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Critical phenomena in the Einstein-massless-Dirac system
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We investigate the general relativistic collapse of spherically symmetric, massless spin-1
2 fields at the

threshold of black hole formation. A spherically symmetric system is constructed from two spin-1
2 fields by

forming a spin singlet with no net spin-angular momentum. We study the system numerically and find strong
evidence for a type II critical solution at the threshold between dispersal and black hole formation, with an
associated mass scaling exponentg;0.26. Although the critical solution is characterized by a continuously
self-similar ~CSS! geometry, the matter fields exhibit discrete self-similarity with an echoing exponentD
;1.34. We then adopt a CSS ansatz and reduce the equations of motion to a set of ODEs. We find a solution
of the ODEs that is analytic throughout the solution domain, and show that it corresponds to the critical
solution found via dynamical evolutions.
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I. INTRODUCTION

Beginning with an investigation of the spherically sym
metric collapse of a massless scalar field@1#, many studies of
gravitational collapse have established that the threshol
black hole formation is characterized by critical phenome
analogous to those that accompany phase transitions in
tistical mechanical systems. Briefly~for a detailed review,
see@2#!, black-hole threshold phenomena arise from the c
sideration of families of spacetimes~generally containing
one or more matter fields!, which are labeled by a family
parameterp that controls the degree of self-gravitation in t
spacetime. These families typically describe the implosion
an initially ingoing concentration of matter-energy. For sm
values ofp, the energy implodes in an essentially linear fas
ion, reemerges and disperses to large distances. In con
for large p, the implosion results in black hole formatio
with some fraction of the initial mass of the system trapp
within a horizon. The threshold of black hole formation
defined by the specific~critical! parameter value,p!, above
which a black hole first makes an appearance.

Empirically, and quite generically, a number of intriguin
features are seen in the near-critical regime. These inc
the emergence of specific critical solutions with scaling,
time-translational, symmetries, scaling laws of dimension
quantities such as the black-hole mass, and universalit
the sense that these features do not depend on the deta
the specific family one uses to generate a critical solution
fine tuning in parameter space.

There is now a relatively complete, though non-rigoro
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understanding of this phenomenology. First, for a given m
ter model and symmetry restrictions~spherical, or axial sym-
metry, for example!, the black hole threshold apparently d
fines specific solutions of the coupled matter-Einst
equations. These solutions are essentially unique, up to
tain rescalings, or at least are isolated in the overall solu
space of the model. Second, although unstable, these cr
solutions tend to be minimally so, in the sense of posses
a single~or perhaps a few! unstable modes in perturbatio
theory. The Lyapunov exponents associated with th
modes can be immediately related to the exponents de
mined from empirically measured scaling laws.

In this paper we study the critical collapse of a massl
spin-12 Dirac field coupled to the general relativistic gravit
tional field, within the context of spherical symmetry. Since
single spinor field cannot be spherically symmetric, we co
sider the incoherent sum of two independent fields so that
superposition has no net spin-angular momentum. Thro
direct solution of the~111!-dimensional partial differentia
equations~PDEs! governing the dynamics, we demonstra
the existence of so-called type II behavior in the model,
which black hole formation turns on at infinitesimal mas
and the critical solution is self-similar. In the current in
stance, the self-similarity is similar to that previously seen
certain scalar field collapse models@3–5#, in that individual
components of the Dirac field are discretely self-similar, b
the overall geometry is continuously self-similar. As e
pected for a type II critical solution, we find a black ho
mass scaling law for solutions in the supercritical regime.
then directly construct the threshold solution using an app
priate self-similar ansatz for the geometry and matter fie
and demonstrate good agreement between it and the
solution.
©2003 The American Physical Society20-1
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II. FORMALISM

We consider a spherically symmetric system of spin1
2

fields. We use the Arnowitt-Deser-Misner~ADM ! formalism
~see@6# for details!, adopt units in whichG5c5\51, and
express the metric in polar-areal coordinates

ds252a~ t,r !2dt21a~ t,r !2dr21r 2du21r 2sin2udf2.
~1!

The coordinater is the areal radius defined as (A/4p)1/2,
where A is the proper area of a constant-r 2-sphere. The
functions a(t,r ) and a(t,r ) are to be determined using
subset of the 311 form of Einstein’s equations, as describ
in more detail in Sec. II C.

