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We investigate the general relativistic collapse of spherically symmetric, masslesé fipids at the
threshold of black hole formation. A spherically symmetric system is constructed from twé dimids by
forming a spin singlet with no net spin-angular momentum. We study the system numerically and find strong
evidence for a type |l critical solution at the threshold between dispersal and black hole formation, with an
associated mass scaling expongnt0.26. Although the critical solution is characterized by a continuously
self-similar (CSS geometry, the matter fields exhibit discrete self-similarity with an echoing expakent
~1.34. We then adopt a CSS ansatz and reduce the equations of motion to a set of ODEs. We find a solution
of the ODEs that is analytic throughout the solution domain, and show that it corresponds to the critical
solution found via dynamical evolutions.
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[. INTRODUCTION understanding of this phenomenology. First, for a given mat-
ter model and symmetry restrictiofspherical, or axial sym-

Beginning with an investigation of the spherically sym- metry, for examplg the black hole threshold apparently de-
metric collapse of a massless scalar fidlf many studies of fines specific solutions of the coupled matter-Einstein
gravitational collapse have established that the threshold afquations. These solutions are essentially unique, up to cer-
black hole formation is characterized by critical phenomenaain rescalings, or at least are isolated in the overall solution
analogous to those that accompany phase transitions in stgpace of the model. Second, although unstable, these critical
tistical mechanical systems. Briefljor a detailed review, solutions tend to be minimally so, in the sense of possessing
see[2]), black-hole threshold phenomena arise from the cong single(or perhaps a feyvunstable modes in perturbation
sideration of families of Spacetimdgenerally Containing theory_ The Lyapunov exponents associated with these
one or more matter fieldlswhich are labeled by a family odes can be immediately related to the exponents deter-
parametep that controls the degree of self-gravitation in the yined from empirically measured scaling laws.
spacetime. These families typically describe the implosion of |, tnis paper we study the critical collapse of a massless

an initially ingoing concentration of matter-energy. For Sma"spin% Dirac field coupled to the general relativistic gravita-

values ofp, the energy implodes in an essentially linear faSh'tii)nal field, within the context of spherical symmetry. Since a

ion, reemerges and disperses to large distances. In contras : . . .
. . : : Single spinor field cannot be spherically symmetric, we con-
for large p, the implosion results in black hole formation,

with some fraction of the initial mass of the system trappeoSider the i_npoherent sum of tvyo independent fields so that the
within a horizon. The threshold of black hole formation is S!Jperpos'“‘?” has no net SP'”""‘”Q“'ar mome”tE‘m- Through
defined by the specifiecritical) parameter valuep*, above dlrect_solutlon of the(1+_1)-d|men5|onal_ partial differential
which a black hole first makes an appearance. equations(PDE9 governing the dynamics, we demonstrate
Empirically, and quite generically, a number of intriguing the existence of so-called type Il behavior in the model, in
features are seen in the near-critical regime. These includ®hich black hole formation tumns on at infinitesimal mass,
the emergence of specific critical solutions with scaling, orand the critical solution is self-similar. In the current in-
time-translational, symmetries, scaling laws of dimensionfuistance, the self-similarity is similar to that previously seen in
quantities such as the black-hole mass, and universality iertain scalar field collapse mod¢B-5], in that individual
the sense that these features do not depend on the detailsasfmponents of the Dirac field are discretely self-similar, but
the specific family one uses to generate a critical solution vidhe overall geometry is continuously self-similar. As ex-
fine tuning in parameter space. pected for a type Il critical solution, we find a black hole
There is now a relatively complete, though non-rigorous,mass scaling law for solutions in the supercritical regime. We
then directly construct the threshold solution using an appro-
priate self-similar ansatz for the geometry and matter fields
*Email address: ventrella@alum.mit.edu and demonstrate good agreement between it and the PDE
TEmail address: choptuik@physics.ubc.ca solution.
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II. FORMALISM

