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Towards the final fate of an unstable black string
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Black strings, one class of higher dimensional analogues of black holes, were shown to be unstable to long
wavelength perturbations by Gregory and Laflamme in 1992, via a linear analysis. We reexamine the problem
through the numerical solution of the full equations of motion, and focus on trying to determine the end state
of a perturbed, unstable black string. Our preliminary results show that such a spacetime tends towards a
solution resembling a sequence of spherical black holes connected by thin black strings, at least at intermediate
times. However, our code fails then, primarily due to large gradients that develop in metric functions, as the
coordinate system we use is not well adapted to the nature of the unfolding solution. We are thus unable to
determine how close the solution we see is to the final end state, though we do observe rich dynamical behavior
of the system in the intermediate stages.
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[. INTRODUCTION question at hand can only be obtained by solving the full
equations governing the problem. A step in this direction

The stability of four-dimensional black holes is a well would be to search for special solutions, such as stationary
known and fundamental result of relativity thedry]. The  ones, and compare the physical content of the obtained con-
picture in higher dimensional spacetimes was shown to bégurations with the black string solutions. This has recently
quite different by Gregory and Laflamnj2,3], who demon-  been carried out by Wisemdi1], who numerically solves
strated the existence of unstable long wavelength modes difie equations resulting from a static ansatz. Interestingly, he
the black string in perturbation theory. This finding, coupledfinds non-uniform solutions with mass larger than that of the
to arguments based on entropy considerations, led to theblack string for a given compactification radius. Thus, he
conjecture that black strings might bifurcate into higher di-concludes that the solutions he finds cannot be the end states
mensional analogues of spherical black holes. Cosmic cerconjectured by Horowitz and Maedalso see related work
sorship would be violated were this the case, since a singy Kol [12]).
larity must be encountered by a bifurcating black hole Additional work by Unruh and Wal@13] studies the dy-
horizon, essentially as a consequence of the principle ofiamics of a uniform cylindrical configuration of matter in
equivalencd4]. Newtonian gravity. They observe that a perturbation of the

The existence of the Gregory-Laflamme instability hasdensity gives raise to a Jeans instability responsible for the
been assumed in many subsequent studies of higher dimecellapse of the system along the cylinder’s length. They then
sional gravity theory, including the classical limit of string argue that if the main features of this model are robust in the
theory (see, for examplg,5—-8]), some of which have also passage to the general relativistic system, one possible end
assumed the validity of the bifurcation conjecture. Howeverstate for the perturbed black string would be collapse in the
a linearized analysis can say little, if anything, concerningstring direction, resulting in singularity formation. Note that
the nature of the full non-linear evolution of an unstablethis collapse need not lead to violations of cosmic censor-
string, and the final end state of such a configuration reship, as the final singularity could still be hidden by an event
mained to be established. horizon[14].

Recently, Horowitz and Maeda were able to prove, under Clearly there are several distinct viable possibilities for
some assumptions, that black strings cannot bifurcate in fithe final end-state of a perturbed black string, with remark-
nite time[9]. Furthermore, they conjectured that the systemably different consequences associated with the range of op-
is likely to approach a new stationary solution which is nottions. Current conjectures range from “nothing interesting
translationally invariant along the string direction. However,happens,” to violations of cosmic censorship, to the arguably
even if the assumptions involved in the proof are sufficientlymore extreme case of a complete collapse of the spacetime.
generic, their analysis cannot identify the final end-state ofn order to completely settle the issue, the full dynamics of
evolution. Partial answers can be sought via perturbatiohe perturbed black string needs to be addressed. At least in
analysis as done by Gubddi0]. By assuming the Horowitz- principle this will allow us to identify which of the above
Maeda conjecture and linearizing the solutainthe critical  possibilities (if any) is actually realized. In this paper we
lengthto first order(and a partial extension to second oiger report on preliminary work in this direction—a program to
Gubser argued that the transition to the final solution must beimulate the dynamics of the black string through numerical
of second order typéi.e. discontinuous Despite these de- solution of the Einstein equations. At this stage of the
velopments, it seems clear that a convincing answer to thproject, we cannot yet provide an answer to the question of
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the end state; however, we have tantalizing results that show The vacuum Einstein equations, written in ADM form

the spacetime going through a configuration resembling15,16, are(1) the Hamiltonian constraint

5-dimensional spherical black holes connected by thin black

strings that expand along the string dimension. Our simula- H="R+K?=K,,K**=0, 2

tions eventually crash while the spacetime is still fairly dy- .

namical, and so we cannot determine whether what we see @) the momentum constraints

near the end state, or merely an intermediate configuration in

a more complicated evolution. Underlying the current failure

of our s_lmulatlons is the fact that the qoordlnate system €M(3) the evolution equations for the,

ployed is not well adapted to the solution that unfolds at late

times, wherein fatally steep gradients develop in metric 9Yab

functions? i
The outline of the remainder of the paper is as follows. In

Sec. Il we begin by describing the equations of motion, oufhat follow from the definition of the extrinsic curvatukg,,

coordinate choices, the generation of initial data, as well agssociated wittt= const slices, and4) the evolution equa-
our numerical solution scheme. Additionally, we also brieflytjons for the extrinsic curvature

mention the tools we employ to monitor the solution, defer-

ring details to the Appendixes. In Sec. Ill we discuss the oK, @) . .
results obtained with this code, and conclude in Sec. IV by 5~ @(" Rap+ KKap) = 2aKa K™= ajap+ B7aKep
mentioning directions for future work that may allow us to

more definitively answer questions regarding the end state of + B pKcat BKapct+ aFgngcdH. 5)
the Gregory-Laflamme instability.