Before discussing how we separate the radial and ang
dependences in our system to form a spin singlet, we be
with a brief review of spinors in curved spacetime~see
@7–9#!. The evolution of a massless, spin-1

2 field coupled to
gravity is governed by the curved space Dirac equation,

gm¹mc50, ~2!

where c is a four component spinor. The curved spaceg
matrices,gm, satisfy

gmn
•15

1

2
$gm,gn% ~3!

where1 is the 434 identity matrix andgmn is the inverse
4-metric. In flat spacetime, we have

hab
•15

1

2
$g̃a,g̃b%. ~4!

A particular choice ofg̃a that satisfies Eq.~4! with our metric
signature (2,1,1,1) is

g̃05 i S 1 0

0 21D , g̃ j5 i S 0 s j

2s j 0 D . ~5!

Here, the indexj ranges over the spatial values 1,2,3 and
s j are the Pauli spin matrices, namely,

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~6!

The generalg matrices are related to their flat, Cartesi
counterparts by

gm5Va
mg̃a ~7!

where there is an implied summation over the values 0,1
of the ‘‘flat,’’ Latin index a, and theVa

m are known as vier-
bein.

The derivative operator in Eq.~2! is a spinor covariant
derivative with spinor affine connections,Gm . It acts in the
following way on spinors:
04402
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¹mc5S ]

]xm
2GmD c, ~8!

and ong matrices,

¹mgn5
]

]xm
gn1Gn

mlgl2Gmgn1gnGm . ~9!

However, it reduces to the usual covariant derivative wh
acting on tensors. We choose the spinor connections so

¹mgn50. ~10!

It can then be shown that theGm take the form

Gm52
1

8
@ g̃a,g̃b#Va

n¹mVbn . ~11!

We also note that when taking the covariant derivative of
vierbein,Va

m, only one Christoffel connection appears, sin
there is only one curved, tensor~Greek! index.

A. Representation

Having fixed the form of the spherically symmetric metr
~1!, we are ready to find a set ofg matrices that satisfy Eq
~3!. We choose as our representation

g t5
g̃0

a
, g r5

g̃3

a
,

gu5
g̃2

r
, gf5

g̃1

r sinu
. ~12!

The spinor connections are

G t5
1

2

a8

a
g̃0g̃3,

G r5
1

2

ȧ

a
g̃0g̃3,

Gu5
1

2

1

a
g̃3g̃2,

Gf5
1

2

sinu

a
g̃3g̃11

1

2
cosug̃2g̃1, ~13!

where dots and primes denote differentiation with respec
t andr, respectively. We note that we have complete freed
to choose any set ofgm we wish provided they satisfy Eq
~3!, and that our specific choice is made so that the Di
equation can be easily separated into radial and angular p

Before proceeding to this separation, we introduce a
ther simplification based on the fact that we are dealing w
a massless spin-1

2 field. Mathematically, such a field has
particular chirality ~circular polarization!; we adopt left-
handed chirality which is expressed as
0-2
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~12 ig5!c50. ~14!

Here,g5 is defined by

g5[g̃0g̃1g̃2g̃3. ~15!

Equation~14! can be satisfied by taking

c5S c1~ t,r ,u,f!

c2~ t,r ,u,f!

c1~ t,r ,u,f!

c2~ t,r ,u,f!

D . ~16!

Substitution of this form for the spinor into Eq.~2! yields
two identical sets of equations, each coupling the spi
components,c1 andc2. We of course only need to solve on
set of equations for these variables, so we are left with
equations instead of the original four.

We now perform a separation of variables on the spi
components by writing

S c1~ t,r ,u,f!

c2~ t,r ,u,f!
D 5

1

rAa~ t,r !
S F~ t,r !H1~u,f!

G~ t,r !H2~u,f!
D . ~17!

With this new choice of variables, and with our previous
chosen representation of thegm ~12!, the Dirac equation
separates into a part that depends on (t,r ) ~which we will
refer to as the ‘‘radial’’ part!, and a part that depends o
(u,f)

ir

a S Ḟ/G

Ġ/F
D 1

ir

2

a8

a2 S 2F/G

G/F D 1
ir

a S F8/G

G8/F
D 1

ir

2

a8

aa S F/G

2G/F D
1

i

sinu S H2,f /H1

H1,f /H2
D 1S H2,u /H1

2H1,u /H2
D

1
1

2
cotuS H2 /H1

2H1 /H2
D 50. ~18!

We note that although the factor (rAa)21 in Eq. ~17! is not
necessary for the separation of variables, it simplifies mat
by reducing the number of terms in the resulting equation.
particular importance is the elimination of a time derivati
of a(t,r ) that would make numerical solution of the resultin
system of PDEs somewhat more involved.