We consider a spherically symmetric system of spin-
fields. We use the Arnowitt-Deser-Misn@kDM ) formalism
(see[6] for detaily, adopt units in whicltG=c=#4=1, and
express the metric in polar-areal coordinates

ds?=—a(t,r)2dt?+a(t,r)?dr2+r2d 6%+ r?sirf 6d ¢2.
D
The coordinater is the areal radius defined asA/4m)*?,
where A is the proper area of a constant2-sphere. The
functions «(t,r) and a(t,r) are to be determined using a
subset of the 3-1 form of Einstein’s equations, as described
in more detail in Sec. Il C.
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However, it reduces to the usual covariant derivative when
acting on tensors. We choose the spinor connections so that

Before discussing how we separate the radial and angular

dependences in our system to form a spin singlet, we begin

with a brief review of spinors in curved spacetinigee
[7-9)). The evolution of a massless, sgirfield coupled to
gravity is governed by the curved space Dirac equation,

2

where ¢ is a four component spinor. The curved space
matrices,y*, satisfy

YV, =0,

1
g""1=5{y" 7'} @

wherel is the 4x 4 identity matrix andg”” is the inverse
4-metric. In flat spacetime, we have

1. -
7 1= 5 {77, @

A particular choice ofy? that satisfies Eq4) with our metric
signature ,+,+,+) is
i (

°

1 ol
0 0/’

0

— o)

0 ,yJ':

y =i ©)

V.y"=0. (10
It can then be shown that tHe, take the form
1 ~ab %

We also note that when taking the covariant derivative of the
vierbein,V #, only one Christoffel connection appears, since
there is only one curved, tens@reek index.

A. Representation

Having fixed the form of the spherically symmetric metric
(1), we are ready to find a set of matrices that satisfy Eq.
(3). We choose as our representation

Here, the index ranges over the spatial values 1,2,3 and the

o! are the Pauli spin matrices, namely,

23 ol 2

The generaly matrices are related to their flat, Cartesian
counterparts by

0 1
10

1
0

0
-1

=i
0

ol=

)- (6)

Y=V y (7)
where there is an implied summation over the values 0,1,2,
of the “flat,” Latin index a, and theV,* are known as vier-
bein.

The derivative operator in Ed2) is a spinor covariant
derivative with spinor affine connectionk,, . It acts in the
following way on spinors:

-0 -3
gt gy
a’ a’
T2 gt
Y Y
0=~ ¢—
Y77 Y Trsing (12
The spinor connections are
la'. -
_- 073
I=3 a’
1la. .
_ 7703
=527y,
11. -
132
FO 2 ay ar
1sin6~ ~ ~ o
_ 31 271
== —yt+ = 1
6=5 7 VY 50080y y, (13)

where dots and primes denote differentiation with respect to
t andr, respectively. We note that we have complete freedom
to choose any set of* we wish provided they satisfy Eq.
(3), and that our specific choice is made so that the Dirac
8quation can be easily separated into radial and angular parts.
Before proceeding to this separation, we introduce a fur-

ther simplification based on the fact that we are dealing with

a massless spig-field. Mathematically, such a field has a
particular chirality (circular polarizatioly we adopt left-
handed chirality which is expressed as
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(1-iy®)y=0. (14) individual spinor isnot a spherically symmetric objecit
always has a spin-angular momentum that breaks this sym-
Here, y° is defined by metry) and therefore cannot by itself produce such a space-

time. What we require are multiple spinors where all the
individual spin-angular momenta counterbalance each other
) o ) so the system has no net spin. We will use two spinors, for
Equation(14) can be satisfied by taking simplicity, but any even number of the appropriate spinors
could also be used. The spherically symmetric stress-energy

Yo =y"y1Y%yR. (15

Pi(tr,0,0) tensor for the systenT,,, is found from the sum of the

. Po(t,r,0,¢) 19 stress-energy tensors of the individual spinor figt3),
Pi(t,r,0,9) T=T,,+T,,. (19
lpZ(t7r107¢)

Evaluating the right-hand side of E(¢L9) doesrequire the
Substitution of this form for the spinor into ER) yields  angular eigenfunctions that we will now compute.
two identical sets of equations, each coupling the spinor
componentsy;; and,. We of course only need to solve one B. Equations of motion
set of_ equations for these \_/a_riables, so we are left with two Setting the angular part of E4L8) equal to a constanh,
equations instead of the original four. ives