M=K, —K2=0, ©)

:_ZaKab+IBa\b+Bb\a1 (4)

In the abovea,b, ... are four-dimensiondkpatia) indices,
(“R,, and R are, respectively, the Ricci tensor and Ricci
IIl. EQUATIONS, BLACK STRINGS AND NUMERICS scalar intrinsic to the four-dimensional spatial hypersurfaces,

We wish to solve the vacuum Einstein equations in higher is the lapse function3® is the shift vector, the vertical bar
dimensional settings. For simplicity, and without loss of gen-denotes covariant differentiation in the spatial hypersurfaces
erality in studying the Gregory-Laflamme instability, we only (compatible withy,y), andFg=—2578,. We note that the
consider the 5-dimensional case, and restrict attention téerm proportional tH in Eq. (5) has been added as a result
spherical symmetry within the 4-dimensional subspace tanof stability considerations; see, for instance, the discussions
gent to the “extra” dimension. We also use the natural gendn [17-19. To simplify the final set of equations solved nu-
eralization of the Arnowitt-Deser-MisndADM) decompo- merically, as well as to regularize certain terms that other-
sition to derive the system of equations that we then solvavise diverge at spatial infinitysee the discussion of our
numerically. Choosing units in whicB=c=1, and adopt- coordinate system in the next sectiowe define the follow-
ing Misner-Thorne-WheelefMTW) [15] conventions, our ing variables:

starting point is thus a metric element given by
I9r="%Yrr» 9z=%Yz» Yz2z7= Vzz

d32: ( - CY2+ ’}/ABBABB)dt2+ Z'yABﬁAdXBdt
+ ’yABdXAdXB+ ’)/QdQZ (1)

Yos=valr? Gye=ral(r’sirfe),

krrErzKrr/a” kK=K, Kk,~=K,

where x*=(r,z), and dQ? is the 2-spherical line element _ _ -

with coordi%ate)s chosen orthogonal Ft)o theconst congru- Kor=Koola,  Kgy=Kool(asir?o), ©
enceghence there is no shift corresponding to angular direcyng yse them as the fundamental dynamical quantities in our
tions). All metric components defined via E4l) depend  nymerical code. As discussed in the following sections, to
upon ¢,r,z): tis a time-like coordinater, is a radial coordi-  complete the prescription of the evolution problem we need
nate, ancz is the coordinate along the length of the string. Totg choose a suitable lapse and shift, specify initial and

further expedite the numerical implementation, we make  phoyndary conditions, and then implement these choices and

lowing the results of Gregory and Laflamme, we expect
black strings to be unstable only fdr greater than some

. A. Boundary and coordinate conditions
critical lengthL.. y

A particular concern here is that “standard” outer bound-
ary conditiong[17], often imposed during numerical evolu-
This divergence of metric gradients does not happen earlier aion of Einstein’s equations, might not be well suited for
resolution is increased, and is not accompanied by divergence §tudying the string instability. In particular, we must be able
curvature invariants such as the Kretschmann scalar. This sugged®& evolve for very long times while absolutely minimizing
that the code is evolving to a coordinate, rather than a geometrigpurious influences from the outer boundary of the computa-
singularity. tional domain. In addition, in the present case we cannot
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assume,a priori, that any given initial configuration will r
settle down to some stationary solution; thus, boundary con- Kypy=2M TV (11
ditions predicated on such assumptigsisch as a t/fall-off

conditiog_ in a meftric C%mpt;)lne)lf(J“Nh_en impol?jed ata ﬁ“ited In generalizing Eqs(9) and (10) to the dynamical case, we

proper distance from the black string, could very well ad- — 7_pz _ .. .

versely affect the numerical resuftsTo ensure minimal h_ave chosem = ags and 5 'BB-S 0-Ina prrellmlr_1ary ver
sion of our code, we also required thélt= Bgs. This, how-

bom.;nda:y_gﬁ!)uenc; Vl\lle therefortg e_xte?r(]j the dorplfthf Inteéver, caused a coordinate pathology to develop at late times
gration toi” by radially compactifying the spacelike hyper- during the evolution of unstable strings—specifically, some

surfaces via the introduction of a new coordinatedefined regions of the horizons approached a zero coordinate radius,

by while maintainingfinite proper radius. In our current efforts,
r we choosed" such thatg,, remains constant during evolu-
X= (7)  tion[21,22, by requiring that

