can directly impose boundary conditions derived fro
the demand of asymptotic flatness at spatial infinity, wh
lies atx51.

We employ singularity excision techniques@20# to allow
us to evolve the entire perturbed black string spacetime
terior to the apparent horizon~plus a certain ‘‘buffer zone’’
that lies within the horizon!. Hence, we do not need to im
pose inner boundary conditions as long as thet5const hy-
persurfaces penetrate the horizon, and that all characteri
of the evolution equations are in-going on the boundary.
suring that this is the case involves choosing ‘‘good’’ coo
dinate conditions~choice of lapse and shift!, which, for ge-
neric string evolutions, remains an open problem. As
preliminary step, we have based our coordinate choices
those that yield the ingoing Eddington-Finkelstein form
the unperturbed black string metric

dsBS
2 52~122M /r !dt214M /rdrdt1~112M /r !dr2

1dz21r 2dV2. ~8!

Comparison with the general 5-dimensional ADM form pr
vides the identifications

aBS5~112M /r !(21/2), ~9!

bBS
A 5~2M /~r 12M !!d r

A . ~10!

For reference we also list the two non-trivial components
the extrinsic curvature of at5const slice defined by Eq.~8!:

Krr 522M
~r 1M !

r 3
A r

r 12M
,

2In fact, in an earlier version of the code that did not use a radi
compactified coordinate system, we did encounter such proble
in that some artificial stationary non-homogeneous solution was
parently entirely ‘‘sourced’’ via an outer boundary located at a fin
distance from the string.
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Kuu52MA r

r 12M
. ~11!

In generalizing Eqs.~9! and ~10! to the dynamical case, we
have chosena5aBS andbz5bBS

z 50. In a preliminary ver-
sion of our code, we also required thatb r5bBS

r . This, how-
ever, caused a coordinate pathology to develop at late ti
during the evolution of unstable strings—specifically, som
regions of the horizons approached a zero coordinate rad
while maintainingfinite proper radius. In our current efforts
we chooseb r such thatguu remains constant during evolu
tion @21,22#, by requiring that

b r5
2aKuu

guu,r
. ~12!

This shift condition performs reasonably well, as will b
seen in Sec. III. However, our current simulations still suf
from ‘‘grid-stretching’’ problems in thez direction at late
times, suggesting that a more dynamical gauge condition
bz ~and possibly fora andb r) could be useful. This issue i
discussed in more detail in Sec. IV.

B. Initial data

As anticipated, we observe that even numerical trunca
errors, if non-uniform in thez direction, are enough to trigge
the Gregory-Laflamme instability in our simulations. How
ever, to reduce the computational effort required to reach
‘‘interesting’’ ~i.e. non-perturbative! stages of evolution, we
adopt initial configurations whose departure from the bla
string solution can be arbitrarily tuned. In order to find su
data, we must solve the Hamiltonian constraint, and ther and
z components of the momentum constraint~the other com-
ponents of the momentum constraint are trivially satisfi
because our coordinate system is adapted to spherical
metry!. The deviation—not necessarily small—from th
black string solution, is introduced viaguu , and takes the
following form:

guu~0,r ,z!511A sinS z
2pq

L De2(r 2r o)2/dr
2
. ~13!

Here,A is used to control the overall strength of the ‘‘pertu
bation,’’ while q is an integer that controls the spatial fr
quency in thez direction. For the results presented belo
A50.1, q51, r 052.5 andd r50.5, and we perturb about
unit mass (M51) black string solution. As described i
more detail in Appendix A,grr , krr , kuu are then calculated
by solving the constraint equations, with the remainder of
metric and extrinsic curvature variables set to the values t
would take for an unperturbed black string@see Eqs.~8! and
~11!#.