We now perform a separation of variables on the spinOIg

components by writing

<¢1(t!r10!¢)): 1 (F(tlr)Hl(01¢)
l/lz(t,r,a,(]s) r\/a(t,l’) G(t,r)H2(0,¢)

With this new choice of variables, and with our previously
chosen representation of thg* (12), the Dirac equation where we have multiplied the first and second components of

- —— ————— ~cotf

sind a¢p 90 2 Ho=—nH, (20

)' 17 i g

J 1
— — — —coté

Hy=nH,, (21

separates into a part that depends om)((which we will  the angular terms in Eq17) by —H; andH,, respectively,
refer to as the “radial” padt and a part that depends on so that the bracketed terms in the above expression are the
(0,9) raising and lowering operator$, (eth) and & (ethbay, re-

spectively. These operators act on the spin weighted spheri-

ir (FIG . ir a’ ( —F/G) ir F’/G) . ir o’ [ FIG ) cal harmonics,Y), (see[11] and[12]) in the following way:
“\GIF| 2a*| GIF [ alGIF] 2 aal-GIF S =95  D(serYin) (22
i [Hou/Hi| [ HaplH, ]
N ’ + ' O Yim)=—VU+s)(I=s+1) (s 1Y|m). (23
smﬁ(Hm/Hz —Hy 4/H, sHim ( stHm
o H Our functionsH; andH, have the spin weights= + 3
1 2/Hy
* zc"w( - H1/H2) -0 (18 H(6.)= 1Y im(6,6) (24

We note that although the factory(a) ~* in Eq. (17) is not Ho(6,0)= —1,2Yim( 0, ). (25
necessary for the separation of variables, it simplifies matters To form a spin singlet, all we require is one spinor con-
by reducing the number of terms in the resulting equation. Obtructed from 1Y (1/2)(1/2), —1/2Y (172112 @nd one spinor
particular importance is the elimination of a time derivativefrom 1,Y (1212, -12Y(1/2)(-12)- These spin weighted
of a(t,r) that would make numerical solution of the resulting spherical harmonics are

system of PDEs somewhat more involved.

Considering our separated equation, we observe that since 1
any change ird or ¢ cannot change the value of thgr() 12Y (112)(112)= =€
part of Eq.(18), the (6, ¢) part must be a constant. At this V2w
point, if our goal was to simply remove the angular depen-
dence from the Dirac equation, we would be done. By re-
placing the angular part of E418) by a constant we would
be restricting ourselves to some spinor that is an eigenfunc-
tion of the angular operators in the Dirac equation. In fact 1 _
only one of its eigenvalues, rather than the precise form of 1/2Y(1/2)(71/2):—ef'MCOSE,
the angular eigenfunction, would need to be known. How- V2m
ever, our goal is not only to eliminate the angular depen-
dence of our equation of motion, but also to have a matter
source that generates a spherically symmetric spacetime. An

1$l25in—
2 1

1 .
—12Y (12) (112~ \/T—W e “*cosy,

~12Y () (-1~ T 2 e MS""'E (26)
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and are solutions to Eq&0) and(21) for n=—1. Thus, for
our two spinor fields, we have

F(t,r)sin(6/2)

. 1 e®2 | G(t,r)coq6/2)
v T 2wyt | F(Lr)sin(6/2) @7
G(t,r)cog 60/2)
F(t,r)coq6/2)
- 1 e P2 | —G(t,r)sin(6/2)
v _mrx/a(t,r) F(t,r)cog 6/2)
—G(t,r)sin(6/2)
(28)
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Tu=——>-(F1F2=F1F2+G1G,~G,Gy)
27r<a

Ty="" FiF,—F1F,+G1G,— GG,
4r
@ ! ! ! !
+ E(FlFZ_F1F2+ Gle_Gle)
T=-—(F1F;—F{F2+ GG, G1G))

2arr?

From the above results, we can now derive the following

radial equations of motion from E@18):

. a o a

F1: - g&r aFl + ?Gz (29)
. o o o

GJ_: g&r EG]_ + ?Fz (30)
. o o o

F2: - E&r EFZ - FGl (31)
. (44 63 o

Go=\ 7% VzC2/ —7F1 (32)

where we have written the complex functiokgt,r) and
G(t,r) in terms of real functions viaF(t,r)=F(t,r)
+iF,(t,r) andG(t,r)=G4(t,r) +iGy(t,r).

