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We solve the coupled Einstein-Vlasov system in spherical symmetry using direct numerical integration
of the Vlasov equation in phase space. Focusing on the case of massless particles we study critical
phenomena in the model, finding strong evidence for generic type I behavior at the black hole threshold that
parallels what has previously been observed in the massive sector. For differing families of initial data we
find distinct critical solutions, so there is no universality of the critical configuration itself. However we find
indications of at least a weak universality in the lifetime scaling exponent, which is yet to be understood.
Additionally, we clarify the role that angular momentum plays in the critical behavior in the massless case.
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I. INTRODUCTION

In this paper we report results from an investigation of
critical collapse in the spherically symmetric Einstein-
Vlasov system, which describes the interaction of colli-
sionless matter with the general relativistic gravitational
field. After more than two decades of study, the field of
black hole critical phenomena has matured and although
we present a brief overview below, we assume that the
reader is at least somewhat familiar with the key concepts
and results in the subject: those who are not can consult
comprehensive review articles [1,2].
We recall that critical phenomena can be identified in a

given model by considering dynamical evolution of initial
data that is characterized by a parameter, p, such that for
sufficiently small p the gravitational interaction remains
weak and the matter (or gravitational energy in the vacuum
case) typically disperses, while for sufficiently large p a
black hole forms. By tuning p between these limits we
isolate a critical parameter valuep⋆ that generates a solution
representing the threshold of black hole formation for the
particular family of initial data. The behavior that arises in
the near-critical regime p → p⋆ constitutes what is meant
by black hole critical phenomena. Depending on the
particulars of the model, these phenomena will comprise
one or more of the following: (1) existence of a special
solution at criticality with possible universality with respect
to the parametrization of the initial data, (2) symmetry of the
critical solution beyond any imposed in the model itself and
(3) scaling of dimensionful physical quantities as a function
of jp − p⋆j, with scaling exponents which may also be
universal in the sense given above. These properties can
largely be explained by observing that a critical solution has
a single unstable mode in perturbation theory, whose
associated eigenvalue (Lyapunov exponent) can be immedi-
ately related to the empirically measured scaling exponent.

For the most part, the critical transitions that have been
observed to date fall into two classes that are dubbed type I
and type II in analogy with first and second-order phase
transitions, respectively, in statistical mechanical systems,
and where the behavior of the black hole mass plays the
role of an order parameter. A type I transition is charac-
terized by a static or periodic critical solution, with a
scaling law

τ ¼ −σ ln jp − p⋆j: ð1Þ
Here, τ is the lifetime of the near-critical configuration—
the amount of time that the dynamical configuration is
closely approximated by the precisely critical solution—
and the scaling exponent, σ, is the reciprocal of the
Lyapunov exponent, λ, associated with the solution’s single
unstable mode. In this case the black hole mass is finite at
threshold since when the marginally stable static or periodic
solution collapses, most of its mass will end up inside the
horizon.
Previous studies [3–6] have strongly suggested that the

critical behavior in the Einstein-Vlasov model is generi-
cally type I and our current results bear this out. So far as
we know, type II collapse, where the critical solution is self
similar and the black hole mass is infinitesimal at threshold,
is not relevant to the model and will not be considered here.
In the Einstein-Vlasov system the matter content of

spacetime is specified by a density function fðt; xi; pjÞ in
phase space whose evolution is given by the Vlasov
equation, while the geometry is governed by the Einstein
equations. Numerical studies of the model have a long
history, dating back to the work by Shapiro and Teukolsky,
both in spherical symmetry [7–9] and axisymmetry [10,11].
Investigation of critical collapse in the spherically symmet-
ric sector was initiated by Rein et al. [3] who observed finite
black hole masses at threshold for all families considered.
Subsequent work by Olabarrieta and Choptuik [4]
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corroborated these findings and additionally provided evi-
dence that the threshold solutions were static with lifetime
scaling of the form (1). Moreover, there were some indica-
tions in this latter study that there might be a universal
critical solution and associated scaling exponent.
More recently, Andréasson and Rein have carried out a

comprehensive study of precisely static solutions of the
model, concentrating on their stability both generally and in
the context of critical phenomena [6,12]. Many of their
observations and results are pertinent to our current inves-
tigation. First, they point out that static solutions can be
constructed via a specific ansatz for the distribution
function that is discussed in Sec. III. Second, using this
ansatz they construct parametrized sequences of static
solutions, and, following astrophysical practice, character-
ize the solutions by their central redshifts and binding
energies. Third, they present strong evidence that a maxi-
mum in the binding energy along a sequence signals an
onset of instability and that at least some of the configu-
rations that lie along an unstable branch can act as type I
solutions in the critical collapse context. This immediately
establishes that there cannot be universality in the model.
Fourth, and finally, they show that dispersal is not the only
stable end state of subcritical collapse, but that relaxation to
a bound state is also possible, contingent on the sign of the
binding energy. Overall, the picture of critical behavior
that emerges very much parallels that which is observed for
type I transitions in the perfect-fluid and massive-scalar
cases [13–20].
All of the work reviewed above used a nonzero particle

mass. However, the massless case can also be considered
and the current research is largely aimed at exploration of
that sector. Additionally, we attempt to address some issues
that remained open following Andréasson and Rein’s work,
including whether there is any explanation for the indica-
tions of universality seen in [4]. We note that for the
massless model Martin-Garcia and Gundlach [21] consid-
ered the possibility of the existence of one-mode unstable
self similar configurations that could serve as type II critical
solutions. Interestingly, they concluded that since there are
infinitely many matter configurations that give rise to any
given static spacetime, any unstable solution must have an
infinite number of unstable modes. Their argument also
applies to the static case, which then suggests that there
should be no type I behavior in the model either.
In spherical symmetry the Vlasov equation is a partial

differential equation (PDE) in time and three phase-space
dimensions. Thus, direct numerical solution is costly and
this fact motivated the use of particle-based algorithms in
all previous studies excepting [5]. However, a key defi-
ciency of particle approaches is that the results develop a
stochastic character on a short time scale. This leads to poor
convergence properties relative to a direct method, namely
an error that is only Oð1= ffiffiffiffi

N
p Þ, where N is the number of

particles. With the substantial increase in computational

resources over time, direct solution techniques have
become feasible and about a decade ago Stevenson [5]
implemented a finite-volume solver for the Vlasov PDE for
the case that all particles have the same angular momentum.
The code that we have developed is largely a continuation
of his effort and produces results that have well-behaved
convergence properties as a function of the mesh spacing.
Our numerical studies are based on two types of initial

data. The first, which we term generic, is characterized by a
relatively arbitrary functional form for fð0; xi; pjÞ. The
second, which we call near static, is based on perturbations
about some precisely static solution that is constructed from
the ansatz described in Sec. III. We perform experiments
using initial conditions of the first type for both massless
and massive particles, but restrict attention to the massless
sector for our near-static studies. Aiming to unearth as
much phenomenology as possible, as well as to explore the
issue of universality, we have attempted to broadly survey
the possibilities for the specific form of the initial distri-
bution function in all three sets of experiments.
The remainder of the paper is structured as follows. The

next section describes the equations of motion for the
model while Sec. III discusses the construction of static
solutions from the ansatz mentioned previously. Section IV
details our numerical approach, including code validation.
Section V is devoted to the main results from our study and
we conclude with a summary and discussion in Sec. VI.
We have adopted units in which G ¼ c ¼ 1.