C. Numerical evolution

To numerically evolve the initial data sets describ
above, we discretize the evolution equations~4!, ~5! using
second-order accurate finite difference techniques that
clude the Crank-Nicholson treatment of the temporal a

y
s,
p-
1-3
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CHOPTUIK et al. PHYSICAL REVIEW D 68, 044001 ~2003!
spatial derivatives. We use a uniform distribution of gr
points in z and x @recall that x[r /(11r )]. The resulting
implicit system of algebraic equations is solved iterative
We initially implemented a serial version of the algorithm
and later coded a parallel version using theCACTUS Compu-
tational Toolkit@23#, wherein the equations of motion, mon
toring tools and I/O were handled by our own routines, su
ably interfaced toCACTUS.

Black hole excision is handled as follows. We periodica
find the apparent horizon, as discussed in the following s
tion and Appendix B. We then define the surface along wh
we excise to be a certain number of ‘‘buffer’’ pointsinside
the apparent horizon~typically 10–30 buffer points are
used!.3 During each Crank-Nicholson iteration, all the ev
lution difference equations are applied up to the excis
surface, and any function values referenced by finite dif
ence stencils interior to this surface are defined via fou
order extrapolation. When the apparent horizon location
hence excision surface changes during evolution, func
values at all repopulated points~i.e. those that moved from
inside to outside the excision surface during the time st!
are computed via the same fourth order extrapolation rout
The one exception to this procedure is for the grid values
guu , which we specifya priori on the entire computationa
domain, and that remain fixed due to our gauge choice~12!.
Moreover, we have found it useful to choose a functio
form for guu that tends to zero at some positive value or
~though inside the original apparent horizon location a
outside of the limits of integration of the initial data!. This
causes the ‘‘pinching off’’ of the unstable black string to
less severe in coordinate space, i.e. we approach zero
radius at a finite coordinater. In turn, this slightly reduces
the virulence of the coordinate problems we observe at
times, and also provides better load balancing of the para
code, given the methodCACTUS uses to distribute grids
among processors.

For the evolution, we choose a time stepdt
5lCFLmin(dr,dz), where the constantlCFL must be set less
than 1/A2 in order to satisfy the Courant-Friedrichs-Lew
~CFL! stability condition that results from our iterative sol
tion of the Crank-Nicholson scheme~typically we uselCFL
50.25). Note that this restriction onlCFL is based upon
flat-space light speeds within our coordinate system@Eq. ~8!
with M50], which, for the solutions presented here, a
always greater than or equal to the actual coordinate l
speeds. The function min(dr,dz) is calculated by only con-
sidering mesh spacings within the non-excised portion of
coordinate domain. Thus, as the excision surface movesdt
changes with time since our grid is uniform inx, and hence
non-uniform inr.

Crucially, we add Kreiss-Oliger-style@24# numerical dis-
sipation to the evolution equations to control unphysi

3In several tests, we also adopted an excision region given by
global minimumr value of the apparent horizon and compared
results with those obtained when the excision region was define
the apparent horizon. The agreement obtained gives extra indic
that the excision implementation is consistent.
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high-frequency solution components~‘‘noise’’ ! that would
otherwise arise during the simulations. This is particula
helpful at the excision surface, and neari 0, where the radial
compactification of points causes all outgoing wave-li
components of variables to eventually become poorly
solved. Smoothing of the high frequency components via
Kreiss-Oliger dissipation—which only targets wavelengt
of size on the order of the mesh spacing—prevents th
from inducing numerical instabilities near the outer boun
ary.

Monitoring the evolution

To elucidate the nature of our computed spacetimes,
monitor the following quantities:~1! the location of the ap-
parent horizon~which is also used for excision as explaine
earlier!, ~2! the trajectories of null geodesics that, to a certa
extent, should trace the event horizon, and~3! the
Kretschmann invariantI ~the square of the Riemann tenso!:

I 5RabgdRabgd. ~14!