C. Geometry

Although the spinorg27) and (28) both yield the same
radial equations of motiori29)—(32), they have different

stress-energy tensors. We calculate the stress tensor for eagl

field individually using
1 _
T,uV: - §[¢7(MVV)¢_ (V(M¢) Yv) ¢] (33)

where the Dirac adjoint off, s is defined by

y=y'A.

Taezm(FlGﬁ' F2G2)
Sl
T¢¢:m(FlGl+ F2Gy). (34
Contracting the stress-energy tensor gives
T,4=0, (35

which is expected since the massless Dirac system is confor-
mally invariant. Having computed a stress-energy tensor that
will generate a spherically symmetric spacetime, we can now
write down the Einstein equations that will fix(t,r) and
a(t,r).

Due to our choice of coordinates, the Hamiltonian con-
straint and the slicing condition comprise a sufficient subset
of the Einstein equations to be used in our numerical solu-
tion. The Hamiltonian constraint is
roat-1

2r

a
—+
a

2
= r_2(2aFlGl+ 2&F262+rF1Fé_rFiF2

+1GG,—rG,G)) (36)
and is treated as an equation faft,r). We note that the
mentum constraint,

. 2«
a:T(F1F2—F1F§+GiGz—Gleé) (37)

also yields an equation fa (an evolution equationthat we

use as a means to check the consistency of our equations,
both at the analytic level, and during numerical evolutions.
We note that in both Eq$36) and (37), time derivatives of

F's and G's have been eliminated using the equations of

Here, A is the so-called Hermitizing matrix, needed in the motion (29)—(32).

computation of real-valued expressiofssich as the current
density or, in this case, the stress-energy tenfom the
complex-valued spinors. It is to be chosen so that Bo#md
iAy* are Hermitian, and we tak&= —i~°.

ComputingT ,, for each of the two spinor&7) and(28)

The slicing condition, which fixea(t,r), is derived from
the evolution equation foK?, and the fact that for polar
slicing we have

K=K',=K"+2K?=K",

and summing the results yields the following non-vanishing ) o )
components of the spherically symmetric stress-energ§inCeK y(t,r)=0. To maintainK®,(t,r)=0 for all time, we

tensor:

imposeK ?,(t,r)=0, which yields
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a_’_a2—1:§(F F,—F]F,+G]G,—~G,G)). (39) Ao,
w o p \rime TP 17 a o). 4,Gy=—3,Gy,
dtFo=—0d;F5,

Ill. NUMERICS AND RESULTS 0,Gy= —3,G,. 43)

The above equations of motion were solved using a
Crank-Nicholson update scheme, stand@(t?) spatial de- The results presented below were generated from the
rivatives, and Berger-Oliger style adaptive mesh refinemenstudy of three distinct, parametrized families of initial data,
(see[13]) on the computational domain,<0r <r 5, t=0. which we refer to as Gaussians, spatial derivatives of Gaus-
To achieve stability, high frequency modes were damped ussians, and kink—anti-kink. In all cases, the initial data sets

ing Kreiss-Oliger dissipatiofil4]. At r=0, the following Were such that the pulses were essentially ingoing with posi-
regularity conditions were enforced: tive energy at=0. The ingoing wave condition we use is

the one derived from the approximatiof2), namely,

F.(t,00=0
dF1=4,Fq,
Gl(t,0)=0 (?tGl:&rGl!
F,(1,00=0 F2=0,F,,
&IGZZ aer . (44)
G,(1,0)=0. (39)

In order to be initially ingoing, the data must satisfy E44)
We also have while being consistent with the equations of motion, Egs.
(29—(32). This leads to the requiremeiit;=F,=0. The

a(t,0)=1, (40 specific forms used are as follows.
which follows from the demand of regularifjocal flatnesps Gaussian
at r=0. At each time step, the Hamiltonian constraint is F,=0
integrated outwards fromm=0 using a pointwise Newton
method. The slicing conditiof38) is solved subject to the F,=0
outer boundary conditionx(t,r 5,0 = 1/a(t,r na, SO that,
provided that all of the matter remains within the computa- G,= pef(r7r0)2/(452)

tional domain, coordinate time and proper time coincide at
spatial infinity. We note that the more natural normalization
choice, from the point of view of critical collapse, is
«a(t,0)=1. However, computationally, this choice would vi-
tiate our ability to compute with a fixed Courant factor,