II. EQUATIONS OF MOTION

A configuration of a system of particles can be described
by the phase-space density, fðt; xi; pjÞ, also known as the
distribution function, where xi and pj are the particles’
spatial positions and 3-momenta, respectively. In the
Einstein-Vlasov system particles interact only through
gravity. Consequently, the particles move on geodesics
of the spacetime along which the density function is
conserved:

Dfðt; xj; pjÞ
dτ

¼ 0: ð2Þ

Here, τ is the proper time of the particle and D=dτ is the
Liouville operator:

D
dτ

≡ dxμ

dτ
∂
∂xμ þ

dpj

dτ
∂
∂pj

: ð3Þ

Using the geodesic equation

vμ∂μpν − vμΓλ
μνpλ ¼ 0; ð4Þ

where vμ is the particle 4-velocity, the Vlasov equation can
be written as
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pμ ∂f
∂xμ þ pνpλΓλ

νj
∂f
∂pj

¼ 0: ð5Þ

The energy-momentum tensor of the system is given by
integrating over the momentum of the particles:

Tμνðt; xiÞ ¼
Z

pμpν

m
fðt; xi; pjÞdVpj

; ð6Þ

where m is the particle mass. Equations (5) and (6),
together with Einstein’s equations

Gμν ¼ 8πTμν; ð7Þ
govern the evolution of the Einstein-Vlasov system. These
equations, restricted to spherical symmetry by requiring
fðt; xi; pjÞ ¼ fðt; RðxiÞ; RðpjÞÞ, R ∈ SOð3Þ is the system
we study numerically.

A. Coordinate choice and equations
for metric components

We adopt polar-areal coordinates ðt; rÞ in which the
spherically symmetric metric takes the form

ds2 ¼ −αðt; rÞ2dt2 þ aðt; rÞ2dr2 þ r2dθ2 þ r2sin2θdϕ2:

ð8Þ

The radial metric function aðt; rÞ can be determined from
either the Hamiltonian constraint,

a0

a
¼ 1 − a2

2r
−
ra2

2
8πTt

t; ð9Þ

where 0 ≡ ∂=∂r, or from the momentum constraint,

_a
a
¼ ra2

2
8πTr

t; ð10Þ

with : ≡ ∂=∂t. The lapse function αðt; rÞ is fixed by the
polar slicing condition

α0

α
¼ a2 − 1

2r
þ ra2

2
8πTr

r: ð11Þ

Equation (9) is solved subject to the boundary condition,

aðt; 0Þ ¼ 1; ð12Þ

which follows from the demand of elementary flatness at
the origin. For the lapse we set

αðt; rmaxÞ ¼
1

aðt; rmaxÞ
; ð13Þ

where rmax is the location of the outer boundary of the
computational domain, so that coordinate and proper time
coincide at infinity.

The θθ component of Einstein’s equation yields an
additional redundant equation, and we use the degree
to which it is satisfied as a check of our numerical
results.

B. The energy-momentum tensor

As noted above, for a given distribution function,
fðt; xi; pjÞ, the stress tensor is computed from the momen-
tum-space integral (6). With our choice of metric the
volume element is given by

dVpj
¼ md3pj

p0
ffiffiffiffiffijgjp ¼ mdprdpθdpϕ

p0αar2 sin θ
: ð14Þ

To impose spherical symmetry we require the distribution
function to be uniform in all possible angular directions.
This condition can be conveniently implemented by trans-
forming to variables l2 and ψ given by

l2 ≡ p2
θ þ

p2
ϕ

sin2θ
; ð15Þ

ψ ≡ tan−1
�
pθ sin θ
pϕ

�
; ð16Þ

where l is the angular momentum of the particles.
Spherical symmetry is then achieved by demanding that
fðt; xi; pr; l2; ψÞ ≡ fðt; r; θ; ϕ; pr; l2; ψÞ ¼ fðt; r; pr; l2Þ.
The volume element in the new variables is

dVpj
¼ mdprdl2dψ

2ap̄tr2
; ð17Þ

where

p̄t ≡ αp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

r

a2
þ l2

r2

s
: ð18Þ

Integrating over ψ, the components of the energy-
momentum tensor are given by

Tt
t ¼

−π
ar2

ZZ
p̄tfdprdl2; ð19Þ

Tr
r ¼

π

a3r2

ZZ
p2
r

p̄t fdprdl2; ð20Þ

Tr
t ¼

−πα
a3r2

ZZ
prfdprdl2; ð21Þ

Tθ
θ ¼

−π
2ar4

ZZ
l2f
p̄t dprdl2: ð22Þ
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C. Evolution of the distribution function

Having imposed spherical symmetry the Vlasov equa-
tion (5) can be written as

pt ∂f
∂t þ pr ∂f

∂r þ
�
α0p2

t

α3
þ a0p2

r

a3pt þ
l2

r3

� ∂f
∂pr

¼ 0: ð23Þ

By defining

g≡ αpr

α2p̄t ¼
∂H
∂pr

; ð24Þ

h≡ −α0p̄t þ αa0p2
r

a3p̄t þ αl2

r3p̄t ¼ −
∂H
∂r ; ð25Þ

where H is the Hamiltonian,

H ≡ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðpr=aÞ2 þ ðl=rÞ2

q
; ð26Þ

Eq. (23) can be cast as a conservation law:

∂f
∂t − fH; fg ¼ ∂f

∂t þ
∂ðgfÞ
∂r þ ∂ðhfÞ

∂pr
¼ 0: ð27Þ

This form of the Vlasov equation facilitates the use of
finite-volume techniques in our numerical treatment of the
problem.

III. STATIC SOLUTIONS

Spherically symmetric static solutions of the Vlasov
equation can be generated by simply requiring that the
distribution function at the initial time take the form
fð0; r; pr; l2Þ ¼ ΦðE; lÞ, where

E≡ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðpr=aÞ2 þ ðl=rÞ2

q
ð28Þ

is the energy of the particles and, again, l is the angular
momentum parameter [22]. Indeed, since E and l are both
conserved along particle geodesics in spherical symmetry,
any distribution function of this form remains unchanged as
the particles move and the Vlasov equation is automatically
satisfied.
Explicit construction of the static spacetime resulting

from a given choice of ΦðE; lÞ requires that the metric
functions α and a be determined self-consistently. To that
end we can write (9) and (11) as

−2r∂r ln aþ 1

a2
− 1 ¼ 8πr2Tt

tðr; α;ΦÞ; ð29Þ

2r∂r ln αþ 1

a2
− 1 ¼ 8πr2Tr

rðr; α;ΦÞ; ð30Þ

where

Tt
tðr; α;ΦÞ ¼ −

π

r2

ZZ
p̄tΦðEðα; r; w; lÞ; lÞdwdl2; ð31Þ

Tr
rðr; α;ΦÞ ¼

π

r2

ZZ
w2

p̄t ΦðEðα; r; w; lÞ; lÞdwdl2; ð32Þ

w ¼ pr

a
; ð33Þ

p̄t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ w2 þ ðl=rÞ2

q
; ð34Þ

E ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ w2 þ ðl=rÞ2

q
: ð35Þ

Given a functional form for ΦðE; lÞ, we can integrate the
equations for αðrÞ and aðrÞ from r ¼ 0 outward, subject to
the boundary conditions (12)–(13). Physically, we also
want the particle distribution resulting from a given ΦðE; lÞ
to have compact support in phase space and finite total
mass. As shown in [23], these conditions can be satisfied by
introducing a maximum (cutoff) energy, E0, so that

ΦðE; lÞ ¼ ϕðE=E0ÞΘðE0 − EÞFðlÞ; ð36Þ
where Θ is the unit step function. In Sec. V B we construct
static solutions based on this ansatz and then investigate
their relationship to critical behavior in the model.

IV. NUMERICAL TECHNIQUES

In this section we summarize our numerical approach for
constructing approximate solutions of the equations of
motion and the various tests we have performed to establish
the correctness and accuracy of our implementation.