1+r°

r:2aK90

As might be expected, this transformation causes computa- (12)

tional problems of its own—most notably decreased spatial Yoor

resolution at large distances—but, as discussed in Sec. Il Giyis shift condition performs reasonably well, as will be
we can deal with these difficulties using numerical dissipaseen in Sec. Iil. However, our current simulations still suffer
tion. Having introduced the new compactifying coordinate.from “grid-stretching” problems in thez direction at late

we can directly impose boundary conditions derived fromgjmes, suggesting that a more dynamical gauge condition for
the demand of asymptotic flatness at spatial infinity, WhiChBZ (and possibly forx and8") could be useful. This issue is

lies atx=1. _ o _ discussed in more detail in Sec. V.
We employ singularity excision techniqug20] to allow

us to evolve the entire perturbed black string spacetime ex-
terior to the apparent horizofplus a certain “buffer zone”
that lies within the horizon Hence, we do not need to im- As anticipated, we observe that even numerical truncation
pose inner boundary conditions as long as ttheonst hy-  €rrors, if non-uniform in the direction, are enough to trigger
persurfaces penetrate the horizon, and that all characteristi§de Gregory-Laflamme instability in our simulations. How-
of the evolution equations are in-going on the boundary. EneVer, to reduce the computational effort required to reach the
suring that this is the case involves choosing “good” coor- ‘interesting” (i.e. non-perturbativestages of evolution, we
dinate conditiongchoice of lapse and shiftwhich, for ge-  adopt initial configurations whose departure from the black
neric string evolutions, remains an open problem. As gtring solution can be arbitrarily tuned. In order to find such
preliminary step, we have based our coordinate choices ofata, we must solve the Hamiltonian constraint, and tiied
those that yield the ingoing Eddington-Finkelstein form of Z components of the momentum constraftite other com-

B. Initial data

the unperturbed black string metric ponents of the momentum constraint are trivially satisfied
because our coordinate system is adapted to spherical sym-
dsas=—(1—2M/r)dt?+4M/rdrdt+(1+2M/r)dr? metry). The deviation—not necessarily small—from the
black string solution, is introduced vigy,, and takes the
+dZ+r2dQ2 (8)  following form:

Comparison with the general 5-dimensional ADM form pro-

A 27A) e
vides the identifications 99y(0F,2)=1+Asin z——|e o er, (13

ags=(1+2M/r)("12), (9)  Here,Ais used to control the overall strength of the “pertur-
bation,” while g is an integer that controls the spatial fre-
ﬁ’é\sz(ZM/(HzM))gf_ (10) quency in thez direction. For the results presented below,

A=0.1,q=1, ro=2.5 ands,=0.5, and we perturb about a

For reference we also list the two non-trivial components ofunit mass M=1) black string solution. As described in

the extrinsic curvature of &=const slice defined by E¢8): ~ more detail in Appendix Ag; , ki, kg, are then calculated
by solving the constraint equations, with the remainder of the

(r+M) r metric and extrinsic curvature variables set to the values they
K,=—2M , would take for an unperturbed black strifgpe Eqs(8) and
r3 r+2M (11)]

2 . . . . . C. Numerical evolution
In fact, in an earlier version of the code that did not use a radially

compactified coordinate system, we did encounter such problems, TO numerically evolve the initial data sets described
in that some artificial stationary non-homogeneous solution was apabove, we discretize the evolution equatidd (5) using