Considering our separated equation, we observe that s
any change inu or f cannot change the value of the (t,r )
part of Eq.~18!, the (u,f) part must be a constant. At thi
point, if our goal was to simply remove the angular depe
dence from the Dirac equation, we would be done. By
placing the angular part of Eq.~18! by a constant we would
be restricting ourselves to some spinor that is an eigenfu
tion of the angular operators in the Dirac equation. In f
only one of its eigenvalues, rather than the precise form
the angular eigenfunction, would need to be known. Ho
ever, our goal is not only to eliminate the angular dep
dence of our equation of motion, but also to have a ma
source that generates a spherically symmetric spacetime
04402
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individual spinor isnot a spherically symmetric object~it
always has a spin-angular momentum that breaks this s
metry! and therefore cannot by itself produce such a spa
time. What we require are multiple spinors where all t
individual spin-angular momenta counterbalance each o
so the system has no net spin. We will use two spinors,
simplicity, but any even number of the appropriate spin
could also be used. The spherically symmetric stress-en
tensor for the system,Tmn , is found from the sum of the
stress-energy tensors of the individual spinor fields@10#,

Tmn5Tmn
1 1Tmn

2 . ~19!

Evaluating the right-hand side of Eq.~19! doesrequire the
angular eigenfunctions that we will now compute.

B. Equations of motion

Setting the angular part of Eq.~18! equal to a constant,n,
gives

F2
i

sinu

]

]f
2

]

]u
2

1

2
cotuGH252nH1 , ~20!

F i

sinu

]

]f
2

]

]u
2

1

2
cotuGH15nH2 , ~21!

where we have multiplied the first and second component
the angular terms in Eq.~17! by 2H1 andH2, respectively,
so that the bracketed terms in the above expression are
raising and lowering operators,Z ~eth! and Zp ~ethbar!, re-
spectively. These operators act on the spin weighted sph
cal harmonics,sYlm ~see@11# and@12#! in the following way:

Z~sYlm!5A~ l 2s!~ l 1s11!~ s11Ylm! ~22!

Zp~ sYlm!52A~ l 1s!~ l 2s11!~ s21Ylm!. ~23!

Our functionsH1 andH2 have the spin weightss56 1
2

H1~u,f!5 1/2Ylm~u,f! ~24!

H2~u,f!5 21/2Ylm~u,f!. ~25!

To form a spin singlet, all we require is one spinor co
structed from 1/2Y(1/2)(1/2), 21/2Y(1/2)(1/2), and one spinor
from 1/2Y(1/2)(21/2) , 21/2Y(1/2)(21/2) . These spin weighted
spherical harmonics are

1/2Y(1/2)(1/2)5
1

A2p
eif/2sin

u

2
,

21/2Y(1/2)(1/2)5
1

A2p
eif/2cos

u

2
,

1/2Y(1/2)(21/2)5
1

A2p
e2 if/2cos

u

2
,

21/2Y(1/2)(21/2)52
1

A2p
e2 if/2sin

u

2
~26!
0-3
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and are solutions to Eqs.~20! and~21! for n521. Thus, for
our two spinor fields, we have

c15
1

2Ap

eif/2

rAa~ t,r ! S F~ t,r !sin~u/2!

G~ t,r !cos~u/2!

F~ t,r !sin~u/2!

G~ t,r !cos~u/2!

D ~27!

c25
1

2Ap

e2 if/2

rAa~ t,r ! S F~ t,r !cos~u/2!

2G~ t,r !sin~u/2!

F~ t,r !cos~u/2!

2G~ t,r !sin~u/2!

D .

~28!

From the above results, we can now derive the follow
radial equations of motion from Eq.~18!:

Ḟ152Aa

a
] r SAa

a
F1D 1

a

r
G2 ~29!

Ġ15Aa

a
] r SAa

a
G1D 1

a

r
F2 ~30!

Ḟ252Aa

a
] r SAa

a
F2D 2

a

r
G1 ~31!

Ġ25Aa

a
] r SAa

a
G2D 2

a

r
F1 ~32!

where we have written the complex functionsF(t,r ) and
G(t,r ) in terms of real functions viaF(t,r )[F1(t,r )
1 iF 2(t,r ) andG(t,r )[G1(t,r )1 iG2(t,r ).