A. Evolution scheme

As previously mentioned, we treat the matter evolution
by a direct discretization of the multidimensional Vlasov
equation. Relative to the particle methods adopted in most
previous studies of the Einstein-Vlasov system, this has the
advantage that our numerical solutions have superior
convergence properties. In particular, in contrast to the
particle approach, there is no stochastic component of the
solution error. This in turn leads to improved confidence in
our identification of key aspects of the critical phenomena
exhibited in the model, including (1) evidence that the
threshold solutions are static and (2) the scaling exponents
associated with the critical configurations.
As also noted above, the Vlasov equation can be

expressed in conservation form and is thus amenable to
solution using finite-volume methods. These techniques,
which are used extensively in fluid dynamics, for example,
are well known for their ability to accurately resolve sharp
features—including discontinuities—that often appear in
the solution of conservation laws. In our case, evolutions of
the distribution function generically exhibit significant
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mixing and steep gradients; moreover, some of our com-
putations involve initial data which is not smooth in phase
space. The finite-volume strategy is thus natural for our
purposes. We sketch our specific approach by considering
the general form of a conservation equation for a quantity
qðt; x; yÞ:

∂qðt; x; yÞ
∂t þ ∂FxðqÞ

∂x þ ∂FyðqÞ
∂y ¼ 0; ð37Þ

where FxðqÞ and FyðqÞ are the fluxes in the x and y
directions. We follow the usual finite-volume approach (see
[24] for example) by dividing the computational domain
into Nx × Ny cells of uniform size Δx × Δy as shown in
Fig. 1, and define the average value of the unknown q over
the cell Cij by

Qn
ij ¼

1

ΔxΔy

Z Z
Cij

qðtn; x; yÞdxdy: ð38Þ

Here the superscript n labels the discrete time, tn ≡ nΔt.
We then rewrite (37) in integral form:

∂Q
∂t ¼ −

1

ΔxΔy

�Z
E
FxðqÞdy −

Z
W
FxðqÞdy

�

−
1

ΔxΔy

�Z
N
FyðqÞdx −

Z
S
FyðqÞdx

�
; ð39Þ

where the subscripts E, W, N and S denote the east, west,
north and south boundaries, respectively, of the cell Cij.

Applying a time discretization to this last expression yields
an equation that can be used to advance the cell average in
time:

Qnþ1
ij ¼ Qn

ij −
Δt
Δx

ð½Fx�niþ1=2 − ½Fx�ni−1=2Þ

−
Δt
Δy

ð½Fy�njþ1=2 − ½Fy�nj−1=2Þ: ð40Þ

Here the average fluxes at the boundaries, ½Fx�niþ1=2 etc. are
calculated using a Roe solver [24]. We note that our
calculations are always performed on meshes that are
uniform in each coordinate direction, and that when we
change resolution—to perform a convergence test for
example—eachmesh spacing is changed by the same factor.
Thus, our discretization is fundamentally characterized by a
single scale, h. Our specific finite-volume approach is based
on Oðh2Þ approximations. However, the nature of the flux
calculations—which are designed to inhibit the develop-
ment of spurious oscillations—means that the scheme is
onlyOðhÞ in thevicinity of any local extrema in the solution.
The metric variables α and a, which need only be defined

on a mesh in the r direction, are computed from Oðh2Þ
finite difference approximations of the Hamiltonian and
slicing equations, (9) and (11). Since the equations for the
matter and geometry are fully coupled—i.e. α and a appear
in the flux computations, and f is needed for the calculation
of the source terms for α and a—some care is needed to
construct a scheme which is fully Oðh2Þ accurate (modulo
the degradation of convergence near extremal solution
values just noted). In practice, we use an OðΔt2Þ ¼
Oðh2Þ Runge-Kutta scheme for the time stepping, which
necessitates computation of auxiliary quantities at the half
time step tnþ1=2 ¼ tn þ Δt=2. Our overall scheme that
advances the solution from tn to tnþ1, and which does
have Oðh2Þ truncation error, is
(1) Compute fnþ1=2 from (40) using the fluxes Fn.
(2) Compute ~anþ1=2 from (10) with source ½Tr

t�n.
(3) Compute ½Tt

t�nþ1=2 and ½Tr
r�nþ1=2 from (19)–(20)

using ~anþ1=2.
(4) Compute anþ1=2 and αnþ1=2 from (9) and (11) with

sources ½Tt
t�nþ1=2 and ½Tr

r�nþ1=2.
(5) Compute ½Tr

t�nþ1=2 from (21).
(6) Compute fluxes Fnþ1=2

x and Fnþ1=2
y using anþ1=2

and αnþ1=2.
(7) Compute fnþ1 from (40) and the half-step

fluxes Fnþ1=2.
(8) Compute ~anþ1 from (10) with source ½Tr

t�nþ1=2.
(9) Compute ½Tt

t�nþ1 and ½Tr
r�nþ1 from (19) and (20)

using ~anþ1.
(10) Compute anþ1 and αnþ1 from (9) and (11) using

sources ½Tt
t�nþ1 and ½Tr

r�nþ1.
(11) Compute ½Tr

t�nþ1 from (21).
(12) Compute fluxes Fnþ1

x and Fnþ1
y using anþ1 and αnþ1.

(13) One time step complete; start next time step.

x[ ]
−1/2

n
i

F

j

Fx

i

j−1

j+1

y][F
j +1/2

[ ]
i +1/2

Qn
ij

n

n

n
−1/2jy[F ]

i+1i−1

FIG. 1. A portion of the discretized computation domain used
in our finite-volume code. The dashed lines delineate one finite-
volume cell. The cell-centered average value of the density,Qn

ij is
defined on the grid points marked with filled circles while the
fluxes, ½Fx�ni−1=2, ½Fx�niþ1=2, etc. are computed at points denoted
with dashed circles and which lie on cell boundaries. As
described in more detail in the text, Qn

ij is updated using the
difference of the outgoing and ingoing fluxes through the cell
boundaries.
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To facilitate the use of large grid sizes, as well as to speed
up the simulations, we parallelize the computations for the
evolution of the distribution function and the calculation of
the energy-momentum tensor components using the PAMR

package [25]. On the other hand, the calculation of the
metric components, which has negligible cost relative to the
updates of f and Tμ

ν, is performed on a single processor.
The new values of the metric functions are then broadcast
to the other CPUs.

B. Initial data

In spherical symmetry the gravitational field has no
dynamics beyond that generated by the matter content, so
initial conditions for our model are completely fixed by the
specification of the initial-time particle distribution function,
fð0; r; pr; l2Þ. However, the Einstein equations (9)–(11)
must also be satisfied at the initial time and, through the
definition (18) for p̄t, a appears within the integrands for the
stress tensor components. To determine all requisite initial
values consistently we therefore use the following iterative
scheme:
(1) Initialize the distribution function, fð0; r; pr; l2Þ, to

a localized function on phase space.
(2) Initialize the geometry to flat spacetime.
(3) Calculate the energy-momentum tensor using the

current geometry.
(4) Calculate the geometry using the current energy-

momentum tensor.
(5) Iterate over the matter and geometry calculations

until a certain tolerance is achieved.
In practice we find that this algorithm converges in a few
iterations.
As discussed in Sec. V B, when we study static initial

data we first specify ΦðE; lÞ and then integrate (29)–(30)
outward. We note that the form of ΦðE; lÞ that we choose,

ΦðE; lÞ ¼ ϕðE=E0ÞΘðE0 − EÞFðlÞ; ð41Þ

results in equations that are invariant under the trans-
formation:

α → kα; ð42Þ

E0 → kE0: ð43Þ

We can thus first integrate the slicing condition (30) subject
to the boundary condition, αð0; 0Þ ¼ Λ, with Λ < 1 but
otherwise arbitrary, and then linearly rescale αð0; rÞ so that
αð0; rmaxÞ ¼ 1=að0; rmaxÞ. The central redshift of the con-
figuration, Zc, which we use in our analysis below, is then
given by

Zc ≡ 1

αð0; 0Þ − 1; ð44Þ

where αð0; 0Þ is now the rescaled value. It is important to
emphasize that different choices for Λ result in distinct
solutions, so that irrespective of any adjustable parameters
that may appear in the specification of ϕ, Eq. (41) will
always implicitly define an entire family of static
configurations.