parently entirely “sourced” via an outer boundary located at a finitesecond-order accurate finite difference techniques that in-
distance from the string. clude the Crank-Nicholson treatment of the temporal and
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spatial derivatives. We use a uniform distribution of grid high-frequency solution componen($oise”) that would
points in z and x [recall thatx=r/(1+r)]. The resulting otherwise arise during the simulations. This is particularly
implicit system of algebraic equations is solved iteratively.helpful at the excision surface, and nédrwhere the radial
We initially implemented a serial version of the algorithm, compactification of points causes all outgoing wave-like
and later coded a parallel version using treTus Compu- ~ components of variables to eventually become poorly re-
tational Toolkit[23], wherein the equations of motion, moni- Solved. Smoothing of the high frequency components via the
toring tools and 1/0 were handled by our own routines, suit-Kréiss-Oliger dissipation—which only targets wavelengths
ably interfaced tacACTUS. of size on_the order_ of t_he m_e_s_h spacing—prevents them
Black hole excision is handled as follows. We periodicallyfrom inducing numerical instabilities near the outer bound-
find the apparent horizon, as discussed in the following sec?'y-
tion and Appendix B. We then define the surface along which
we excise to be a certain number of “buffer” poinisside
the apparent horizortypically 10—30 buffer points are To elucidate the nature of our computed spacetimes, we
used.’ During each Crank-Nicholson iteration, all the evo- monitor the following quantitiest1) the location of the ap-
lution difference equations are applied up to the excisiorparent horizor{which is also used for excision as explained
surface, and any function values referenced by finite differearliel, (2) the trajectories of null geodesics that, to a certain
ence stencils interior to this surface are defined via fourttextent, should trace the event horizon, aitd) the
order extrapolation. When the apparent horizon location an&retschmann invarianit (the square of the Riemann tensor
hence excision surface changes during evolution, function
values at all repopulated pointse. those that moved from = RaﬁwR“'BV‘s. (14
inside to outside the excision surface during the time)step
are computed via the same fourth order extrapolation routine. If cosmic censorship holds—and results from our current
The one exception to this procedure is for the grid values osimulations provide no evidence to the contrary—then any
dge,» Which we specifya priori on the entire computational apparent horizon found will always be inside an event hori-
domain, and that remain fixed due to our gauge ch@i& zon. As is well known, although the apparent horizon can
Moreover, we have found it useful to choose a functionaloften be used as a reasonable approximation to the event
form for g,, that tends to zero at some positive valuerof horizon, the two danot, in general, coincidé.Clearly, the
(though inside the original apparent horizon location andevent horizon is the quantity of interest in studying the
outside of the limits of integration of the initial dataThis ~ Gregory-Laflamme instability, and therefore we would like
causes the “pinching off” of the unstable black string to be to locate it, or at least a reasonably good approximation to it,
less severe in coordinate space, i.e. we approach zero arealour simulation results. Such an approximation can be ob-
radius at a finite coordinate In turn, this slightly reduces tained by looking for the boundary of the causal past of some
the virulence of the coordinate problems we observe at late= const surface that is sufficiently far outside the apparent
times, and also provides better load balancing of the paralldiorizon that it is certain not to be inside the event horizon,
code, given the methodAcTus uses to distribute grids Yyet close enough to the apparent horizon that its causal past,
among processors. tracing backwards from the end time of the simulation,
For the evolution, we choose a time stegt probes the region of interest of the spacetime. We use a
=\ceMin(dr,dz), where the constantcg, must be set less method to find the approximate event horizon discussed by
than 142 in order to satisfy the Courant-Friedrichs-Lewy Libsonet al.[25]. The approach is based on radial outgoing
(CFL) stability condition that results from our iterative solu- Null geodesics; as explained [i@5], the stable direction for
tion of the Crank-Nicholson schentgypically we use\cr,  the integration of null rays that emanate from the vicinity of
=0.25). Note that this restriction oNgr, is based upon anevent horizon is backwards in tiheThus, once we have
flat-space light speeds within our coordinate sysf&iap. (8) the complete data from the entire evolution, we start with
with M =0], which, for the solutions presented here, aredata from the latest time step available, and trace the null
always greater than or equal to the actual coordinate lightdys backwards in time.
speeds. The function mid¢,dz) is calculated by only con- Monitoring curvature scalars is useful in obtaining coor-
sidering mesh spacings within the non-excised portion of thélinate independent information about a numerical solution of
coordinate domain. Thus, as the excision surface maves, the Einstein equations. In particuléras defined by Eq14),
changes with time since our grid is uniformxnand hence evaluates tolgs=48M?/y,,* for the unperturbed black
non-uniform inr. string solution, and ay,, is an invariant in spherical sym-
Crucially, we add Kreiss-Oliger-stylg24] numerical dis- metry (i.e. it is proportional to the area of an=const

sipation to the evolution equations to control unphysical2-spherg we can comparégs to the values of computed
from a numerical solution to get some indication of how

close the computed solution is to a black string spacetime.
3n several tests, we also adopted an excision region given by thEurthermore, we can examiheo see whether curvature sin-
global minimumr value of the apparent horizon and compared the
results with those obtained when the excision region was defined by
the apparent horizon. The agreement obtained gives extra indicatiornindeed, depending on the slicing an apparent horizon need not
that the excision implementation is consistent. exist at all[26].

Monitoring the evolution
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gularities (other than the central=0 singularity may be
forming prior to the demise of the simulation that invariably
occurs when sufficiently steep metric gradients develop. We g
note, however, that if doesnot diverge, it does not neces- R
sarily follow that the geometry is remaining non-singular; we 2
would need to examine a larger set of curvature scalars to be
certain that the solutions are remaining free of physical sin-
gularities.

Appendix B contains an explanation of the method we &
used to find apparent horizons, while details of the integra-
tion techniques aimed at approximately locating event hori-
zons can be found in Appendix C.

min

1 1 ) I | 1 I I 1 | 1 I 1 1 1
T

oo beend Foobondben bend b lobeendbivn b b

0.015
< 0.01
Il. RESULTS 0.005
In this section we present results from our preliminary 0 13
study of the black string instability. After briefly showing 300
that we recover some of the key Gregory-Laflamme results t

in the next section, we present a detailed analysis of a typical ) o )

unstable case in Sec. Il B. In the following, we will use the ~ FIG. 1. The maximum Rp,) and minimum Ry, areal radii,

value of L,~14.3M (with M=1) found by Gubsef10] and the corresponding functionof the apparent horizon as a func-
C . 1 - - . .

which is more accurate than the value we can estimate frorfio" of time, from the evolution of perturbed black strings with

the zero crossing of th@positive modg interpolating curve - +:03-c andL=0.973.c. The initial fluctuation in the plots cor-
presented ifi2]. respond to the effect of the initial gravitational wave perturbation,

most of which either falls into the string or escapes to infinity. This
close to the threshold., the growth/decay of the remnant pertur-
A. Recovery of Gregory-Laflamme results bation is quite slow, and so we cannot feasif@y the resolution of
the these simulations—86Q00 points inr X z) follow the evolu-