C. Geometry

Although the spinors~27! and ~28! both yield the same
radial equations of motion~29!–~32!, they have different
stress-energy tensors. We calculate the stress tensor for
field individually using

Tmn52
1

2
@c̄g (m¹n)c2~¹(mc̄!gn)c# ~33!

where the Dirac adjoint ofc,c̄ is defined by

c̄5c†A.

Here, A is the so-called Hermitizing matrix, needed in th
computation of real-valued expressions~such as the curren
density or, in this case, the stress-energy tensor! from the
complex-valued spinors. It is to be chosen so that bothA and
iAgm are Hermitian, and we takeA52 i g̃0.

ComputingTmn for each of the two spinors~27! and~28!
and summing the results yields the following non-vanish
components of the spherically symmetric stress-ene
tensor:
04402
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Ttt5
a

2pr 2a
~ Ḟ1F22F1Ḟ21Ġ1G22G1Ġ2!

Ttr5
1

4pr 2 FF1Ḟ22Ḟ1F21Ġ1G22G1Ġ2

1
a

a
~F18F22F1F281G18G22G1G28!G

Trr 5
1

2pr 2
~F1F282F18F21G18G22G1G28!

Tuu5
1

2pra
~F1G11F2G2!

Tff5
sin2u

2pra
~F1G11F2G2!. ~34!

Contracting the stress-energy tensor gives

Tm
m50, ~35!

which is expected since the massless Dirac system is con
mally invariant. Having computed a stress-energy tensor
will generate a spherically symmetric spacetime, we can n
write down the Einstein equations that will fixa(t,r ) and
a(t,r ).

Due to our choice of coordinates, the Hamiltonian co
straint and the slicing condition comprise a sufficient sub
of the Einstein equations to be used in our numerical so
tion. The Hamiltonian constraint is

a8

a
1

a221

2r
5

2

r 2
~2aF1G112aF2G21rF 1F282rF 18F2

1rG18G22rG1G28! ~36!

and is treated as an equation fora(t,r ). We note that the
momentum constraint,

ȧ5
2a

r
~F18F22F1F281G18G22G1G28! ~37!

also yields an equation fora ~an evolution equation! that we
use as a means to check the consistency of our equat
both at the analytic level, and during numerical evolutio
We note that in both Eqs.~36! and ~37!, time derivatives of
F ’s and G’s have been eliminated using the equations
motion ~29!–~32!.

The slicing condition, which fixesa(t,r ), is derived from
the evolution equation forKu

u and the fact that for polar
slicing we have

K5Ki
i5Kr

r12Ku
u5Kr

r

sinceKu
u(t,r )50. To maintainKu

u(t,r )50 for all time, we
imposeK̇u

u(t,r )50, which yields
0-4
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a8

a
2

a221

2r
5

2

r
~F1F282F18F21G18G22G1G28!. ~38!

III. NUMERICS AND RESULTS

The above equations of motion were solved using
Crank-Nicholson update scheme, standardO(h2) spatial de-
rivatives, and Berger-Oliger style adaptive mesh refinem
~see@13#! on the computational domain, 0<r<r max, t>0.
To achieve stability, high frequency modes were damped
ing Kreiss-Oliger dissipation@14#. At r 50, the following
regularity conditions were enforced:

F1~ t,0!50

G1~ t,0!50

F2~ t,0!50

G2~ t,0!50. ~39!

We also have

a~ t,0!51, ~40!

which follows from the demand of regularity~local flatness!
at r 50. At each time step, the Hamiltonian constraint
integrated outwards fromr 50 using a pointwise Newton
method. The slicing condition~38! is solved subject to the
outer boundary conditiona(t,r max)51/a(t,r max), so that,
provided that all of the matter remains within the compu
tional domain, coordinate time and proper time coincide
spatial infinity. We note that the more natural normalizati
choice, from the point of view of critical collapse,
a(t,0)51. However, computationally, this choice would v
tiate our ability to compute with a fixed Courant facto
Dt/Dr , particularly in the near-critical regime, and wou
thus unnecessarily complicate the numerical solution.

At r 5r max, outgoing wave conditions are imposed on t
matter fields. We derive these approximate conditions by
taking the limit r→` of Eqs.~29!–~32! which gives

] tF152] rF1 ,

] tG15] rG1 ,

] tF252] rF2 ,

] tG25] rG2 . ~41!