C. Diagnostic quantities and numerical tests

We have validated our implementations of the algorithms
described above using a standard convergence testing
methodology that examines the behavior of the numerical
solutions as a function of the mesh spacing, h, keeping the
initial data fixed. This section summarizes the tests we
perform—which involve derived quantities that should be
conserved in the continuum limit as well as the full
solutions themselves—and presents results from their
application to a representative initial data set using three
scales of discretization, h, h=2 and h=4.

1. Conserved quantities

The mass aspect function, mðt; rÞ, is given by

mðt; rÞ ¼ r
2

�
1 −

1

a2ðt; rÞ
�
; ð45Þ

and measures the amount of mass contained within radius r
at time t. Its value at spatial infinity

M ≡mðt;∞Þ; ð46Þ
is the conserved Arnowitt-Misner-Deser (ADM) mass.
Alternatively, M can be computed using

M ¼
Z

∞

0

ρ4πr2dr; ð47Þ

ρ ¼ nμnνTμν; ð48Þ

where nμ is the unit timelike vector normal to the spatial
slices. In developing our code we computed mass estimates
based on both of these expressions, but the results pre-
sented here and in the remainder of the paper use (46)
exclusively. Figure 2(c) graphs deviations of M relative to
its time-averaged mean value hMi for the three computa-
tions performed with mesh scales h, h=2 and h=4. As noted
in the caption, the values of M − hMi have been rescaled
such that the near coincidence of the plots signals the
expected Oðh2Þ convergence to conservation.
The second conserved quantity that we monitor is the

real-space particle flux, Jμ, given by

Jμðt; rÞ ¼ gμν

ZZ
pν

m
fdVpj

: ð49Þ

In spherical symmetry, the only nonzero components of
Jμ are
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Jt ¼ −
απ

ar2

ZZ
fðt; r; prÞdpr; ð50Þ

Jr ¼
π

ar2

ZZ
pr

p̄t fðt; r; prÞdpr: ð51Þ

The divergence of the flux must remain zero as the system
evolves—written explicitly we have

∇μJμ¼
1

α3a3r
ð−a3r _Jtαþa3rJt _αþarJrα2α0

þα3rJ0ra−αrJta2 _a−α3rJrα0þ2Jrα3aÞ¼0: ð52Þ

Plots of the rescaled l2 spatial norm of ∇μJμ as a function
of time are shown in Fig. 2(d)—again Oðh2Þ convergence
is observed.

2. Independent residual test

As noted in Sec. II A, the θθ component of Einstein’s
equation is not used in our evolution scheme but must be
satisfied in the continuum limit if our numerical results are
valid. We thus define the residual

Eθ
θ ≡Gθ

θ − 8πTθ
θ; ð53Þ

where

Gθ
θ ¼ Gϕ

ϕ

¼ −
1

rα3a3

�
−α2a

∂α
∂r þ α3

∂a
∂r þ α2r

∂α
∂r

∂a
∂r

− α2ar
∂2α

∂r2 þ a2αr
∂2a
∂t2 − a2r

∂α
∂t

∂a
∂t

�
; ð54Þ

and Tθ
θ is given by (22). Then, using second-order finite

differences to approximate all derivatives, we monitor the
l2 norm of Eθ

θ during the calculations. We expect ‖Eθ
θ‖2

to be Oðh2Þ and Fig 2(a) shows that this is the case.

3. Full-solution convergence test

The final check we perform is a basic convergence test of
the primary dynamical variables, α, a and f. Denoting the
values computed at resolution h for any of these by
qhðt; XÞ—where X ¼ r for α and a, and X ¼ ðr; prÞ for
f—we calculate convergence factors, Cðt; qÞ, defined by

Cðt; qÞ ¼ ‖qhðt; XÞ − qh=2ðt; XÞ‖l2
‖qh=2ðt; XÞ − qh=4ðt; XÞ‖l2

: ð55Þ

If our scheme is Oðh2Þ convergent then it is easy to argue
that Cðt; qÞ should approach 4 in the continuum limit. Plots
of Cðt; aÞ, Cðt; αÞ and Cðt; fÞ are shown in Fig. 2(b).
Second-order convergence of the geometric variables is
apparent, while the behavior of Cðt; fÞ reflects the fact that
the finite-volume method we use has only first-order
accuracy in the vicinity of extrema of f. Interestingly, at
least at the resolutions used here, the deterioration of the
convergence of f does not appear to significantly impact
that of the geometric quantities.

V. RESULTS

In this section we describe the main results from our
investigation of critical behavior in the Einstein-Vlasov
model. We have used many different families of initial data
in our studies and what we report below is based on a
representative sample of those. As mentioned in the
Introduction, the numerical experiments fall into three

FIG. 2. Results of various diagnostic tests used to test the
numerical solver. The initial data and mesh resolutions used here
are typical of any of the 2D calculations described in the paper. A
standard convergence testing methodology, using three calcula-
tions with fixed initial data and mesh spacings h, h=2 and h=4, is
employed. The coarsest mesh has nx × ny ¼ nr × np ¼ 128 ×
128 grid points. Plots (a), (c) and (d) all display quantities that are
residual in nature, i.e. which should tend to zero quadratically in
the mesh spacing. Values from the h=2 and h=4 computations
have been rescaled by factors of 4 and 16, respectively, and the
near coincidence of the rescaled values thus demonstrates that all
three quantities are converging at the expected Oðh2Þ rate.
(a) Convergence of the l2 norm of the independent residual,
‖Eθ

θ‖2, defined by (53). (b) Convergence factors (55) of the
primary dynamical unknowns. Here, convergence of the metric
functions, α and a, is clearly second order, while that for the
distribution function is better than OðhÞ but is not Oðh2Þ. This
latter behavior is to be expected since the finite-volume method
used to update f is only first order in the vicinity of local extrema.
(c) Convergence of the deviation in computed total mass,
calculated from (45) and (46). (d) Convergence of the particle
flux divergence (52).
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broad classes. The first uses massless particles and initial
data which has some relatively arbitrary form in phase
space. The second also uses massless particles but with
initial conditions that represent perturbed static solutions.
Finally, the third set is the same as the first but with massive
particles. We will refer to these classes as generic massless,
near-static massless, and generic massive, respectively. In
addition, the calculations can be categorized according to
whether l is a single fixed value, l0, (2D) or if the
distribution function has nontrivial l dependence (3D).
The functional form of the various families considered,
along with the dimensionality of the corresponding PDEs
and the parameter used for tuning to criticality are sum-
marized in Table I.

A. Generic massless case

Here we use initial distribution functions, f0≡
fð0; r; pr; lÞ, that describe configurations of particles
localized in r, pr and l, and that include various parameters
which can be tuned to generate families of solutions that
span the black hole threshold. Specifically, we set

fð0; r; pr; l2Þ ¼ Sðr; prÞFðlÞ; ð56Þ

where Sðr; prÞ is given by either a Gaussian function,

Gðr; pr;A; rc; pcÞ≡ A exp

�
−
ðr − rcÞ2

Δ2
r

−
ðpr − pcÞ2

Δ2
p

�
;

ð57Þ

or the truncated biquadratic form

Eðr; pr;A; rc; pcÞ≡

8>><
>>:

Ar̄ð1 − r̄Þp̄ð1 − p̄Þ 0 < r̄ < 1;

0 < p̄ < 1;

0 elsewhere;

ð58Þ

where r̄ ¼ ðr − rc þ ΔrÞ=2Δr and p̄ ¼ ðpr − pc þ ΔpÞ=
2Δp. Note that the dependence of G and E on r and pr is
suppressed in the abbreviated notation used in Table I. For
the 3D calculations, we use two types of angular momen-
tum distribution: the first is a Gaussian,