If cosmic censorship holds—and results from our curr
simulations provide no evidence to the contrary—then a
apparent horizon found will always be inside an event ho
zon. As is well known, although the apparent horizon c
often be used as a reasonable approximation to the e
horizon, the two donot, in general, coincide.4 Clearly, the
event horizon is the quantity of interest in studying t
Gregory-Laflamme instability, and therefore we would lik
to locate it, or at least a reasonably good approximation to
in our simulation results. Such an approximation can be
tained by looking for the boundary of the causal past of so
r 5const surface that is sufficiently far outside the appar
horizon that it is certain not to be inside the event horizo
yet close enough to the apparent horizon that its causal p
tracing backwards from the end time of the simulatio
probes the region of interest of the spacetime. We us
method to find the approximate event horizon discussed
Libson et al. @25#. The approach is based on radial outgoi
null geodesics; as explained in@25#, the stable direction for
the integration of null rays that emanate from the vicinity
an event horizon is backwards in timet. Thus, once we have
the complete data from the entire evolution, we start w
data from the latest time step available, and trace the
rays backwards in time.

Monitoring curvature scalars is useful in obtaining coo
dinate independent information about a numerical solution
the Einstein equations. In particular,I, as defined by Eq.~14!,
evaluates toI BS548M2/guu

3 for the unperturbed black
string solution, and asguu is an invariant in spherical sym
metry ~i.e. it is proportional to the area of anr 5const
2-sphere!, we can compareI BS to the values ofI computed
from a numerical solution to get some indication of ho
close the computed solution is to a black string spaceti
Furthermore, we can examineI to see whether curvature sinhe

e
by
ion4Indeed, depending on the slicing an apparent horizon need
exist at all@26#.
1-4
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TOWARDS THE FINAL FATE OF AN UNSTABLE BLACK . . . PHYSICAL REVIEW D68, 044001 ~2003!
gularities ~other than the centralr 50 singularity! may be
forming prior to the demise of the simulation that invariab
occurs when sufficiently steep metric gradients develop.
note, however, that ifI doesnot diverge, it does not neces
sarily follow that the geometry is remaining non-singular; w
would need to examine a larger set of curvature scalars t
certain that the solutions are remaining free of physical s
gularities.

Appendix B contains an explanation of the method
used to find apparent horizons, while details of the integ
tion techniques aimed at approximately locating event h
zons can be found in Appendix C.

III. RESULTS

In this section we present results from our prelimina
study of the black string instability. After briefly showin
that we recover some of the key Gregory-Laflamme res
in the next section, we present a detailed analysis of a typ
unstable case in Sec. III B. In the following, we will use th
value of Lc'14.3M ~with M51) found by Gubser@10#,
which is more accurate than the value we can estimate f
the zero crossing of the~positive mode! interpolating curve
presented in@2#.

A. Recovery of Gregory-Laflamme results

We ran a variety of simulations of black strings that we
perturbed according to the prescription discussed in S
II B. We concentrated on cases withL ranging from 0.6Lc to
1.8Lc and definedguu via Eq. ~13!. In general, we observe
the expected instability forL.Lc , though for the maximum
resolution at which we performed this survey~800 grid
points inr and 200 points inz), we could only confirmLc to
within about 2% of the expected value. In this regard
note that asL approachesLc from above, the growth rate o
the instability goes to 0, requiring longer time integrations
identify the instability, which, in turn, demands an ever i
creasing resolution to counter the effects of accumula
numerical errors. Furthermore, the initial configurations
have adopted contain energy in the form of gravitatio
waves, and some of this energy falls into the string early
during the evolution. The increase in the mass of the str
~based upon the increase in area of the apparent horizo! is
typically around 0.3–0.5 %, and we would have to take t
into account were we to attempt to determineLc from our
simulations to a higher degree of accuracy. Note, howe
that for the purpose of this study, theonly physically signifi-
cant aspect of the initial gravitational radiation is to provi
a mechanism to perturb an otherwise static black string.

As a demonstration of the ability of our code to ‘‘bracke
the instability, and following the notation of@10#, Fig. 1
shows a plot ofl, defined by

l5
1

2 S Rmax

Rmin
21D ~15!

for L50.975Lc andL51.03Lc . In the above,Rmax andRmin
are the maximum and minimum areal radii, respectively,
04400
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the apparent horizon at somet5const slice of the spacetime
In particular, we havel50 for the static black string space
time.