Taking the time derivative of Eq.~41! yields

] ttF15] rr F1 ,

] ttG15] rr G1 ,

] ttF25] rr F2 ,

] ttG25] rr G2 ~42!

where the time derivatives that appear on the right-hand
are replaced using Eqs.~41!. Each component thus satisfie
an uncoupled Klein-Gordon equation. Appropriate outgo
wave conditions are therefore
04402
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] tF152] rF1 ,

] tG152] rG1 ,

] tF252] rF2 ,

] tG252] rG2 . ~43!

The results presented below were generated from
study of three distinct, parametrized families of initial da
which we refer to as Gaussians, spatial derivatives of Ga
sians, and kink–anti-kink. In all cases, the initial data s
were such that the pulses were essentially ingoing with p
tive energy att50. The ingoing wave condition we use
the one derived from the approximation~42!, namely,

] tF15] rF1 ,

] tG15] rG1 ,

] tF25] rF2 ,

] tG25] rG2 . ~44!

In order to be initially ingoing, the data must satisfy Eq.~44!
while being consistent with the equations of motion, E
~29!–~32!. This leads to the requirementF15F250. The
specific forms used are as follows.

Gaussian:

F150

F250

G15pe2(r 2r 0)2/~4d2)

G25pe2(r 2r 01d)2/~4d2!.

Derivative of Gaussian:

F150

F250

G15p„~r 02r !/~2d2!…e2(r 2r 0)2/~4d2!

G25p„~r 02r 2d!/~2d2!…e2(r 2r 01d)2/~4d2!.

Kink–anti-kink:

F150

F250

G15~p/2!$tanh@~r 2r 0!/d#2tanh@~r 22r 0!/d#%

G25~p/2!$tanh@~r 2r 01d!/d#2tanh@~r 22r 01d!/d#%.

In each case the family parameter,p, can be used to con
trol whether the mass-energy of the system collapses to f
a black hole or implodes through the center (r 50) and dis-
perses to spatial infinity. As discussed in the Introducti
and in a process now familiar from many other studies
critical collapse, asp is tuned to the black hole thresholdp
0-5
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5p!, the single unstable mode associated with the crit
solution is ‘‘tuned away’’ to reveal the critical solutio
per se.

In the current case, we find strong indications from su
studies that the critical solution for the spherically symme
EMD ~Einstein-massless-Dirac! system describes a continu
ously self-similar~CSS! geometry. Typical evidence for thi
claim is shown in Fig. 1, which displays near-critical evol
tion of the scale invariant quantity,a. In contrast, the Dirac
fields themselves appear to be discretely self-similar~DSS!
~see Fig. 2!.

As usual, associated with the type II critical solution is
scaling law for the black hole mass near criticality

Mbh}up2p!ug, ~45!

and, as expected, we find strong evidence that the sca
exponent,g, is universal in that it is independent of th
family of initial data used to generate the critical solutio
The values ofg computed for the different families are sum
marized in Table I, and we note that there is uncertainty
the third digit of the quoted values.

The data shown in Fig. 3 demonstrate that the black h
mass does follow a power law given by Eq.~45!. It should
also be noted that this data apparently does not osci
about the fit line, as is expected, given that the geometr
continuously self-similar.~Examples of oscillating data fo
DSS geometries can be found in@15# and@16#.! The lack of
regular oscillations about the fit line for the current case
shown more clearly in Fig. 4.

In order to check the validity of our results, the unigr
version of the evolution code was convergence tested

FIG. 1. Evolution of the metric variable,a(t,r ), for a slightly
supercritical evolution, overlayed with the solution to the ODE
The frames are output logarithmically in central proper time,
measured fromt!. The function’s peak reaches a value of appro
mately 1.6 and remains there as the solution continuously rep
itself on ever smaller scales.
04402
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varying the mesh spacing,h, and verifying that the error was
O(h2), as expected. The unigrid code also conserves
ADM mass toO(h2) throughout the evolution, as does th
adaptive code. The outgoing wave boundary conditio
implemented atr max work well, and produce no significan
reflections. More importantly, we were careful to chooser max
sufficiently large so that any reflections would not have tim
to propagate in and contaminate the critical solution.

IV. SELF-SIMILAR ANSATZ

Given the numerical evidence suggesting the existenc
a self-similar solution at the black hole threshold, we p
ceed to anab initio computation of the critical solution base
on the application of a self-similar ansatz to our system. T
development here closely parallels the work done
Hirschmann and Eardley@17#, who considered the case of
massless, complex scalar field.