FðlÞ ¼ exp

�
−ðl − l0Þ2

Δl2

�
; ð59Þ

while the second is uniform in l with cutoffs at some
prescribed minimum and maximum values, lmin and lmax,
respectively,

FðlÞ ¼ Θðl − lminÞΘðlmax − lÞ: ð60Þ

It is important to point out that since the massless
Einstein-Vlasov system is scalefree it has an additional
symmetry relative to the massive case. Specifically, the
equations of motion are invariant under the transformation

t → kt; ð61Þ

r → kr; ð62Þ

where k is an arbitrary positive constant. In order to
meaningfully compare results from different initial data
choices we must therefore adopt unitless coordinates in our
analysis. We do this by rescaling t and r by the total mass,
M⋆, of the putatively static solution which arises at
criticality for any of the families that we have considered
(that is, M⋆ includes only the mass associated with that
portion of the overall matter distribution which appears to
be static at criticality). Moreover, it is more natural and
convenient to use central proper time, τ, rather than t itself
in the analysis. Thus, the results below are described using
rescaled coordinates, ~τ and ~r, defined by

~τ ¼ τ

M⋆ ; ð63Þ

~r ¼ r
M⋆ : ð64Þ

We note that under the scaling (61)–(62) the angular
momentum transforms as

l → kl: ð65Þ

The process we use to generate near-critical solutions is
completely standard for this type of work. All of the family

TABLE I. Families of generic initial data used in the studies
described in text. The columns enumerate (1) the label for the
family, (2) the number, D, of phase-space dimensions on which
the distribution function depends (and therefore whether the 2D
or 3D code was used to generate the results), (3) the form of the
initial data, fð0; r; pr; lÞ [see (57) and (58) for the definitions of G
and E], and (4) the control parameter, p, that was varied to study
the critical behavior. The quantities l0, l1, l2, rc, r1, r2, pc, p1, p2,
Δr, and Δp that appear in the various specifications of
fð0; r; pr; lÞ are all parameters; i.e they have fixed scalar values
in any given computation.

Family D fð0; r; pr; lÞ p

G1 2 δðl − l0ÞGðA; rc; pcÞ pc
G2 2 δðl − l0ÞGðA; rc; pcÞ l0
G3 2 δðl − l0ÞGðA; rc; 0Þ A
G4 2 δðl − l0ÞðGðA; rc; pcÞ þ GðA; rc þ Δr; pc þ ΔpÞÞ pc
G5 2 δðl − l0ÞEðA; rc; pcÞ pc
G6 2 δðl − l0ÞEðA; rc; 0Þ A
G7 2 δðl − l1ÞGðA; r1; p1Þ þ δðl − l2ÞGðA; r2; p2Þ p1

G8 3 expð−ðl − l0Þ2=Δl2ÞGðA; rc; pcÞ pc

G9 3 expð−ðl − l0Þ2=Δl2ÞGðA; rc; 0Þ A
G10 3 Θðl − 5ÞΘð15 − lÞEðA; rc; 0Þ A
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definitions described above and summarized in Table I
contain multiple parameters that can be used to tune to the
black hole threshold and, consistent with what has been
found in many other previous studies of black hole critical
phenomena, we find that which particular parameter is
actually varied is essentially irrelevant for the results.
Having chosen some specific parameter, p, to vary, any
critical search begins by determining an initial bracketing
interval, ½pl; ph�, in parameter space such that evolutions
with pl and ph lead to dispersal and black hole formation,
respectively. We then narrow the bracketing interval using
a bisection search on p, predicating the update of pl or ph
on whether or not a black hole forms. The search is
continued until ðph − plÞ=ph ∼ 10−15, so that p⋆ is com-
puted to about machine precision (8-byte floating point
arithmetic). The value of pl at the end of this process
corresponds to what we dub the marginally subcritical
solution.
Quite generically, as we tune any family to a critical

value p⋆, the phase-space distribution function appears to
settle down to a static solution which, as p → p⋆, persists
for a time that is long compared to the characteristic
timescale for implosion and subsequent dispersal of the
particles in the weakly gravitating limit. Representative
illustrations of this behavior are shown for marginally
subcritical evolutions from two distinct initial data families
in Fig. 3 (family G8 in Table I) and Fig. 4 (family G10).
Similarly, the spacetime geometry—encapsulated in the
metric functions a and α—also becomes increasingly time
independent as criticality is approached. Figure 5 displays
the evolution of the l2-norm of the time derivative of a
during marginally subcritical evolution for family G1. We
thus have strong evidence that the critical solutions that we
are finding are static—characteristic of type I critical
behavior—and consistent with what has been observed
previously for the case of the massive Einstein-Vlasov
system.
Further evidence for generic type I transitions in the

model is provided by observations of lifetime scaling of the
form (1) near criticality, which is expected if the critical
solutions are one mode unstable. Typical results from
calculations using families G1, G4, G8 and G10 are shown
in Fig. 6: the linearity of the lifetime of the static critical
configuration as a function of ln jp − p⋆j is apparent. We
have observed such scaling for all of the families that we
have studied (in both the 2D and 3D cases) and Table II
provides a summary of the measured values of the scaling
exponent, σ.
We note that the specific form of the matter configuration

at criticality exhibits significant dependence on the family
of initial data that is used to generate the critical solution.
This can be seen, for example, by comparing the last frames
of Figs. 3 and 4. On the other hand, as illustrated in Fig. 7
and Fig. 8, the geometry of the critical state is relatively
insensitive to the initial conditions.

The spacetime geometry can be characterized by the
central red shift, Zc defined by (44), and the unitless
compactness parameter, Γ, defined by

Γ ¼ maxr
2m
r

: ð66Þ

For the families considered in this section the values of Γ
and Zc fall in the ranges

0.79≲ Γ≲ 0.81; ð67Þ

2.4≲ Zc ≲ 2.5: ð68Þ

As discussed in the next section, these ranges are relatively
small in comparison to those found in our investigation of
critical behavior using nearly static initial data.
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FIG. 3 (color online). Snapshots of the distribution function
from a typical near-critical calculation, with evolution proceeding
left to right, top to bottom (note the reduction in the range of
radial coordinate in the last frame). The displayed results are from
family G8 (see Table I) where pc—which is loosely the average
momentum of the initially imploding shell of particles—is the
control parameter. As with all of the calculations discussed in the
results section, the control parameter has been tuned to roughly
machine precision. In the early stages of the evolution we observe
phase-space mixing and the ejection of some particles (the latter
particularly visible as the “tail” in the second frame). At
intermediate times the system approaches a static state which
persists for a period that is long compared to the infall/dispersal
timescale characterizing weak field dynamics. We note that this is
a 3D calculation, with f nontrivial in the l direction: for
visualization purposes we have integrated over l to produce a
quantity depending only on r and pr. Additionally, the first three
frames are plotted using the computational coordinate, r, while
for the purposes of direct comparison with Fig. 4, the fourth uses
the rescaled coordinate, ~r, defined by (64). We emphasize that at
criticality f retains nontrivial dependence on pr; that is, although
the geometry is static, the particle behavior is still dynamic.
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What is striking about the results assembled in Table II is
that there appears to be a small variation, at most, in the
time-scaling exponent associated with the critical solutions
produced from our generic initial conditions. Specifically,
the data is consistent with

σ ¼ 1.4� 0.1; ð69Þ

and we emphasize that this concordance arises despite the
significant observed variation in the phase-space distribu-
tion of the particles among the various critical solutions.

