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Nonminimally coupled topological-defect boson stars: Static solutions
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We consider spherically symmetric static composite structures consisting of a boson star and a global
monopole, minimally or nonminimally coupled to the general relativistic gravitational field. In the
nonminimally coupled case, Marunovic and Murkovic [Classical Quantum Gravity 31, 045010 (2014)]
have shown that these objects, so-called topological-defect boson stars, can be sufficiently gravitationally
compact so as to potentially mimic black holes. Here, we present the results of an extensive numerical
parameter space survey which reveals additional new and unexpected phenomenology in the model. In
particular, focusing on families of topological-defect boson stars which are parameterized by the central
amplitude of the boson field, we find configurations for both the minimally and nonminimally coupled
cases that contain one or more shells of bosonic matter located far from the origin. In parameter space, each
shell spontaneously appears as one tunes through some critical central amplitude of the boson field. In some
cases the shells apparently materialize at spatial infinity: in these instances their areal radii are observed to
obey a universal scaling law in the vicinity of the critical amplitude. We derive this law from the equations
of motion and the asymptotic behavior of the fields.
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I. INTRODUCTION

The first attempts to construct solitonic solutions in the
context of general relativity were made by Wheeler in 1955
[1] with his investigation of massless scalar fields mini-
mally coupled to gravity. Although the field configurations
he discovered were found to be unstable, subsequent
developments by Kaup [2] and Ruffini and Bonazzola
[3] led to the discovery of the stable solitons now known as
boson stars.

In its simplest form, a boson star is a self-gravitating
configuration of a complex massive scalar field, ¥,
governed by the Lagrangian

m2
Sus = [ a7 |- ()0 - Tww ] ()

with a spherically symmetric, time-harmonic ansatz for the
scalar field

U(x) = y(r)e. (2)

Here, the radial amplitude function y (r) is real valued, m is
the scalar field’s mass parameter, and @ is the angular
frequency eigenvalue of the boson star. The boson stars
comprise a one-parameter family that can be conveniently
labeled by the central value, y (0), of the amplitude function.

Stability studies have shown that boson stars are stable
against all perturbations if the central amplitude of the star
is sufficiently small [4,5], yet, without self-interaction,
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boson stars have maximum masses far below the
Chandrasekhar limit for normal fermionic matter.
Correspondingly, these so-called mini-boson stars are
unsuitable for use as simplified models of gravitationally
compact astrophysical objects such as white dwarfs and
neutron stars. When a quartic self-interaction potential is
added, however, it is found that for reasonable scalar boson
masses, the maximum gravitational mass is comparable to
the Chandrasekhar limit [6].

Motivated by their simplicity and stability, boson stars
have been studied extensively as dark matter candidates
[7-9], simplified models for compact objects such as
neutron stars [10-12] and alternatives to black holes
[13-16]. Additionally, they have been considered in models
where they are nonminimally coupled to gravity [13,17]
and in conformal and scalar-tensor extensions to gravity
[18]. For overviews of boson stars and results pertaining to
them, we refer the reader to the reviews by Liebling and
Palenzuela [10] and Schunck and Mielke [19].

In this paper we investigate the topological-defect
boson star system, previously studied by Li [20,21] and
Marunovic and Murkovic [13], which consists of a boson
star and global monopole nonminimally coupled to gravity
via the Ricci scalar. Unlike boson stars, which may be
considered gravitationally bound clumps of Klein-Gordon
matter, global monopoles are topological defects formed
via spontaneous symmetry breaking and can exist in the
absence of gravity [22]. The simplest realization of such a
global monopole is through a scalar field theory consisting
of a triplet of scalar fields with a global O(3) symmetry
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which is spontaneously broken to /(1) [23]. These simple

global monopoles may be constructed by starting from the
Lagrangian

A2

Sou = [ 7| -5 (9 (P9

A
= A - 1)2], (3)

where ¢“, a = 1, 2, 3 denotes a triplet of real scalar fields
and the parameters A and Agy set the scale for the
interaction potential. Examining the interaction potential,
it can be seen that the potential energy of the configuration
is minimized at ¢9¢¢ = > '’ = 1 and that the action is
invariant under a global O(3) symmetry within the inner
space of the fields.

Assuming the field transitions to a directionally depen-
dent vacuum state as r — oo, where r is the areal radius,
one takes the hedgehog ansatz for the fields,

¢ = p(r)—. (4)

and finds global monopole solutions by solving a second-
order boundary value equation for ¢(r) [23].

Analysis of these solutions reveals that the energy
density of the configuration goes as =2 so that the total
energy of the solutions is linearly divergent in r [23]. When
minimally coupled to gravity, the linearly divergent global
monopole energy produces an effect analogous to a solid
angle deficit and a negative, central mass described by the
following asymptotic metric [23,24]:

ds* = —vdf* + v7'dr? + r2d6* + r’sin®(0)d¢*. (5)

where

U:<1_A2_2_M>. (6)
r

Here A? is the solid angle deficit, where A is the parameter
appearing in the Lagrangian (3).