B. Beyond the linear regime

We now present more detailed results from the simulat
of an unstable black string evolution. Specifically, we ta
L51.4Lc , since it is expected that this particular range f
the z coordinate will yield something close to the faste
growth rate for the shortest wavelength instability@2#. Be-
cause we are now probing uncharted territory with our co
putations, we rely on convergence tests to provide an int
sic measure of the level of error in our calculations. To th
end, we ran the simulation at several resolutions (nr3nz):
200350 ~grid spacingh), 4003100 (h/2), 8003200 (h/4),
and 16003400 (h/8). Due to our use of a compactified ra
dial coordinate, the lowest resolution calculation cannot
equately resolve the late-time behavior of the solution. Ho
ever, for the ‘‘medium resolution’’ computation with mes
spacing h/4, we are apparently within the converge
regime—see Fig. 2 below for plots of the maximum a
minimum areal radii of the apparent horizon as a function
time, as well as the quantityl defined by Eq.~15!, and Fig.
3 for plots of the norm of the Hamiltonian constraint as

FIG. 1. The maximum (Rmax) and minimum (Rmin) areal radii,
and the corresponding functionl of the apparent horizon as a func
tion of time, from the evolution of perturbed black strings withL
51.03Lc andL50.975Lc . The initial fluctuation in the plots cor-
respond to the effect of the initial gravitational wave perturbatio
most of which either falls into the string or escapes to infinity. Th
close to the thresholdLc , the growth/decay of the remnant pertu
bation is quite slow, and so we cannot feasibly~at the resolution of
the these simulations—8003200 points inr 3z) follow the evolu-
tion for much further than shown while maintaining reasonable
curacy ~though we see no signs of numerical instabilities in t
stable case, and such simulations have been followed to 10 000M ).
However, the main purpose of this figure is to demonstrate
qualitative recovery of the expected threshold behavior for the o
of the instability atL5Lc .
1-5
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function of resolution. Therefore, unless otherwise noted,
the results shown below are taken from theh/4 simulation.

Figure 4 shows embedding diagrams of the apparent
rizon at several times during evolution of the string, and F

FIG. 2. The maximum (Rmax) and minimum (Rmin) areal radii,
and the corresponding functionl5(Rmax/Rmin21)/2 of the appar-
ent horizon, as a function of time, from the evolution of a perturb
black string withL51.4Lc . h labels grid spacing; hence smallerh
corresponds to higher resolution. This plot, combined with the
sults shown in Fig. 3, suggest that the code is in the conver
regime—in particular at later times—for theh/2 and higher resolu-
tion simulations.

FIG. 3. The logarithm of the,2-norm of the Hamiltonian con-
straint as a function of time, evaluated on the portion of the co
putational domain lying exterior to the apparent horizon, and fr
simulations at several resolutions of a perturbed black string w
L51.4Lc . As with Fig. 2, this plot provides evidence that conve
gence is quite good for theh/2 and higher resolution simulations~at
least until very close to when the supposed coordinate singula
forms, neart5165).
04400
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5 shows the proper length of one period of the appar
horizon ~suppressing the angular coordinates! versus time.
~Our embedding uses the vertical axis to represent the a
radius of the apparent horizon—the horizontal axis is th
uniquely determined by requiring that the length of the cu
be equal to the proper length of the horizon.! The simulation
crashes shortly after the last time frame shown, appare
due to the coordinate pathologies that have been discu
previously. The embedding diagrams suggest that, at lea
the vicinity of the apparent horizon, the solution is tendi
towards a spacetime that can be described as a sequen
spherical black holes connected by thin black strings. Ad
tional, quantitative, evidence for this conjecture can be
tained through a computation of the curvature invariant,I, on
the apparent horizon. For an exact black string solution,
quantity, which we denoteI BS

0 , is

I BS
0 5

12

RAH
4

, ~16!

while for the 5-dimensional spherical black hole, the equiv
lent quantity,I BH

0 , is

d

-
nt

-

h

ty

FIG. 4. Embedding diagrams of the apparent horizon, with
two angular dimensionsu andf suppressed, from theh/4 evolution
of a perturbed black string withL51.4Lc . These plots thus de
scribe the intrinsic geometry of the apparent horizon, at the gi
instants of constantt, in a coordinate system with metricds2