B. Near-static massless case

Our second approach to study critical solutions in the
massless Einstein-Vlasov system starts with the construc-
tion of static initial data using the procedure described in
Sec. III. We specialize the general form (41) to

ΦðE; lÞ ¼ Cð1 − E=E0ÞbΘðE0 − EÞδðl − l0Þ; ð70Þ

where E0 is a given cutoff energy and C, b and l0 are
additional adjustable parameters. Here we focus exclu-
sively on the case of fixed angular momentum (2D
calculations) since the results of the previous section
suggest that the essential features of the critical solutions
are not significantly dependent on whether or not f has
nontrivial dependence on l. In addition, from the scalefree
symmetry in the system [see (61) and (65)], we can
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FIG. 4 (color online). Snapshots of the distribution function for
a near-critical calculation using family G10. Here the tuning
parameter is the overall amplitude, A, of the initial particle
distribution. As in the previous figure the sequence shows an
approach to a static state, but it is evident that the form of the
distribution function at criticality is significantly different in the
two calculations. Due to the use of the rescaled radial coordinate,
~r, the fourth frames of the two figures can be meaningfully
compared.

FIG. 5. Time evolution of ‖∂taðt; rÞ‖2 from a marginally
subcritical calculation using family G1. The plot provides strong
evidence that the geometry of the threshold solution is static, a
characteristic feature of type I behavior.

FIG. 6. Lifetime scaling of near-critical configurations for
families G8, G1, G10 and G4 (top to bottom and noting that
G10 and G8 are 3D calculations while the others are 2D). Here
the symbols plot estimates of the amount of time the state of the
system is well approximated by the static critical solution—
measured in units of the rescaled proper time defined by (63)—as
a function of ln jp − p⋆j. The lines are least squares fits to
τ ¼ −σ ln jp − p⋆j where σ is the reciprocal of the eigenvalue
(Lyapunov exponent) corresponding to the presumed single
growing mode of the critical solution. To the estimated level
of accuracy in our calculations the measured values of σ are the
same for the four families. However, we cannot state with
certainty that there is precise universality in this regard.
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conclude that varying the value of angular momentum is
equivalent to rescaling the radial coordinate. Therefore,
without loss of generality we can set l to an arbitrary fixed
value, eliminating one of the parameter-space dimensions
in our surveys. Additionally, so that we can meaningfully
compare results from different initial conditions, we again
rescale the radial coordinate by the total mass of the system
(64). Furthermore, by virtue of the transformation (43), the

static profiles depend on E0 only through the ratio E0=α0
and, since it simplifies the numerical analysis, we actually
use this ratio as one of the control parameters.
For specified values of the free parameters C, b and

E0=α0, we integrate Eqs. (29)–(32) outward until we reach
a radial location, rX, where the particle density ΦðE; lÞ
vanishes. We then extend the solution for a and α to the
outer boundary of the computational domain by attaching a
Schwarzschild geometry with the appropriate mass.
We note that not all choices of the three free parameters

lead to distribution functions with compact support—that
is, with fð0; r; prÞ≡ 0 for r greater than some rX—so that
the configuration represents a single shell of particles.
Indeed, by examining the expression for the particle energy
in the massless case:

Eðr; prÞ ¼ αðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpr=aÞ2 þ ðl=rÞ2

q
; ð71Þ

we see that, for pr sufficiently small, Eðr; prÞ can remain
below the cutoff E0 for large r. In practice this will yield
solutions with multiple shells, where Φ vanishes at rX, but
then becomes nonzero on an infinite number of intervals in

TABLE II. Summary of measured lifetime scaling exponents
for the massless Einstein-Vlasov model from experiments using
the various initial data families enumerated in Table I. In addition
to the overall functional form of the initial distribution functions,
a key parameter that varies among the sets of calculations is l0,
which is the angular momentum of any and all particles for
families G1, G2–G6 (2D) and the center of the angular mo-
mentum distribution for families G8 and G9 (3D). (l0 is the
tuning parameter for G6, and family G7 is another special case
where the initial data is comprised of a superposition of two shells
of particles, each having a distinct angular momentum parameter.
Since angular momentum is a conserved quantity there is no
mixing of the two distributions during the evolution.) For
simplicity of presentation we have not listed the other parameters
defining the different initial configurations. Quoted uncertainties
in the values of σ are based on variations in the total mass of the
system during the evolutions and comparison with results
computed at lower resolution. Typical grid sizes used for the
listed results are nr × np ¼ 1024 × 1024 (2D) or nr × np × nl ¼
256 × 128 × 64 (3D). To the level of accuracy in our calculations
we find consistency with a single value of the scaling exponent,
σ ¼ 1.4� 0.1.

Family l0 σ Family l0 σ

G1 5 1.32� 0.08 G3 12 1.36� 0.06
G1 6 1.35� 0.07 G4 12 1.37� 0.05
G1 7 1.36� 0.06 G5 12 1.44� 0.06
G1 8 1.33� 0.06 G6 12 1.43� 0.04
G1 9 1.33� 0.06 G7 6&12 1.37� 0.07
G1 10 1.32� 0.06 G8 10 1.35� 0.05
G1 11 1.35� 0.05 G9 10 1.36� 0.05
G1 12 1.37� 0.05 G10 � � � 1.40� 0.05
G2 � � � 1.36� 0.07

FIG. 7. Radial metric function að~rÞ at criticality for families
G8, G1, G10 and G4. The results plotted here, together with those
displayed in Fig. 8, show that there is relatively little variation in
the geometry of the static critical configuration as a function of
the specifics of the initial data. The inset plots the deviation in a
for families G1, G10 and G4 relative to G8.

FIG. 8. Lapse function αð~rÞ at criticality for families G8, G1,
G10 and G4. The comments made in the caption of the previous
figure apply here as well.
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r (in general these intervals can be disjoint or contiguous,
as has previously been seen in [12]). Although it might be
interesting to consider the critical dynamics of multiple-
shell solutions, we do not do so here. We also note that for
given values of b and E0=α0 we find solutions with a
distinct shell (i.e. where Φ does vanish at some radius) only
for a certain range of C, but that range can span several
orders of magnitude.
Figure 9 shows the distribution function for four sample

static configurations constructed as described above, with
the associated geometrical variables plotted in Fig. 10.
Relative to the apparently static solutions generated by

tuning generic initial data, the family dependence of both
the distribution function and metric variables here is much
more pronounced.
One interesting way of characterizing the static solutions

is to plot the compactness parameter, Γ, defined by (66), as
a function of the central redshift, Zc. We do this for a large
number of configurations in Fig. 11 where, as described in
more detail in the caption, each set of points results from a
two-dimensional parameter-space survey wherein both
E0=α0 and C are varied. The fact that the solutions from
each of these surveys tend to “collapse” to one-dimensional
curves in Zc–Γ space is striking and we do not have any
argument at this time for why this should be so.
All of the static solutions that we have found satisfy

Buchdahl’s inequality, Γ < 8=9, originally derived in the
context of fluid matter [27], and the most compact
configurations are quite close to that limit. Here it is crucial
to note that Andréasson has proven rigorously that the
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FIG. 9 (color online). Sample static phase-space configurations
computed from the ansatz (70) using different choices of
adjustable parameters. Note that although we use the rescaled
radial coordinate ~r in all of the plots, the ranges in ~r, pr and f
vary from frame to frame. Clearly, there is a strong dependence of
f on the chosen parameter values. As described in more detail in
the text, for any given values of b and Zc there is a finite range of
C for which we find static solutions where f has compact support.

FIG. 10. Plots of the radial metric function, aðrÞ, and differ-
ential particle number, dNðrÞ=dr, for the configurations shown in
Fig. 9. The graphs of dNðrÞ=dr highlight the fact that the critical
solutions are shell-like, with a thicknesses and effective densities
that are strongly dependent on the choice of parameters in (70).