We ran a variety of simulations of black strings that were ; e
. . . . tion for much further than shown while maintaining reasonable ac-
perturbed according to the prescription discussed in Sec,

. Curacy (though we see no signs of numerical instabilities in the
[ B. We concentrated on cases withranging from 0.6 to Y (thoug g

. . stable case, and such simulations have been followed to 1@ D00
1.8 and definedy,, via Eq.(13). In general, we observed |, ever, the main purpose of this figure is to demonstrate the

the expected instability foc>L., though for the maximum  qyajitative recovery of the expected threshold behavior for the onset
resolution at which we performed this survé800 grid  gf the instability atL =L .

points inr and 200 points irz), we could only confirmi to
within about 2% of the expected value. In this regard w
note that as approaches . from above, the growth rate of
the instability goes to 0, requiring longer time integrations to
identify the instability, which, in turn, demands an ever in-
creasing resolution to counter the effects of accumulating
numerical errors. Furthermore, the initial configurations we B. Beyond the linear regime
have adopted contain energy in the form of gravitational \ve now present more detailed results from the simulation
waves, and some of this energy falls into the string early oyt an unstable black string evolution. Specifically, we take
during the evolutipn. The i_ncrease in the mass of the_string_:1_4|_C, since it is expected that this particular range for
(based upon the increase in area of the apparent horigon the 7 coordinate will yield something close to the fastest
typically around 0.3—0.5 %, and we would have to take thisyrowth rate for the shortest wavelength instabilij]. Be-
into account were we to attempt to determingfrom our  cayse we are now probing uncharted territory with our com-
simulations to a higher degree of accuracy. Note, howevekytations, we rely on convergence tests to provide an intrin-
that for the purpose of this study, thely physically signifi-  sjc measure of the level of error in our calculations. To that
cant aspect of the initial gravitational radiation is to providegnd, we ran the simulation at several resolutionsx(n,):
a mechanism to perturb an otherwise static black string.  2ogx 50 (grid spacingh), 400X 100 (h/2), 800x 200 (h/4),

A; a demonstration of the ability of our code to “b_racket" and 1600400 (h/8). Due to our use of a compactified ra-
the instability, and following the notation dfl0], Fig. 1  gjal coordinate, the lowest resolution calculation cannot ad-

€the apparent horizon at sorhe const slice of the spacetime.
In particular, we have. =0 for the static black string space-
time.

shows a plot of, defined by equately resolve the late-time behavior of the solution. How-
ever, for the “medium resolution” computation with mesh
L Rinax ing h/ ly within th
A== - (15)  spacing h/4, we are apparently within the convergent
2\ Rin regime—see Fig. 2 below for plots of the maximum and

minimum areal radii of the apparent horizon as a function of
for L=0.978.. andL=1.03 .. In the aboveR.xandR,,  time, as well as the quantity defined by Eq(15), and Fig.
are the maximum and minimum areal radii, respectively, of3 for plots of the norm of the Hamiltonian constraint as a
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FIG. 2. The maximumR,,,,) and minimum R,;,) areal radii, ; : _
and the corresponding function= (R, / Rmin— 1)/2 of the appar- oE 3
ent horizon, as a function of time, from the evolution of a perturbed -z E

R S T —

0

black string withL=1.4L .. h labels grid spacing; hence smalter 0 20 30 20
corresponds to higher resolution. This plot, combined with the re- 7
sults shown in Fig. 3, suggest that the code is in the convergent

regime—in particular at later times—for 2 and higher resolu- FIG. 4. Embedding diagrams of the apparent horizon, with the
tion simulations. two angular dimensiong and ¢ suppressed, from the'4 evolution

. ) . of a perturbed black string with =1.4L.. These plots thus de-
function of resolution. Therefore, unless otherwise noted, allscribe the intrinsic geometry of the apparent horizon, at the given

the results shown below are taken from tifé simulation. instants of constant, in a coordinate system with metrids®
Figure 4 shows embedding diagrams of the apparent ho= g2+ 422, Here,z is a periodic coordinate, and is the areal

rizon at several times during evolution of the string, and F'g'radius ofz=const sections of the horizon. To better illustrate the

dynamics of the horizon, we have extended the solution usinathe

periodicity, showing roughly two periods of the solution. See Fig. 5

for a plot of the length of one period of the apparent horizon versus
time.