5dr̄21dz̄2. Here, z̄ is a periodic coordinate, andr̄ is the areal

radius of z̄5const sections of the horizon. To better illustrate t

dynamics of the horizon, we have extended the solution using tz̄
periodicity, showing roughly two periods of the solution. See Fig
for a plot of the length of one period of the apparent horizon ver
time.
1-6
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I BH
0 5

72

RAH
4

, ~17!

where, in both of the above expressions,RAH is the areal
radius of the horizon. In Fig. 6 we plot the normalized qua
tity

I 0N[
I

I BS
0

5
IRAH

4

12
~18!

evaluated on the apparent horizon of our numerical solu
of the unstable spacetime—I 0N is 1 for a black string, and 6
for a black hole. The figure shows that, as judged byI 0N, the
part of the apparent horizon that is forming a long neck
ways resembles a black string—the part that is formin
bulge, however, has a value ofI 0N tending towards that cor
responding to a black hole. AtRmax, I 0N has only reached
;5 by the time the simulation ends; however, the behav
of Rmax seen in Fig. 2 suggests that the growth in the n
malized curvature invariant, though slowing down, sho
continue. Figure 6 also demonstrates the grid-stretch
problems that we surmise are causing the code to eventu
crash—in that plot we use the coordinatez as the horizontal
axis, and observe that the relatively small region whereI 0N

'1 corresponds to the long neck in Fig. 4. In particular,
the vicinity of the ‘‘neck,’’gzz becomes quite large, as do i
derivatives.

Finally, in Fig. 7 we show plots of the approximate eve
horizon ~as described in Sec. II C 1!, together with the ap-
parent horizon for the simulation. The results shown in
plot suggest that our computed apparent horizon is an ex
lent approximation to the event horizon, at least at ea
times~not much can be said regarding the late time beha
of the event horizon, as the spacetime has not settled dow
a stationary state when the simulation ends!.

FIG. 5. The proper length of the apparent horizon curve in
(r ,z) plane~betweenz50 andz5L) as a function of time, from
the h/4 evolution of a perturbed black string withL51.4Lc .
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IV. CONCLUSIONS

We have performed a preliminary numerical study of t
instability of the 5-dimensional black string. Coordinate p
thologies prevent us from definitively identifying the fin
end-state~s! of an unstable black string. This claim is su
ported by the fact that the code crashes at very nearly
same time at varying resolution, and that curvature invaria
remain well behaved throughout the evolution. The form
suggests that a numerical instability is not responsible for
crash, while the latter indicates that a physical singularity
probably also not to blame. Despite the premature term
tion of the simulation, we find evidence that the spaceti
evolves towards a configuration that looks like a sequenc
black holes connected by thin black strings, and charac
ized by an expansion of the string direction. Since the spa
time is still fairly dynamical at the time our simulations en
we cannot deduce how close this state is to a final confi
ration. Nevertheless, the dynamical behavior observed is
ficiently robust for some comments to be made. For instan

e

FIG. 6. The normalized Kretschmann invariantI 0N[IRAH
4 /12

~14!, evaluated on the apparent horizon of the perturbed black st
spacetime withL51.4Lc (h/4), at the same times as shown in th
embedding diagram plots~Fig. 4!. Note however, that here the hor
zontal axis is thecoordinate z, and in particular the flat region of the
curve betweenz'3.5 andz'6.5 in the last frame corresponds t
the long, thin neck region shown in the embedding diagram p
This demonstrates the rather severe ‘‘grid-stretching’’ problems
have then. For the static black string spacetime,I 0N51 ~shown for
reference as a dotted line in the figure!, while for a static 5D spheri-
cal black hole it evaluates to 6. This diagram therefore also supp
the conclusion that at late~simulation! times the solution is tending
towards a configuration describable as a sequence of black h
connected by thin black strings.
1-7
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the results are not inconsistent with Gregory and Laflamm
conjecture that the solution bifurcates into a sequence
black holes—indeed, we can suggest at least two me
nisms by which this could occur:

~1! Via a thinning neck that eventually vanishes, if the tre
seen in the simulation continues. Note that this wo
require~a! that the proper length of the string continu
to grow, in order not to violate area theorems, and~b!
that the thin string be non-uniform, for otherwiseit
would be subject to a further Gregory-Laflamme-like i
stability.