FIG. 11 (color online). The value of Γ ¼ maxrð2m=rÞ versus
central redshift, Zc, for various static solutions. Each set of points
comprises several thousand distinct solutions and comes from a
two-dimensional parameter-space survey, in which both C and
E0=α0 are varied. Although for given b and E0=α0 we can only
find acceptable static solutions in certain ranges of C, those
ranges can span several orders of magnitude. However, for fixed
b the solutions tend to collapse to near-linear loci in Zc–Γ space,
and the inset graph, which plots the deviation of the data from a
linear least squares fit, is intended to emphasize this behavior.
More detailed examination of the data suggests that the configu-
rations do not lie precisely along one-dimensional curves, but
additional study would be required to determine whether this is
really the case. The solutions apparently satisfy the Buchdahl
inequality Γ < 8=9 (also seen in the calculations reported in [12]
for the massive case), as is expected from Andréasson’s rigorous
results [26]. Moreover, there also seems to be a lower bound on
the compactness, Γ ∼ 0.81.
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Buchdahl inequality is satisfied by any static solution of
the spherically symmetric Einstein-Vlasov system [26].
Further, he has demonstrated that one can construct static
shell-like configurations which, in the limit of infinitesimal
thickness in r, can have Γ arbitrarily close to 8=9. Although
not explicitly mentioned in [26], it is clear that his proof is
valid for m ¼ 0. Given the nature of Andréasson‘s result,
the observation that our solutions satisfy the bound clearly
amounts to little more than additional evidence that our
calculations are faithful to the model under study. However
it is interesting that the highest values of Γ seen in
Fig. 11—and which plausibly are approaching 8=9—are
associated with very thin shell-like solutions. Additionally,
for the configurations we have studied (not all of which are
represented in Fig. 11) there is apparently also a lower
bound on the compactness, Γ ∼ 0.81. Finally, the ranges of
Γ and Zc spanned by the explicitly static solutions

0.80≲ Γ≲ 0.89; ð72Þ

2.0≲ Zc ≲ 2.4; ð73Þ

are larger than those seen for the tuned generic data,
consistent with the comment above concerning the rela-
tively large variations in the metric variables as well as the
distribution function.
Using our evolution code, we investigate the relation of

the explicitly static solutions to critical behavior in the
model as follows. For initial conditions we set

fð0; r; pr; l2Þ ¼ f0ðr; pr; l2Þ þ ðA − 1Þδfðr; pr; l2Þ;
ð74Þ

where f0 is a static configuration, δfðr; pr; l2Þ is some
given perturbation function with at least roughly the same
support as f0, and A is a tunable parameter which controls
the amplitude of the perturbation. Clearly, A ¼ 1 results in
initialization with the static solution itself. We have
experimented with the following three choices for the
perturbation function:

δf1ðr; pr; l2Þ ¼ f0ðr; pr; l2Þ; ð75Þ

δf2ðr; pr; l2Þ ¼ sin

�
2πf0ðr; pr; l2Þ

fmax

�
; ð76Þ

δf3ðr; pr; l2Þ ¼ f0ðr; pr; l2Þðfmax − f0ðr; pr; l2ÞÞpr;

ð77Þ

where fmax is the maximum of f0 over the computational
domain. We then perform standard tuning experiments in
which we vary A to isolate a threshold solution.
Interestingly, we find strong evidence that all of the static

solutions based on (70) that we have found sit at the
threshold of black hole formation, so that setting A > 1

results in black hole formation while taking A < 1 results in
complete dispersal of the matter (or vice versa, dependent
on the precise form of δf). As should be suspected then,
and as is shown for four families in Fig. 12, the solutions
generated by dynamically evolving the perturbed static
configurations exhibit time scaling—this strongly suggests
that the time-independent solutions are all one mode
unstable. Table III provides a summary of the time-scaling
exponents we have measured for a set of experiments based
on four distinct static solutions and the three different types
of perturbation defined by (75)–(77).
As was the case for the generic families, the measure-

ments here indicate that although the static solutions
display significant variation in both the distribution func-
tion and geometric variables, there is little variation in the
scaling exponent. Here we find

σ ¼ 1.43� 0.07: ð78Þ

Recalling (69), and given the estimated uncertainty in our
calculations, we cannot exclude the possibility that σ is
truly universal for the massless-sector critical solutions
which we have constructed. Particularly given the variation
in the spacetime geometries involved, constancy of the
eigenvalue of the unstable mode associated with criticality

FIG. 12. Lifetime scaling computed from families of initial data
based on the static configurations plotted in Figs. 9 and 10. The
tuning parameter in this instance controls the amplitude of a
perturbation that is added to the base solution [here we used the
form δf1 (75)] and, in all cases, the sign of the perturbation
determines whether the evolution leads to dispersal or black hole
formation. The results shown here provide evidence that the static
configurations calculated from the ansatz (70) act as type I critical
solutions. Additionally, we see that there is very little variation in
the measured scaling exponents, σ, which are again determined
via least squares fits to (1).

CRITICAL COLLAPSE IN THE SPHERICALLY … PHYSICAL REVIEW D 90, 104023 (2014)

104023-13



would be truly remarkable. However, even if σ does span
some finite range, the apparent tightness of that range is an
aspect of critical behavior in the massless system that begs
understanding.
Finally, we note that the static critical solutions from the

generic calculations are characterized by compactness,
Γ ∼ 0.8, which is at the low end of the range spanned
by the explicitly static solutions. We do not yet know
whether a more extensive parameter-space survey of
generic data could produce critical configurations with
larger Γ, and it would be interesting to further investigate
this issue.

C. Generic massive case

Following previous studies [3–5], we have also exam-
ined the case where the particles have rest mass and find
results that are in general agreement with the earlier work,
including strong evidence for the existence of static
solutions at the black hole threshold that exhibit lifetime
scaling. However, we note that in both [4] and [5] the initial
data configurations were kinetic energy dominated. For
example, a typical calculation in [4] used unit particle mass
and fð0; r; pr; lÞ which was Gaussian in the three coor-
dinates with characteristic values r ∼ 3, pr ∼ 1 and l ∼ 3.
From expression (35) for the particle energy we can thus
infer that the initial data sets had kinetic energy about an
order of magnitude larger than rest mass energy. Thus we
expect that those previous results should be similar to what
we see for massless particles. Indeed, taking into account
the different time parametrization used (t normalized to
coincide with property time at infinity), the scaling expo-
nents quoted in [4] are consistent with our results.

Table IV lists the values of the time-scaling exponent we
have determined in the massive case for the various types of
initial data defined in Table I. We note that the initial data
families that are used include ones that are very similar to
those adopted in [4] and [5]. We see that the time-scaling
exponents are in fact close to those measured in the
massless calculations, although the spread in the values
is noticeably larger here (as it was in [4] and [5]). This
increased spread is almost certainly due to the particle
mass—i.e. the evolutions are not completely kinetic energy
dominated.
Paralleling what was done in Sec. V B, as well as in [12],

we can use perturbations of our explicitly static solutions in
the massive sector to investigate critical behavior. Here
there is a larger function space of static configurations,
especially since we can construct solutions with positive
binding energy, Eb, defined by

Eb ≡M0 −M; ð79Þ

where M0 is the total rest mass and M is the ADM mass.
Moreover, we can build parametrized sequences of sol-
utions that transition between positive and negative Eb,
completely analogously to what can be done for perfect-
fluid models of general relativistic stars. As in the perfect-
fluid case, we anticipate that (1) solutions with Eb > 0 will
be perturbatively stable, (2) there will be a change of
stability at Eb ¼ 0, and (3) for at least some range of
Eb < 0, the static configurations will be one mode unsta-
ble, and thus should constitute type I critical solutions. We
have performed additional calculations that confirm these
expectations. In particular, we were able to build a static
solution with Eb negative, but relatively close to 0, which
did lie at the black hole threshold and which had an
associated scaling exponent σ ¼ 3.0� 0.1. This value of σ
is clearly distinct from those listed in Table IV. Thus, in
contrast to the massless case where we cannot conclusively
state anything about possible variations in σ for type I
critical solutions, we are confident that σ is not universal in