.
s

ts

FIG. 2. Comparison ofF1(t,r ) for a slightly supercritical PDE
evolution with the solution found from the self-similar ansatz. As
Fig. 1, the frames are output logarithmically in central proper tim
measured fromt!. The function oscillates and discretely repea
itself on smaller and smaller scales. The particular combination
F1(t,r )/Ar is the natural scaling variable as can be deduced
noting that the Dirac fields have units of (length)1/2, and as shown
explicitly by thet dependence of Eqs.~53! and ~54!. The echoing
exponent,D;1.34, calculated viaD52p/v, where v is com-
puted from the ODE solution, is also shown.

TABLE I. Scaling exponent,g, associated with the three fam
lies of initial data described in the text.

Family g

Gaussian 0.258
Derivative of Gaussian 0.259
Kink–anti-kink 0.257
0-6
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By definition, a self-similar spacetime has a homothe
Killing vector, j, that obeys

Ljgmn52gmn ~46!

where the factor 2 is simply a matter of convention. We w
to define coordinates (t,x) that are adapted to this sel
similar symmetry. Specifically witht adapted to the vecto
field jm, Eq. ~46! can be written as

]

]t
gmn~t,x!52gmn~t,x!. ~47!

Performing a separation of variables on the metric tensor
then solving Eq.~47! for the t-dependent part yields

gmn~t,x!5e2tg̃mn~x!, ~48!

whereg̃mn(x) is the part of the metric that depends only onx.
The original coordinates (t,r ) are related to (t,x) by

t5 lnUt!2t

L U, x5
r

t!2t
. ~49!

The equations of interest will take the same form for a
value of the constant factor,L, and without loss of generality
we subsequently takeL51. The timet! is the value of co-
ordinate time to which the self-similar solution asympto
as it propagates down to arbitrarily small scales, and, fr

FIG. 3. Plot of the observed mass scaling near criticality for
case of the Gaussian family. The measured scaling exponentg
50.258, with uncertainty in the third digit. As we tune arbitrari
close to the critical parameter,p!, black holes of arbitrarily small
masses are formed, indicative of a type II critical solution. T
small irregularities visible in the plot are shown and discussed
more detail in Fig. 4.
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the point of view of critical evolution, is a natural tempor
origin for use in describing the dynamics. Further, as m
tioned previously, in analyzing self-similar critical solution
it is natural to adopt a parametrization of thet5const sur-
faces, such thatt coincides with central proper time. We thu
adopt such a normalization, and additionally adjustt so that
t!50.

In these new coordinates, the metric~1! becomes

ds25e2t$@2a~x!21x2a~x!2#dt212xa~x!2dtdx

1a~x!2dx21x2du21x2sin2udf2%. ~50!

We note that thet coordinate is timelike, and, as can b
verified by comparing the right-hand sides of Eqs.~48! and
~50!, that the functionsa anda are functions of the spacelik
coordinate,x, alone.

In (t,x) coordinates, the spinors~27! and ~28! become

c15
e2t

2Ap

eif/2

xAa~x! S F~t,x!sin~u/2!

G~t,x!cos~u/2!

F~t,x!sin~u/2!

G~t,x!cos~u/2!

D ~51!

e

n

FIG. 4. Plot of the residuals of the data shown in Fig. 3 w
respect to the computed linear fit. The absence of regular osc
tions indicates that the geometry is not discretely self-similar. Th
are, however, features in the plot, notably the ‘‘spikes,’’ that can
explained as follows. The matter fields have a discretely self-sim
nature, but combine to produce a continuously self-similar geo
etry. Truncation error effects, combined with the fact that our de
mination of black hole mass is not precise, result in a resid
imprint of the DSS nature of the Dirac fields in the plot. In fact t
spikes in this plot occur as the amplitude of the Dirac fields re
an extremum near the black hole, periodically in lnup2p!u.
0-7
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c25
e2t

2Ap

e2 if/2

xAa~x! S F~t,x!cos~u/2!

2G~t,x!sin~u/2!

F~t,x!cos~u/2!

2G~t,x!sin~u/2!

D , ~52!

where these expressions were found by transforming
(t,r ) parts of Eqs.~27! and ~28! as scalars.

In order to find spinor components that are only functio
of x, we require knowledge of thet dependence of our field
quantities. This is determined by performing the coordin
transformations on the equations of motion~29!–~32! and
the geometric equations~36! and~38!, and then ascertaining
what t dependence is needed inF andG to produce a set o
t independent ODEs. A suitable ansatz is

F~t,x!5et/2eivtx@P1~x!1 iP2~x!# ~53!