-2 —— . — —

5 shows the proper length of one period of the apparent
horizon (suppressing the angular coordinatesrsus time.
(Our embedding uses the vertical axis to represent the areal
radius of the apparent horizon—the horizontal axis is then
, uniquely determined by requiring that the length of the curve
- / be equal to the proper length of the horizohhe simulation
LN crashes shortly after the last time frame shown, apparently
TN TN N N due to the coordinate pathologies that have been discussed
i previously. The embedding diagrams suggest that, at least in
A NN / the vicinity of the apparent horizon, the solution is tending
AR PRV towards a spacetime that can be described as a sequence of
spherical black holes connected by thin black strings. Addi-
0 50 100 150 tional, quantitative, evidence for this conjecture can be ob-
t tained through a computation of the curvature invarigran
the apparent horizon. For an exact black string solution, this
FIG. 3. The logarithm of the,-norm of the Hamiltonian con-  quantity, which we denotegs, is
straint as a function of time, evaluated on the portion of the com-

log|[HC]|,
A
\
!

putational domain lying exterior to the apparent horizon, and from 12
simulations at several resolutions of a perturbed black string with I(B’SZT, (16)
L=1.4L.. As with Fig. 2, this plot provides evidence that conver- Ran

gence is quite good for tH®2 and higher resolution simulatioat ) ) ) ) _
least until very close to when the supposed coordinate singularityvhile for the 5-dimensional spherical black hole, the equiva-
forms, neart=165). lent quantity,l 3, is
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FIG. 5. The proper length of the apparent horizon curve in the 4 F
(r,z) plane(betweenz=0 andz=L) as a function of time, from o F
the h/4 evolution of a perturbed black string with=1.4L .. 0 E
0 72
lBh=—7"" 17 : : . 4
R4, FIG. 6. The normalized Kretschmann invaridit'=1Rz,,/12

(14), evaluated on the apparent horizon of the perturbed black string
where, in both of the above expressiof,, is the areal spacetime with.=1.4L (h/4), at the same times as shown in the
radius of the horizon. In Fig. 6 we plot the normalized quan-embedding diagram plot§ig. 4). Note however, that here the hori-

tity zontal axis is theoordinate zand in particular the flat region of the
curve betweerz~3.5 andz=6.5 in the last frame corresponds to
| IR4AH the long, thin neck region shown in the embedding diagram plot.
|ON= -5 = (18 This demonstrates the rather severe “grid-stretching” problems we
I'ss 12 have then. For the static black string spacetiti®=1 (shown for

. . . reference as a dotted line in the figyrehile for a static 5D spheri-
evaluated on the apparent horizon of our numerical solutioRy) pjack hole it evaluates to 6. This diagram therefore also supports
of the unstable spacetime®™ is 1 for a black string, and 6 the conclusion that at lat@imulation times the solution is tending
for a black hole. The figure shows that, as judged ®Y the  towards a configuration describable as a sequence of black holes
part of the apparent horizon that is forming a long neck al-connected by thin black strings.
ways resembles a black string—the part that is forming a
bulge, however, has a value B tending towards that cor-
responding to a black hole. R, 1°N has only reached
~5 by the time the simulation ends; however, the behavior We have performed a preliminary numerical study of the
of Ry Seen in Fig. 2 suggests that the growth in the nor-instability of the 5-dimensional black string. Coordinate pa-
malized curvature invariant, though slowing down, shouldthologies prevent us from definitively identifying the final
continue. Figure 6 also demonstrates the grid-stretchingnd-statés) of an unstable black string. This claim is sup-
problems that we surmise are causing the code to eventualpyorted by the fact that the code crashes at very nearly the
crash—in that plot we use the coordinates the horizontal same time at varying resolution, and that curvature invariants
axis, and observe that the relatively small region wHé%  remain well behaved throughout the evolution. The former
~1 corresponds to the long neck in Fig. 4. In particular, insuggests that a numerical instability is not responsible for the
the vicinity of the “neck,”g,, becomes quite large, as do its crash, while the latter indicates that a physical singularity is
derivatives. probably also not to blame. Despite the premature termina-

Finally, in Fig. 7 we show plots of the approximate eventtion of the simulation, we find evidence that the spacetime
horizon (as described in Sec. Il Q,ltogether with the ap- evolves towards a configuration that looks like a sequence of
parent horizon for the simulation. The results shown in theblack holes connected by thin black strings, and character-
plot suggest that our computed apparent horizon is an exceized by an expansion of the string direction. Since the space-
lent approximation to the event horizon, at least at earlytime is still fairly dynamical at the time our simulations end,
times(not much can be said regarding the late time behaviowe cannot deduce how close this state is to a final configu-
of the event horizon, as the spacetime has not settled down tation. Nevertheless, the dynamical behavior observed is suf-
a stationary state when the simulation ends ficiently robust for some comments to be made. For instance,

IV. CONCLUSIONS
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thinning/bulging that we see must be transient behavior that
t=150 L=158 t=164 is “further” from the end-state than the perturbed black
string was.