~2! Via a sequence of Gregory-Laflamme instabilities, if t
thin neck stays ‘‘close’’ to a uniform black string, sinc
the neck’s length is beyond the critical one for a stri
with an effective mass computed from the radius of
apparent horizon. In this case, one could envision
‘‘cascade’’ of instabilities leading to the bifurcation.

We note that either scenario would not necessarily be
consistent with Horowitz and Maeda’s results, should
vanishing of the neck take infinite affine time as measured
local null generators of the horizon. At the same time
continuation of the observed trend would argue aga
achieving a stationary solution with a mild dependence
the string dimension~i.e. a small value ofl), as found in
perturbative calculations@10#. For then, the rather extrem

FIG. 7. Plots of the apparent horizon~labeled AH! and estimates
of the event horizon location~C1, C2 and C3! in coordinate space
~in contrast to the embedding coordinates used in Fig. 4!, from the
evolution of a perturbed black string withL51.4Lc , computed at
resolutionh/4. Here, the C1~C2! curve marks the inward-directe
past light cone of the surfacer 510 (r 54) at t5164. C3 denotes
the outward-directed past of a surface just inside the apparent
zon at t5164. Thus, moving backwards in time, these curv
should asymptote towards the event horizon of the spacetime. T
plots suggest that for most of the evolution~at least!, the apparent
horizon is an excellent approximation to the event horizon.
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thinning/bulging that we see must be transient behavior
is ‘‘further’’ from the end-state than the perturbed bla
string was.

A more complete exposition of the nature of unstab
black string evolution would appear to require coordina
conditions able to adapt to solution features that develop
late times—that is, in a manner that does not introduce
vere metric gradients that are not correlated with large g
dients in physical quantities. For example, it may help
replace the fixed-lapse slicing with maximal slicing, whic
enforces that the divergence of the local, spatial volume
ement be zero. Another, perhaps even more crucial opt
would be to introduce az component to the shift vector tha
keepsgzz close to~or exactly! unity throughout the evolu-
tion. These options are currently under investigation.

Additionally, it would be interesting to explore a wide
range of initial conditions describing ‘‘perturbed’’ blac
strings than that considered here. For example, the imposz
periodicity implies that the equivalent, uncompactified spa
time consists of identical spherical-black-hole/black-stri
segments at late~intermediate! times. It would be instructive
to see what happens should we break this symmetry, by m
ing L@Lc , and then introducing some higher-waveleng
perturbation similar toq.1 in Eq. ~13!, but with more
asymmetry in the initial data~note that this would be more
computationally demanding!. Finally, it would be very inter-
esting to study the evolution of the solutions recently fou
by Wiseman@11# and mentioned in the Introduction. Thes
configurations actually correspond to stationary solutio
and their perturbative stability, or otherwise, is currently n
known. Since Wiseman shows that his solutions cannot
the end-states conjectured by Horowitz and Maeda, it is
portant to understand their behavior, since if they are sta
they may well represent physically meaningful states, wh
if unstable, they may be difficult to attain via dynamic
evolution. An interesting observation from our simulation
to the length so far achieved, is that they do not displa
conical ‘‘waist’’ like those presented in@11# and further ana-
lyzed in @27#.
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APPENDIX A: INITIAL DATA SOLVER

We solve the set of coupled constraint equations~2!,~3!
via an iterative procedure, where at each substep of the it
tion we solve a single equation for one ofgrr , kuu or krr ,
assuming that the values of the other variables are kno
We iterate this process until the residuals of all the equati
are simultaneously below a certain tolerance—a typ
value is 1025. The overall iteration is initialized using value
corresponding to an unperturbed black string solution.
now provide a few more details concerning the solution
each of the constraint equations.