G~t,x!5et/2eivtx@Q1~x!1 iQ2~x!#, ~54!

where the exp(ivt) terms reflect the fact that, as the PD
solutions have revealed, we expect the matter fields to
hibit discrete self-similarity. Note thatv as defined here cor
responds to 2p/D ~see@17#! whereD is the echoing expo-
nent originally defined in@1#. Additionally, the extra factor of
x is introduced to cast the resulting equations in a more c
venient form. Inserting this ansatz into Eqs.~29!–~32!, ~36!
and ~38!, we find

P185
1

x1a/a F2
1

2
P12vP22

1

2

a

a S a211

x D P1

12aP1~P1Q11P2Q2!1
a

x
Q2G ~55!

P285
1

x1a/a F2
1

2
P21vP12

1

2

a

a S a211

x D P2

12aP2~P1Q11P2Q2!2
a

x
Q1G ~56!

Q185
1

x2a/a F2
1

2
Q12vQ21

1

2

a

a S a211

x DQ1

22aQ1~P1Q11P2Q2!1
a

x
P2G ~57!

Q285
1

x2a/a F2
1

2
Q21vQ11

1

2

a

a S a211

x DQ2

22aQ2~P1Q11P2Q2!2
a

x
P1G ~58!

a8

a
5

12a2

2x
12x~P1P282P18P21Q18Q22Q1Q28!

14a~P1Q11P2Q2! ~59!
04402
e

s

e

x-

n-

a8

a
5

a221

2x
12x~P1P282P18P21Q18Q22Q1Q28! ~60!

where primes denote derivatives with respect tox. We note
that we can cast this system into a canonical form suita
for numerical integration, by using Eqs.~55!–~58! to elimi-
nate the derivatives ofP andQ that appear in the right-han
side of the equations fora ~59! anda ~60!.

V. NUMERICAL SOLUTION OF THE
SELF-SIMILAR ODEs

Having rewritten our equations in a coordinate syst
adapted to self-similar symmetry, we can now solve the
sulting ODEs to determine what we expect will be the C
critical solution seen at the black hole threshold in the EM
model. Following Hirschmann and Eardley@17#, we use a
multi-parameter shooting method to integrate the equati
subject to regularity and analyticity conditions.

We first observe that the system~55!–~60! has singulari-
ties atx50 and atx5x25a/a ~the similarity horizon!. Of
the infinitely many solutions to the ODEs, we seek one t
is analytic at both of these points, as the CSS solution fo
via solution of the PDEs has this property. Our unknow
problem parameters~‘‘shooting’’ parameters! include the val-
ues of some of the fields at the origin, the value ofv appear-
ing in the ansatz~53!,~54!, as well as the value ofx2 ~the
position of the similarity horizon!. Following Eardley and
Hirschmann we shoot outwards fromx50 and inwards from
x25a/a, comparing solutions at some intermediate pointx1.
This process is automated by starting from some ini
guess, then using Newton’s method to determine the sh
ing parameters for subsequent iterations. In the Newton
eration, we use the square of the differences of the value
the functions and their derivatives atx1 ~computed from the
inwards and outwards integrations! as the goodness-of-fit in
dicator, which is driven to 0 as the iteration converges~in our
solution it is driven to a tolerance of order 10214).

At x50 we have the following:

P1~0!50

P2~0!52Q0

Q1~0!5Q0

Q2~0!50

a~0!51

a~0!51.

Regularity at the origin givesP15Q2 and P252Q1. We
use the globalU(1) invariance of our system~55!–~60! to
setP150. This leavesQ0 as a shooting parameter.

As noted previously, the location of the similarity horizo
~outer boundary of the integration domain! x2 is itself a
shooting parameter, and is the valuex where a(x)/a(x)
5x. In the limit x→x2 we have the following:
0-8
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P1~x2!5
1

2a2
~24aQ2

3v24aQ1
2Q2v12avQ11Q2a3!

P2~x2!5
1

2a2
~4aQ1Q2

2v14aQ1
3v12avQ22Q1a3!

Q1~x2!5Q1

Q2~x2!5Q2

a~x2!5x2a

a~x2!5a.

The shooting parameters at the outer boundary arex2 ,
Q1(x2), Q2(x2), anda(x2). The final shooting parameter i
the frequency,v, for a total of six undetermined paramete

We find an approximate solution given by

x255.674023060.0000004

v54.69883960.000001

Q1~0!50.74791262360.000000006

Q1~x2!50.0015134153260.00000000007

Q2~x2!50.0110326608360.00000000005

a~x2!51.118363160460.0000000009,

where the quoted uncertainty was estimated by solving
system for many different values ofx1 and observing the
changes in the shooting parameters.