G,=pe (Tt 8)%1(45%)

Derivative of Gaussian

At/Ar, particularly in the near-critical regime, and would F,=0
thus unnecessarily complicate the numerical solution.
At r =r ax, OUtgoing wave conditions are imposed on the F,=0
matter fields. We derive these approximate conditions by first
taking the limitr —oo of Egs.(29)—(32) which gives G,= p((ro—r)/(252))e‘(r"0)2/(452>
hF1=—0;Fy, Gy=p((rg—1— 8)/(26%))e(~To* 8)21(45%)
91G1=9,Gy,
9F,=—a.F, Kink—anti-kink
r il
ﬁthzé’er. (41) F]_:O
Taking the time derivative of Eq41) yields F,=0
duF1=0F1, G,=(p/2){tanH (r —ro)/ 8]—tanH (r —2ry)/ 5]}
34G1= Gy,
G,=(p/2){tanH (r —ry+ &)/ 8] —tanH (r — 2ry+ 8)/ 51}
IuF2=0rFa,
04Gp=0,,G, (42) In each case the family parametpy,can be used to con-

trol whether the mass-energy of the system collapses to form
where the time derivatives that appear on the right-hand sida black hole or implodes through the cente=0) and dis-
are replaced using Eqé&t1). Each component thus satisfies perses to spatial infinity. As discussed in the Introduction,
an uncoupled Klein-Gordon equation. Appropriate outgoingand in a process now familiar from many other studies of
wave conditions are therefore critical collapse, ap is tuned to the black hole threshotd
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FIG. 2. Comparison oF ((t,r) for a slightly supercritical PDE

supercritical evolution, overlayed with the solution to the ODES_evqution with the solution found from the self-similar ansatz. As in
The frames are output logarithmically in central proper time, as''9- 1, the frames are output logarithmically in central proper time,
measured from*. The function’s peak reaches a value of approxi- measured front*. The function oscillates and discretely repeats

mately 1.6 and remains there as the solution continuously repeafiS€!f on smaller and smaller scales. The particular combination of
itself on ever smaller scales. F,(t,r)/F is the natural scaling variable as can be deduced by

noting that the Dirac fields have units of (lengfR) and as shown
Fxplicitly by the r dependence of Eq$53) and(54). The echoing
exponent,A~1.34, calculated viaA =27/w, where w is com-

puted from the ODE solution, is also shown.

FIG. 1. Evolution of the metric variabl&(t,r), for a slightly

=p*, the single unstable mode associated with the critica
solution is “tuned away” to reveal the critical solution
per se
In the current case, we find strong indications from such . o
studies that the critical solution for the spherically symmetricvarying the mesh spacinb, and verifying that the error was
EMD (Einstein-massless-Dirasystem describes a continu- O(h?), as expected. The unigrid code also conserves the
ously self-similaf(CSS geometry. Typical evidence for this ADM mass toO(h?) throughout the evolution, as does the
claim is shown in Fig. 1, which displays near-critical evolu- adaptive code. The outgoing wave boundary conditions
tion of the scale invariant quantitg, In contrast, the Dirac implemented at,, work well, and produce no significant
fields themselves appear to be discrete|y Se|f-sin’([[}ﬁ$ reflections. More importantly, we were careful to ChOD,%g(
(see Fig. 2 sufficiently large so that any reflections would not have time
As usual, associated with the type Il critical solution is ato propagate in and contaminate the critical solution.
scaling law for the black hole mass near criticality