A more complete exposition of the nature of unstable
black string evolution would appear to require coordinate
conditions able to adapt to solution features that develop at
late times—that is, in a manner that does not introduce se-
vere metric gradients that are not correlated with large gra-
dients in physical quantities. For example, it may help to
replace the fixed-lapse slicing with maximal slicing, which
enforces that the divergence of the local, spatial volume el-
\-/_\\/\\/\ ement be zero. Another, perhaps even more crucial option,

would be to introduce @ component to the shift vector that
keepsg,, close to(or exactly unity throughout the evolu-

t=113 t=138 t=144

10
T

© _ =0 =40 =80 tion. These options are currently under investigation.
S S — 2 Additionally, it would be interesting to explore a wider
N —- A range of initial conditions describing “perturbed” black

strings than that considered here. For example, the imposed
C periodicity implies that the equivalent, uncompactified space
obonlunho i, time consists of identical spherical-black-hole/black-string
-10 -5 0 5 10 . . . . .
” segments at laténtermediate times. It would be instructive
to see what happens should we break this symmetry, by mak-
FIG. 7. Plots of the apparent horiz@iabeled AH and estimates ing L>L., and then introducing some higher-wavelength
of the event horizon locatiofC1, C2 and CBin coordinate space perturbation similar toqg>1 in Eq. (13), but with more
(in contrast to the embedding coordinates used in Figfrdm the  asymmetry in the initial daténote that this would be more
evolution of a perturbed black string with=1.4L, computed at  computationally demandingFinally, it would be very inter-
resoll.!t|0nh/4. Here, the C:KCZ) curve marks the inward-directed est|ng to Study the evolut|on Of the Solutlons recently found
past light cone of the surfage=10 (r=4) att=164. C3 denotes py \\iseman[11] and mentioned in the Introduction. These
the outward-directed past of a surface just inside the apparent horisofigurations actually correspond to stationary solutions,
zon att=164. Thus, moving backwards in time, these Curves,nq thair perturbative stability, or otherwise, is currently not
should asymptote towards the event horizon of the spacetlme.The?(o]:.]own Since Wiseman shows that his solutions cannot be
plot_s suggest that for most of _the (_avoluti(nt least, the apparent  1he end-states conjectured by Horowitz and Maeda, it is im-
horizon is an excellent approximation to the event horizon. portant to understand their behavior, since if they are stable

the results are not inconsistent with Gregory and Laflamme’éhey may well represent physically meaningful states, while
conjecture that the solution bifurcates into a sequence df unstable, they may be difficult to attain via dynamical

] o . . conical “waist” like those presented ifl1] and further ana-
(1) Via a thinning neck that eventually vanishes, if the trendyyzed in[27).

seen in the simulation continues. Note that this would
require(a) that the proper length of the string continues
to grow, in order not to violate area theorems, dhyl ACKNOWLEDGMENTS
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HlT;+H2krr+H3=0, (A3)

APPENDIX A: INITIAL DATA SOLVER
) ) where theH,,, m=1,2,3 are independent &, and its de-
~ We solve the set of coupled constraint equati@®s(3)  rivatives. This equation is solved analogously to theo-
via an iterative procedure, where at each substep of the itergnentum constraint, but now using a discretization that is
tion we solve a single equation for one @f , Kyy Or Kir . centered at points X,z 112). “Boundary values,”
assuming that the values of the other variables are knowny 1., i=1,... N,, are specified along the lire=z,,,
We iterate this process until the residuals of all the equation§gain using corresponding values from the black string solu-

are simultaneously below a certain tolerance—a typicalion and the integration proceeds for 2,3, ... N,.
value is 10°°. The overall iteration is initialized using values

corresponding to an unperturbed black string solution. We

. . . . APPENDIX B: FINDING APPARENT HORIZONS
now provide a few more details concerning the solution of

each of the constraint equations. _ _ _ We use dlow, or level-setmethod to search for apparent
The equations are discretized on a uniform grid of pointshorizons withint= const spatial slices of the spacetime. We
(xi,z)) with i=1,... Ny, andj=1,... N, [recall that, restrict our search to simply connected apparent horizons

from Eq. (7), the radial coordinater, is related tox by r  that are periodic in z. Such an apparent horizon can be de-
=x/(1—x)]. We first consider the Hamiltonian constraint scribed by a curve in ther (z) plane, which we define to be
(2) which, in the coordinate system we have adopted, has thigne level surfacd =0 of the function

following form:

F(r,z)=r—R(2). (B1)
] 92 d 99 | 2
Fl%+F29rr_g;+Fsgrr%+F4<% +F5(gr)? In other words, the apparent horizon will be given by the
7z curver =R(z). The apparent horizon is the outermost, mar-
+Fgg,,=0. (A1) ginally trapped surface; hence, we want to find an equation
for R(z) such that the outward null expansion, normal to the
Here, theF,,, m=1,...,6, ardunctions that generally de- corresponding surfacé=0, is zero. To this end, we first

pend on all the metric coefficient and their derivatiessept ~ construct the unit spatial vectsf?, normal toF = const:
g, (and its derivatives We discretize this equation to sec-

ond order in the mesh spacing using a difference approxima- a gabF,b

tion centered at the pointi(, 1,,2;). Because of the dis- S :W- (B2)
cretization used and the form of EGAL), we can solve the e d
resulting set of equations “line-by-line” ixx, starting at the
inner boundaryj =1, which is chosen well within the hori-
zon of the stringtypically atr =M), and where the bound-

Then, usings? and thet=const hypersurface normal vector
n?, we can construct future-pointing outgoinig) and ingo-
ing(—) null vectors

ary values,[g]1j, j=1,... N,, are those corresponding

to an unperturbed black string. As we integrate outwards in 2+ =pa+g? (B3)
X, the determination of théth line of unknowns[g,,J;;, ]