VI. COMPARISON OF PDE ÕODE SOLUTIONS

In this section we compare the solution computed fr
the self-similar ansatz, as just described, to the near-cri
solutions calculated from the full PDEs in the (t,r ) coordi-
nate system. The ODE solution is the theoretically predic
self-similar solution while the PDE solution can be thoug
of as collected data. For this comparison, we used data f
the Gaussian family. The idea is to treat the ODE solution
the model function and fit it to the PDE data. We perform t
fit ‘‘simultaneously’’ at all times by working with the func
tions as two-dimensional solution surfaces int and r. This
process is automated by starting from some initial guess
the fitting parameters, then using Newton’s method to de
mine these parameters for subsequent iterations. In the N
ton iteration, we use the least squares of the two solutio

(
j 51

N

~uj
ODE2uj

PDE!2 ~61!

as the goodness-of-fit indicator, which is driven towards 0
the iteration converges. When this happens, we compute
l 2-norm of the difference of the two solutions
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N (
j 51

N

~uj
ODE2uj

PDE!2D 1/2

~62!

as an error estimate. In computing both the least squares
the l 2-norm, the solution to the ODEs and the solution to t
PDEs are treated asN-element vectors whereN is the total
number of grid points on the two-dimensional grid int andr.

For the case ofa(t,r ), we uset! as the fitting parameter
Once t! is found, thel 2 norm of the difference of the two
solutions is 0.00159. We display the results of this fitti
process as a sequence of snapshots in time in Fig. 1.

Comparing the Dirac fields is a little more involved sin
there are a number of unspecified parameters and phase
must be determined. From the ansatz~53!,~54! we have

F1~ t,r !5
rA1

~ t!2t !1/2
$P1~ t,r !cos@v ln~ t!2t !1f1#

2P2~ t,r !sin@v ln~ t!2t !1f1!%

F2~ t,r !5
rA2

~ t!2t !1/2
$P1~ t,r !sin@v ln~ t!2t !1f2#

1P2~ t,r !cos@v ln~ t!2t !1f2#%

G1~ t,r !5
rA2

~ t!2t !1/2
$Q1~ t,r !cos@v ln~ t!2t !1f2#

2Q2~ t,r !sin@v ln~ t!2t !1f2#%

G2~ t,r !5
rA1

~ t!2t !1/2
$Q1~ t,r !sin@v ln~ t!2t !1f1#

1Q2~ t,r !cos@v ln~ t!2t !1f1#%. ~63!

We note thatF1 andG2 have the same phase,f1, while the
pair F2 and G1 have the same phasef2. This is expected
from the coupling of Eqs.~29!–~32!. The equations of mo-
tion may be invariant under changes of these phases,
Eqs.~36! and~38! are not. In order to have the entire syste
be invariant under changes in the phases, we must have

A1A25
1

cos~f12f2!
.

We see that the amplitudes of the fields must change on
the relative phase,f12f2, changes. We merely note th
fact for completeness but do not use it to reduce the num
of fit parameters.

The comparison of the fields as found from the PDEs a
ODEs is carried out in much the same way as it is done
the metric variable,a(t,r ). The goodness-of-fit is again de
fined to be the least squares of the two solutions but
time, the parametert! is kept fixed and the phasef j and
amplitudeAj are used as fitting parameters (j 51,2). Thel 2
norm of the difference of the solutions forF1 is 0.000195.
The l 2 norm of the difference of the solutions forG1 is
0-9
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0.00024. Figure 2 illustrates the results of this comparison
the ODE and PDE solutions forF1.

VII. CONCLUSIONS

We have investigated the spherically symmetric Einste
massless-Dirac system at the threshold of black hole for
tion. We have found a type II critical solution, and an as
ciated mass scaling law with a universal exponentg;0.26.
The solution exhibits continuous self-similarity in the ge
metric variables and discrete self-similarity in the comp
nents of the Dirac fields, the latter characterized by an ec
ing exponentD;1.34. Using a self-similar ansatz, we the
reduced the equations of motion governing the model to a
of ODEs. While there are infinitely many solutions to the
ODEs, we find only one which is regular at both of i
boundaries. This solution agrees with the critical solut
obtained from the original PDEs, and this agreement a
m

d

d
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provides additional verification that the critical solution
the PDEs is correct.
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