The equations are discretized on a uniform grid of poi
(xi ,zj ) with i 51, . . . ,Nx , and j 51, . . . ,Nz @recall that,
from Eq. ~7!, the radial coordinate,r, is related tox by r
5x/(12x)]. We first consider the Hamiltonian constrai
~2! which, in the coordinate system we have adopted, has
following form:

F1

]grr

]x
1F2grr

]2grr

]z2
1F3grr

]grr

]z
1F4S ]grr

]z D 2

1F5~grr !
2

1F6grr 50. ~A1!

Here, theFm , m51, . . . ,6, arefunctions that generally de
pend on all the metric coefficient and their derivativesexcept
grr ~and its derivatives!. We discretize this equation to se
ond order in the mesh spacing using a difference approxi
tion centered at the points (xi 11/2,zj ). Because of the dis
cretization used and the form of Eq.~A1!, we can solve the
resulting set of equations ‘‘line-by-line’’ inx, starting at the
inner boundary,i 51, which is chosen well within the hori
zon of the string~typically at r 5M ), and where the bound
ary values,@grr #1,j , j 51, . . . ,Nz , are those correspondin
to an unperturbed black string. As we integrate outwards
x, the determination of thei th line of unknowns,@grr # i , j , j
51, . . . ,Nz , involves the solution of anNz-dimensional,
non-linear, cyclic~because of thez periodicity!, tridiagonal
system that we solve using Newton’s method and a cy
tridiagonal linear solver@28#.

We now direct attention to ther momentum constraint
which, viewed as an equation forkuu , has the form

G1

]kuu

]x
1G2kuu1G350, ~A2!

where theGm , m51,2,3 do not depend onkuu or its deriva-
tives. We note that there is complete decoupling in thz
direction in this case; in effect, we have to solve an OD
along eachz5const line. We again discretize using secon
order finite difference techniques, fix the boundary valu
@kuu#Nx , j , j 51, . . . ,Nz , at x51 (i o) using the unperturbed
black string solution, then solve for the remaining unknow
marching inwards inx.
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Finally, the z component of the momentum constrain
which fixeskrr , has the form

H1

]krr

]z
1H2krr 1H350, ~A3!

where theHm , m51,2,3 are independent ofkrr and its de-
rivatives. This equation is solved analogously to ther mo-
mentum constraint, but now using a discretization that
centered at points (xi ,zj 11/2). ‘‘Boundary values,’’
@krr # i ,1 , i 51, . . . ,Nx , are specified along the linez5zmin ,
again using corresponding values from the black string so
tion, and the integration proceeds forj 52,3, . . . ,Nz .

APPENDIX B: FINDING APPARENT HORIZONS

We use aflow, or level-setmethod to search for apparen
horizons withint5const spatial slices of the spacetime. W
restrict our search to simply connected apparent horiz
that are periodic in z. Such an apparent horizon can be
scribed by a curve in the (r ,z) plane, which we define to be
the level surfaceF50 of the function

F~r ,z!5r 2R~z!. ~B1!

In other words, the apparent horizon will be given by t
curve r 5R(z). The apparent horizon is the outermost, m
ginally trapped surface; hence, we want to find an equa
for R(z) such that the outward null expansion, normal to t
corresponding surfaceF50, is zero. To this end, we firs
construct the unit spatial vectorsa, normal toF5const:

sa5
gabF ,b

AgcdF ,cF ,d

. ~B2!

Then, usingsa and thet5const hypersurface normal vecto
na, we can construct future-pointing outgoing(1) and ingo-
ing(2) null vectors

,a65na6sa. ~B3!

The normalization of the null vectors is~arbitrarily! ,1
a ,2a

522. The outward null expansionu1 is then the diver-
gence of,1

a projected onto anF5const surface:

u15~gab2sasb!¹b,1a . ~B4!

Substituting expressions~B1! and ~B2! into Eq. ~B4!, with
u150, provides us with an ordinary differential equation f
R(z).