=1,... N, involves the solution of amN,-dimensional, The normalization of the null vectors igrbitrarily) €2 ¢_,
non-linear, cyclic(because of the periodicity), tridiagonal = _2 The outward null expansiofi, is then the diver-

system that we solve using Newton’s method and a CyC"‘gence oft? projected onto aff = const surface:
tridiagonal linear solvef28].
We now direct attention to the momentum constraint, 0, =(g*P—s2s?) V. (B4)
which, viewed as an equation fé&g,, has the form
Substituting expression®1) and (B2) into Eq. (B4), with
Gl% + Gyt G3=0, (A2) I?iz:)o provides us with an ordinary differential equation for
Initially we solved Eq.(B4) via a “shooting” method—

where theG,,, m=1,2,3 do not depend dky, or its deriva-  given a guess foR(0), andassuming thaR’ (0)=0 (where
tives. We note that there is complete decoupling in zthe a prime denotes differentiation with respectzp we inte-
direction in this case; in effect, we have to solve an ODEgrate the equation to= z,, and repeat the process until we
along eaclz= const line. We again discretize using second-find a solution wheré(z,)=R(z) andR’(z,)=0. An effi-
order finite difference techniques, fix the boundary valuesient sequence of guesses can be generated using a bisection
[Kgoln, j» 1=1,... Nz, atx=1 (i,) using the unperturbed search, as the qualitative behavior of the solution is different
black string solution, then solve for the remaining unknownsdepending upon whether the initial guess R(0) is inside
marching inwards irx. or outside the apparent horizon.
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Since the shooting method is difficult to extend to a par-  APPENDIX C: FINDING (APPROXIMATE ) EVENT
allel implementation in an efficient way, we opted to use the HORIZONS
following point-wise relaxation metho¢br flow method to
determineR(z). We supply an initial guesR}q(z), for the
entire functionR(z), and then iterate the following equation
until the norm of the expansiof (z) of F(0) is below
some desired thresholéh our runs we have typically set it
to 10 3h, whereh is the basic scale of discretization

Here we describe one method we use, followig§], to
locate approximations to event horizons. This method in-
volves locating the boundary of the causal past of some
=const surface of the spacetime by following radial null
geodesics.

We write the geodesic equation in Lagrangian form:

ARp(2)=Ry41(2) —Ry(2)=— 0, (2)AT. (B5)
L=0u(t )24+ 2g4t' 1" +0,, (r')2+20,,1'2' +9,42")?,

Here, R,(2) is the solution after tha'" iteration. Equation 1)

(B5) can be viewed as aexplicit discretization of a para-
bolic evolution equation foR(z,7), wherer is “time” and
A7 is the time step for the evolutiofthe parabolic nature of
the equation is evident whedf, is expanded in terms of ! X ) . Al
R(2) via Eq. (B4)—for brevity we do not give the explicit !nterested in null trajecto/rles,lwe Sét=0. For radial, ingo-
form of the equation heje Thus, for stabilityAr must be NG geodesics, we havé’=¢’=0, and thus the geodesic
chosen to be less thakz2. equations reduce to the set:

Given a “reasonable” initial gues®q(z), one can see
how iteration of Eq.B5) will causeR,(z) to “flow” to the

where \ is the affine parameter along the geodesic, and a
prime denotes differentiation with respectXo Since we are

. o
apparent horizon: iR,(z) is outside of the apparent horizon, r= \/———,8. (C2
then typically the expansiod, (z) will be positive there, 9
causingR,, 1(z) to decrease towards the apparent horizon,
and vice versa iR,(z) is inside the apparent horizon. We . 2aVg,
useR(z) =2 as the initial guess at=0; aftert=0 we search A= T
;

for the apparent horizon every time steps(where N is

typically in the range 10—30and use the shape found at the

previous search as the initial guess for the next search. Usuvhere the dot denotes a derivative with respect to coordinate
ally, on the order of tens to thousands of iterations of Eqtime, andIl,=dL/dr’. Then, starting at a certain value of
(B5) are required to solve foR(z) to within a level of ac- r=rg,, and for each grid point along the direction, Egs.
curacy such that the approximate solution is roughly within aC2) are integrated backwards in time using a second order
mesh spacing of the exact soluti¢as estimated in a few Runge-Kutta scheme.

specific calculations by solving E@B5) close to machine Following null geodesics along=const lines does not
precision. A single iteration of Eq.(B5) can be computed guarantee that we are tracing the causal pastafy, though
very rapidly relative to the time taken to compute a metric-for the spacetimes studied here, and the coordinate system
evolution step; however, in a parallel environment, if thou-used, this should offer a good approximation. Furthermore,
sands of iterations are needed on a regular ladichis so  although radial geodesics might not be the best choice, since
at late times during the evolution of an unstable black sjring the event horizon is an attractor, they will trace it accurately.
the apparent horizon finder becomes a slight speed bottléFor related discussions of approximate event horizon loca-
neck in the code, due to the time it takes to communicate th&éon in the axisymmetric four-dimensional case, @8-
results of each iteration amongst the processors involved. 31].)
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