Mpre|p—p*|?, (45) IV. SELF-SIMILAR ANSATZ

i . . Given the numerical evidence suggesting the existence of
and, as expected, we find strong evidence that the scaling gejt_gimilar solution at the black hole threshold, we pro-
exponent,y, is universal in that it is independent of the ceeq 1o arab initio computation of the critical solution based
family of initial data used to generate the critical solution. 5, he application of a self-similar ansatz to our system. The
The values ofy computed for the different families are sum- development here closely parallels the work done by

marized in Table I, and we note that there is uncertainty injijrschmann and Eardleil 7], who considered the case of a
the third digit of the quoted values. massless, complex scalar field.
The data shown in Fig. 3 demonstrate that the black hole '

mass does follow a power law given by Eg5). It should _ _ ) _
also be noted that this data apparently does not oscillate ABLE I. Scaling exponenty, associated with the three fami-
about the fit line, as is expected, given that the geometry j4€S Of initial data described in the text.

continuously self-similar(Examples of oscillating data for

: Famil
DSS geometries can be found[ib5] and[16].) The lack of amty Y
regular oscillations about the fit line for the current case is Gaussian 0.258
shown more clearly in Fig. 4. Derivative of Gaussian 0.259
In order to check the validity of our results, the unigrid Kink—anti-kink 0.257

version of the evolution code was convergence tested by
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FIG. 4. Plot of the residuals of the data shown in Fig. 3 with
respect to the computed linear fit. The absence of regular oscilla-
tions indicates that the geometry is not discretely self-similar. There
close to the critical parametep;, black holes of arbitrarily small are, however, features in the plot, notably the “spikes,” that can be
masses are formed, indicative of a type Il critical solution. Theexplamed as follows. The matter fields have a discretely self-similar

small irregularities visible in the plot are shown and discussed irpature, but ‘?°mb'“e to produce a_CO““”!JOUS'V self-similar geom-
more detail in Fig. 4. etry. Truncation error effects, combined with the fact that our deter-

mination of black hole mass is not precise, result in a residual

By definition, a self-similar spacetime has a homotheticimprint of the DSS nature of the Dirac fields in the plot. In fact the
Killing vector §' that obeys spikes in this plot occur as the amplitude of the Dirac fields reach

an extremum near the black hole, periodically ifptap*|.
the point of view of critical evolution, is a natural temporal
where the factor 2 is simply a matter of convention. We wantorigin for use in describing the dynamics. Further, as men-

to define coordinatest(x) that are adapted to this self- tioned previously, in analyzing self-similar critical solutions,
similar symmetry. Specifically withr adapted to the vector it is natural to adopt a parametrization of ttve const sur-

FIG. 3. Plot of the observed mass scaling near criticality for the
case of the Gaussian family. The measured scaling exponent is
=0.258, with uncertainty in the third digit. As we tune arbitrarily

field £&#, Eq. (46) can be written as faces, such thatcoincides with central proper time. We thus
adopt such a normalization, and additionally adjust that
_ t*=0.
77967 X)=29,,(7.X). (47) In these new coordinates, the metfig becomes

Performing a separation of variables on the metric tensor and o 2 2 914D 2
then solving Eq(47) for the r-dependent part yields ds?=e*{[ —a(x)*+x*a(x)?]dr*+2xa(x)*drdx
s +a(x)2dx?+ x?d 6%+ x?sirf 6d ¢2} . (50

9un(7:X) =€77,,(X), (48)

We note that ther coordinate is timelike, and, as can be
verified by comparing the right-hand sides of EG&) and
(50), that the functiongr anda are functions of the spacelike
coordinate x, alone.

Where"g]w(x) is the part of the metric that depends only>on
The original coordinatest(r) are related to £,x) by

t*—t r
r=In T ’ X= : (49 In (7,x) coordinates, the spinof&7) and (28) become
t*—t
The equations of interest will take the same form for any F(7,x)sin(6/2)
value of the constant factdr, and without loss of generality, e 7 €92 | G(r,x)cog0/2)
we subsequently take=1. The timet* is the value of co- yr=——— . (51
ordinate time to which the self-similar solution asymptotes 2w xya(x) | F(mx)sin(6/2)
as it propagates down to arbitrarily small scales, and, from G(,x)cog 60/2)
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F(7,x)cog 0/2)

e 7 e 12 | —G(7,x)sin(6/2)

b (52

:mx a(x) F(T,X)COS(Q/Z) '
—G(7,Xx)sin(6/2)