TABLE III. Measured lifetime scaling exponent for explicitly
static solutions constructed from ansatz (70) with various choices
of the adjustable parameters b, E0=α0 and C (Zc is effectively
controlled by E0=α0, but is determined a posteriori), and the
different types of perturbations, δf, enumerated in (75)–(77).
Proceeding from the assumption that the static solutions are
characterized by a single unstable mode, we anticipate that the
computed value of σ associated with a specific configuration (i.e.
for given b, Zc and C) should be independent of the form of δf,
and this is precisely what we observe (compare rows 1 and 2, and
5, 6 and 7). However, we also see once again that there is little, if
any, variation in the scaling exponent with respect to the under-
lying critical solution: the results in the table are consistent with
σ ¼ 1.43� 0.07

b Zc C δf σ

1 2.32 0.1 δf1 1.45� 0.05
1 2.23 0.3 δf1 1.45� 0.04
2 2.22 0.1 δf1 1.43� 0.04
4 2.17 10 δf1 1.43� 0.04
2 2.35 0.1 δf1 1.40� 0.05
2 2.35 0.1 δf2 1.40� 0.05
2 2.35 0.1 δf3 1.40� 0.05

TABLE IV. Summary of measured lifetime scaling exponents
for the massive Einstein-Vlasov model from experiments using
the various initial data families enumerated in Table I. The results
quoted here derive from calculations that parallel those described
in Table II for the massless system. In contrast to the massless
case, the observed variation in σ is significant.

Family l0 Zc σ Family l0 Zc σ

G1 5 2.47 1.32� 0.14 G1 12 2.28 1.46� 0.07
G1 6 2.39 1.47� 0.13 G2 � � � 2.39 1.44� 0.09
G1 7 2.31 1.44� 0.08 G3 9 2.29 1.54� 0.07
G1 8 2.37 1.49� 0.08 G4 9 2.43 1.49� 0.08
G1 9 2.41 1.49� 0.08 G8 10 2.24 1.38� 0.14
G1 10 2.34 1.48� 0.07 G9 10 2.41 1.59� 0.15
G1 11 2.23 1.54� 0.07
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the massive case. In fact, were we able to construct static
configurations with Eb → 0−, we assume that we would
find σ → ∞. Again, these observations and conjectures are
entirely consistent with previous studies of the Einstein-
Vlasov system, as well as work with gravitationally
compact stars modeled with perfect fluids or bosonic
matter.

VI. SUMMARY AND DISCUSSION

We have constructed a new numerical code to evolve the
Einstein-Vlasov system in spherical symmetry using an
algorithm where the distribution function fðt; r; pr; l2Þ is
directly integrated using finite-volume methods. This
approach eliminates the statistical uncertainty inherent in
the particle-based techniques that have been used in
previous studies. To reduce computational demands at a
given discretization or, more importantly, to allow for
higher resolution, we can also run the code in a 2D mode
where l2 is some fixed scalar constant so that f depends on
only r and pr.
We have used the code to perform extensive and detailed

surveys of the critical behavior in the model with a
particular focus on the case where the particles are mass-
less. We note that we are unaware of any previous
dynamical numerical calculations pertaining to the mass-
less sector.
Our results derive from two classes of initial configu-

rations. In the first the initial states represents imploding
shells of particles well removed from the origin, while
the second involves perturbations of configurations that
are precisely static by construction. Although time-
independent solutions of the massive system have been
constructed and analyzed previously, to our knowledge the
static states we have found in the massless sector are the
first of their kind. Within each class we have studied
numerous specific forms for the initial data and, for the
near-static calculations, the perturbations that are applied to
generate the threshold behavior. In all cases we find strong
evidence for a type I critical transition including (1) a finite
black hole mass at threshold and (2) lifetime scaling of the
form (1). The observations are all consistent with the
standard picture for type I behavior, namely a static critical
solution with one unstable perturbative mode. Here we
emphasize that—as is the case for any numerical study of
critical behavior—it is very difficult to preclude the
existence of additional unstable modes. However, the
degree to which the scaling laws are satisfied suggests
that if such modes do exist they have growth rates
significantly smaller than the dominant one.
For generic initial data with massless particles, we have

found that there is a considerable variation in the morphol-
ogy of f among the different critical solutions we have
computed and, to a lesser extent, in the details of the
spacetime geometries encoded in aðt; rÞ and αðt; rÞ.
Interestingly though, there is relatively little variation in

the time-scaling exponents that we have measured: all seem
to be in the range σ ¼ 1.4� 0.1.
In the case of near-static initial conditions with m ¼ 0

the key results are quite similar. Again, there is a large
variation in the functional form of the distribution function
at threshold. In this instance this can be seen as a direct
reflection of the freedom inherent in the ansatz (70) which
involves the specification of two essentially arbitrary
functions. Not surprisingly, there is thus a more noticeable
range in the geometries at criticality relative to the generic
calculations, as can be clearly seen, for example, through
examination of quantities such as the compactness and
central redshift. Once again, however, we observe only a
small dispersion in the measured scaling exponents.
Specifically, across all near-static families that we have
examined we find σ ¼ 1.43� 0.07.
Thus, considering all of the calculations that we have

performed, we have indications of at least a weak form of
universality of the time-scaling exponent in the massless
Einstein-Vlasov model. Here we note that as mentioned in
the Introduction, the calculations reported in [4] were also
suggestive of a universal value of σ and perhaps of the
critical geometry. Those computations used a nonzero mass
and, as also discussed previously, the work of [6,12]
established that the spacetime structure at criticality could
not be universal in the massive model. However, as noted in
Sec. V C the initial data families used in [4] were kinetic
energy dominated (effectively massless), and so there is no
contradiction between what was seen there (and here)
and [6,12].
In all of our calculations, and in accord with

Andréasson’s proof of the Buchdahl inequality in the
model [26], we observe that the gravitational compactness
satisfies Γ < 8=9, with thin shell-like solutions coming
closest to saturating the bound.
We also want to emphasize an additional feature of the

massless model that is apparent from our calculations: the
particle angular momentum does not have a significant
impact on the features of the critical solution (apart from the
obvious fact that the particles do have angular momentum
in all of our computations). Heuristically, this can be at least
partly ascribed to the scaling symmetry (61)–(62). The
symmetry effectively reduces the number of free
parameters—relative to a naive analysis—available for
variation in the search for critical solutions. Specifically,
given any distribution of the form fðr; prÞδðl − l1Þ, where
l1 is fixed, we can map to a distribution f0ðr; prÞδðl − l2Þ,
with l1 ≠ l2, which has an associated geometry that is
diffeomorphic to the original.
Given that there is clearly no universality of the

fundamental dynamical variables at threshold, the fact that
the variation in σ is, at most, small is a feature of the
calculations for which we currently have no explanation.
Additionally, as discussed in the Introduction, the argument
advanced in [21] suggests that there should be no type I
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behavior in the Einstein-Vlasov system for either the
massless or massive models. At this time, we do not
understand how—if at all—this argument can be reconciled
with our current results and those from previous numerical
studies.
A direct analysis of the perturbations of the critical

solutions—especially the precisely static ones—would be
very helpful at this point. Starting with the perfect-fluid
work of Koike et al. [28], perturbation analyses of the
critical configurations in many different models have been
extremely effective in advancing our understanding of
black-hole critical phenomena. In particular, relative to
measurements made through direct solution of PDEs and
tuning experiments, perturbative methods can provide
highly accurate values for the eigenvalues of the unstable
modes (or, equivalently, for the scaling exponents).
However, in our case the task of explicitly constructing
perturbations is significantly complicated by the fact that
there is no one-to-one correspondence between the geom-
etry and the phase-space distribution of the particles. So far

we have been unable to formulate a well-defined approach
to computation of the perturbations and will have to leave
that for future work.
Finally, it would be interesting to extend this work to the

Einstein-Boltzmann system, where the introduction of
explicit interactions between particles would provide the
means to investigate the connection between criticality in
phase-space-based models and hydrodynamical systems.
This in turn might lead to a more fundamental under-
standing of critical collapse in fluid models.
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