Initially we solved Eq.~B4! via a ‘‘shooting’’ method—
given a guess forR(0), andassuming thatR8(0)50 ~where
a prime denotes differentiation with respect toz), we inte-
grate the equation toz5zL , and repeat the process until w
find a solution whereR(zL)5R(z) andR8(zL)50. An effi-
cient sequence of guesses can be generated using a bise
search, as the qualitative behavior of the solution is differ
depending upon whether the initial guess forR(0) is inside
or outside the apparent horizon.
1-9
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Since the shooting method is difficult to extend to a p
allel implementation in an efficient way, we opted to use
following point-wise relaxation method~or flow method! to
determineR(z). We supply an initial guess,R0(z), for the
entire functionR(z), and then iterate the following equatio
until the norm of the expansionu1(z) of F(0) is below
some desired threshold~in our runs we have typically set i
to 1023h, whereh is the basic scale of discretization!:

DRn~z![Rn11~z!2Rn~z!52u1~z!Dt. ~B5!

Here,Rn(z) is the solution after thenth iteration. Equation
~B5! can be viewed as anexplicit discretization of a para
bolic evolution equation forR(z,t), wheret is ‘‘time’’ and
Dt is the time step for the evolution~the parabolic nature o
the equation is evident whenu1 is expanded in terms o
R(z) via Eq. ~B4!—for brevity we do not give the explici
form of the equation here!. Thus, for stabilityDt must be
chosen to be less thanDz2.

Given a ‘‘reasonable’’ initial guessR0(z), one can see
how iteration of Eq.~B5! will causeRn(z) to ‘‘flow’’ to the
apparent horizon: ifRn(z) is outside of the apparent horizon
then typically the expansionu1(z) will be positive there,
causingRn11(z) to decrease towards the apparent horiz
and vice versa ifRn(z) is inside the apparent horizon. W
useR(z)52 as the initial guess att50; aftert50 we search
for the apparent horizon everyN time steps~where N is
typically in the range 10–30!, and use the shape found at th
previous search as the initial guess for the next search. U
ally, on the order of tens to thousands of iterations of E
~B5! are required to solve forR(z) to within a level of ac-
curacy such that the approximate solution is roughly withi
mesh spacing of the exact solution~as estimated in a few
specific calculations by solving Eq.~B5! close to machine
precision!. A single iteration of Eq.~B5! can be computed
very rapidly relative to the time taken to compute a metr
evolution step; however, in a parallel environment, if tho
sands of iterations are needed on a regular basis~which is so
at late times during the evolution of an unstable black strin!,
the apparent horizon finder becomes a slight speed bo
neck in the code, due to the time it takes to communicate
results of each iteration amongst the processors involved
s

e-
d

tt
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APPENDIX C: FINDING „APPROXIMATE … EVENT
HORIZONS

Here we describe one method we use, following@25#, to
locate approximations to event horizons. This method
volves locating the boundary of the causal past of somr
5const surface of the spacetime by following radial n
geodesics.

We write the geodesic equation in Lagrangian form:

L5gtt~ t8!212gtr t8r 81grr ~r 8!212grzr 8z81gzz~z8!2,

~C1!

where l is the affine parameter along the geodesic, an
prime denotes differentiation with respect tol. Since we are
interested in null trajectories, we setL50. For radial, ingo-
ing geodesics, we haveu85f850, and thus the geodesi
equations reduce to the set:

ṙ 5
a

Agrr

2b, ~C2!

l̇5
2aAgrr

P r
,

where the dot denotes a derivative with respect to coordin
time, andP r5]L/]r 8. Then, starting at a certain value o
r 5r 0, and for each grid point along thez direction, Eqs.
~C2! are integrated backwards in time using a second or
Runge-Kutta scheme.

Following null geodesics alongz5const lines does no
guarantee that we are tracing the causal past ofr 5r 0, though
for the spacetimes studied here, and the coordinate sys
used, this should offer a good approximation. Furthermo
although radial geodesics might not be the best choice, s
the event horizon is an attractor, they will trace it accurate
~For related discussions of approximate event horizon lo
tion in the axisymmetric four-dimensional case, see@29–
31#.!
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