PHYSICAL REVIEW D68, 044020(2003

o' a’-1

o= ax T 2X(P1P;=PiP2+Q1Q:-Q1Q;) (60)

where primes denote derivatives with respeck.t®e note
that we can cast this system into a canonical form suitable
for numerical integration, by using Eq&5)—(58) to elimi-

where these expressions were found by transforming thgate the derivatives d® andQ that appear in the right-hand
(t,r) parts of Eqs(27) and(28) as scalars.
In order to find spinor components that are only functions

of X, we require knowledge of the dependence of our field
guantities. This is determined by performing the coordinate
transformations on the equations of moti(®0)—(32) and

the geometric equatior(86) and(38), and then ascertaining
what 7 dependence is neededfnandG to produce a set of

7 independent ODESs. A suitable ansatz is

where the exp@t) terms reflect the fact that, as the PDE
solutions have revealed, we expect the matter fields to e
hibit discrete self-similarity. Note thabd as defined here cor-
responds to /A (see[17]) whereA is the echoing expo-
nent originally defined ifl1]. Additionally, the extra factor of
x is introduced to cast the resulting equations in a more con-

F(r,x)=e™e X[ P1(X)+iPy(x)] (53

G(7,x)=e"%'™x[Q(x) +iQ(X)], (59

venient form. Inserting this ansatz into E429)—(32), (36)

and(38), we find
.1 1afa+1
1" x+ala —EPl—sz—Ea x| P
o
+2aP1(P1Q1+P,Qy)+ ;Qz} (59
, 1 bt up 1ala’+1
2 X¥ala| 2 2T®TiT g Tx |2
o
+2aP,(P1Q1+P,Qy) - ;Ql (56)
, 1 1 1afa’+1
Ql_x—oz/a _le_wQ2+§§ X 1
o
—2aQ4(P1Q1+P,Q,) + X P, (57
, 1 1. +laa2+l
Qo= ara| 2Tt 55| )@
o
—2aQ3(P1Q1+P,Qy) - X Pl} (58
a’ _ a2
2T ox +2x(P1P;—P1P,+Q1Q,—Q1Q5)

+4a(P1Q1+P,Q>) (59

side of the equations fa (59) and « (60).

V. NUMERICAL SOLUTION OF THE
SELF-SIMILAR ODEs

Having rewritten our equations in a coordinate system
adapted to self-similar symmetry, we can now solve the re-
sulting ODEs to determine what we expect will be the CSS
critical solution seen at the black hole threshold in the EMD
model. Following Hirschmann and EardI¢$7], we use a
multi-parameter shooting method to integrate the equations
subject to regularity and analyticity conditions.

We first observe that the systei®5)—(60) has singulari-
ties atx=0 and atx=x,= a/a (the similarity horizon. Of
the infinitely many solutions to the ODEs, we seek one that
s analytic at both of these points, as the CSS solution found
via solution of the PDEs has this property. Our unknown
problem parameter$shooting” parametersinclude the val-
ues of some of the fields at the origin, the valuescdppear-
ing in the ansat£53),(54), as well as the value of, (the
position of the similarity horizon Following Eardley and
Hirschmann we shoot outwards froms 0 and inwards from
X»>= ala, comparing solutions at some intermediate paint
This process is automated by starting from some initial
guess, then using Newton’s method to determine the shoot-
ing parameters for subsequent iterations. In the Newton it-
eration, we use the square of the differences of the values of
the functions and their derivatives xt (computed from the
inwards and outwards integratigres the goodness-of-fit in-
dicator, which is driven to 0 as the iteration convergasur
solution it is driven to a tolerance of order 1).

At x=0 we have the following:

P1(0)=0
P2(0)=-Qo
Q1(0)=Qo
Q2(0)=0
a(0)=1
a(0)=1.

Regularity at the origin give®,=Q, and P,=—Q;. We
use the globalU(1) invariance of our systertb5)—(60) to
setP,=0. This leaves), as a shooting parameter.

As noted previously, the location of the similarity horizon
(outer boundary of the integration dompir, is itself a
shooting parameter, and is the valdewhere a(x)/a(x)
=X. In the limit x—Xx, we have the following:
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N 1/2
1 1
P10x) = ——(~4aQjw—4aQiQu+2a0Qs + Qsa’) ull={ f 2, (uP°5-uf*S)? (62

1 as an error estimate. In computing both the least squares and
Po(Xy) = —2(4aQ1Q§w+4aQ§w+ 2awQ,—Q,;a%) thel,-norm, the solution to the ODEs and the solution to the
2a PDEs are treated ds-element vectors wherl is the total
number of grid points on the two-dimensional grictiandr.

Q1(x2)=Qy For the case o&(t,r), we uset* as the fitting parameter.
Oncet* is found, thel, norm of the difference of the two
Q2(X2) =Q2 solutions is 0.00159. We display the results of this fitting
process as a sequence of snapshots in time in Fig. 1.
a(Xz) =Xza Comparing the Dirac fields is a little more involved since
there are a number of unspecified parameters and phases that
a(xz)=a. must be determined. From the ansé3),(54) we have
The shooting parameters at the outer boundary »gre ‘A
Q1(X2), Qa(x5), anda(x,). The final shooting parameter is Fo(t,r)= —I{Pl(t,r)cos{w IN(t*—1t)+ ¢4]
the frequencyw, for a total of six undetermined parameters. (t* -t

We find an approximate solution given by P, (tr)sinf @ IN(t* )+ )}
24 1

X,=5.6740236-0.0000004

rA, ) R
»=4.69883% 0.000001 Fa(t.r)= —(t*_t)uz{Pl(“)S"‘[w IN(t" = 1)+ ¢2]
Q1(0)=0.747912623 0.000000006 +Py(t,r)cod w In(t* —t) + ¢ 1}
Q1(X2)=0.00151341532 0.00000000007 rA,
Gy(t,r)= ———5{Qu(t,r)cod w In(t*—t) + ¢;]
Q,(X5)=0.01103266083 0.00000000005 ("=t
a(x,) = 1.1183631604 0.0000000009, ~Qz(tn)siw In(" =)+ o}
where the quoted uncertainty was estimated by solving the A : N
system for many different values of, and observing the Ga(t,r)= (t*_t)l/z{Ql(t'r)S"{“’In(t O+ 4]

changes in the shooting parameters.
+Qy(t,r)cod w In(t*—t)+ ¢, ]}. (63
VI. COMPARISON OF PDE /ODE SOLUTIONS .
We note thaF; andG, have the same phas¢;, while the
In this section we compare the solution computed frompair F, and G; have the same phasg,. This is expected
the self-similar ansatz, as just described, to the near-criticgtom the coupling of Eqs(29)—(32). The equations of mo-
solutions calculated from the full PDEs in ther) coordi-  tion may be invariant under changes of these phases, but
nate system. The ODE solution is the theoretically predictedqs.(36) and(38) are not. In order to have the entire system

self-similar solution while the PDE solution can be thoughtbe invariant under changes in the phases, we must have
of as collected data. For this comparison, we used data from

the Gaussian family. The idea is to treat the ODE solution as

the model function and fit it to the PDE data. We perform the AlAy=——————.
o R . . . Cog 1~ 3)
fit “simultaneously” at all times by working with the func-

tions as two-dimensional solution surfacestiandr. This e see that the amplitudes of the fields must change only if
process is automated by starting from some initial guess fojhe rejative phase,#,— ¢,, changes. We merely note this
the fitting parameters, then using Newton’s method to deteract for completeness but do not use it to reduce the number
mine these parameters for subsequent iterations. In the Newt fit parameters.
ton iteration, we use the least squares of the two solutions  The comparison of the fields as found from the PDEs and
N ODEs is carried out in much the same way as it is done for
S (UOPE_ PDE)2 61) the metric variablea(t,r). The goodness-of-fit is again de-.
=) ! fined to be the least squares of the two solutions but this
time, the parameter* is kept fixed and the phasg; and
as the goodness-of-fit indicator, which is driven towards 0 asmplitudeA; are used as fitting parameteijs<1,2). Thel,
the iteration converges. When this happens, we compute th@rm of the difference of the solutions fét; is 0.000195.
[,-norm of the difference of the two solutions The I, norm of the difference of the solutions f@; is
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0.00024. Figure 2 illustrates the results of this comparison oprovides additional verification that the critical solution of

the ODE and PDE solutions fdt;. the PDEs is correct.
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