In terms of astrophysical motivation, global monopoles
at first appear to be attractive models of galactic dark matter
halos. The fact that the energy density of the solutions
varies as 2 seems to be precisely what is called for from
observations of galactic rotation curves. Moreover, with
reasonable assumptions, the mass of the solution within the
neighborhood of a typical 10'! solar-mass host galaxy [25]
is about 10 times that of the luminous matter.

However, closer inspection reveals that the negative
effective mass of minimally coupled global monopoles
produces repulsive gravitational effects and they corre-
spondingly do not support bound orbits [25,26].
Additionally, due to the fact that the monopole does not
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couple directly to any matter sources, the scale of the
solutions is essentially independent of the galactic matter
content, which is in conflict with the observation that, for a
wide range of masses, galaxies consist of about 10 times as
much dark matter as luminous matter [25]. Finally, [22]
shows that global monopoles and antimonopoles annihilate
very efficiently due to their long-range interaction, indicat-
ing that there would have to be a large overabundance of
global monopoles in relation to antimonopoles for them to
be remotely realistic candidates for galactic dark matter.

Although these problems are substantial, Nucamendi,
Salgado, and Sudarsky demonstrated that they may be
partially ameliorated by nonminimally coupling the
monopole field to gravity [25,27]. With this modification,
global monopoles exhibit attractive gravity and the non-
minimal coupling permits coupling to other matter sources
more directly. More recently, Marunovic and Murkovic
studied nonminimally coupled topological-defect boson
stars' and demonstrated that these objects can be far more
compact than minimally coupled boson stars and nearly
as compact as maximally compact fluid stars [13]. This
observation then invites the question of whether topologi-
cal-defect boson stars are viable as black hole mimickers.
Although the gravitational compactness of these objects is
interesting, it is not the focus of our investigation. Rather,
in this paper we extend the work of [13], finding new
numerical solutions to the spherically symmetric topologi-
cal-defect boson star model in both the minimally coupled
and nonminimally coupled cases. Unlike boson stars,
whose asymptotic mass is a smooth function of the boson
star central amplitude, the families we have discovered
exhibit a series of discrete boson star central amplitudes,
across which the asymptotic mass of the configuration
changes nonsmoothly, and sometimes discontinuously, due
to the appearance of shells of bosonic matter far from the
origin. As this is superficially analogous to a first-order
phase transition in statistical mechanics, we borrow termi-
nology from that field and refer to these transitional
solutions as critical solutions corresponding to a critical
central amplitude, y§. Here the superscript ¢ on ¢ denotes
“critical,” while the subscript i serves as an integer label of
the shells, ordered by central amplitude of the boson field.

We demonstrate that the areal radii of these asymptotic
shells, r,, appear to obey a universal scaling law r,
lw(0) —w¢|~P, with p ~ 1 independent of the interaction
potentials. To our knowledge, neither the shell-like con-
figurations themselves nor the scaling behavior of their
radial locations has been previously reported.

The plan of the remainder of this paper is as follows: in
Sec. II we derive the governing equations for the static

'Minimal topological-defect boson stars had been previously
studied by Li [20,21] but using an interaction potential which
ensured the radii of the monopole and boson star were effectively
equal.
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system consisting of a boson star and global monopole,
nonminimally coupled to gravity. In Sec. III we describe
the methodology adopted to find static solutions and
introduce terminology used to present the results of the
study. Specifically, Sec. III A introduces terminology used
to describe the unusual features of our solutions and
Sec. III B describes our solution procedure and outlines
the numerical techniques employed, while Sec. IIIC
demonstrates the convergence of the solutions.

In Sec. IV we present the results and analysis of our
parameter space survey. The behavior of the minimally
coupled solutions is described in Sec. IVA while the
corresponding behavior of the nonminimally coupled
solutions is presented in Sec. IV B. Section IV C describes
the scaling behavior observed in the vicinity of the critical
central amplitudes while Sec. IV D presents a derivation of
the observed scaling law. We make some brief concluding
remarks in Sec. V.

Finally, in the Appendixes we present a brief review
of the shooting method (Appendix A 1) and independent
residual convergence tests (Appendix A 2) and provide a
description of our modified shooting technique which, for
certain models, permits integration to arbitrary distances
(Appendix A B).

II. STATIC EQUATIONS

Starting from the dimensionless Einstein-Hilbert action
(c=1, G=1/8x) and following the prescription of
Marunovic and Murkovic [13],

R
Sen = / dx*y/=g <§ + ﬁm) ; (7)
the actions for the boson star and global monopole are

Sus = [ @'y (V.07 (99) = Vi

+ %R(\IJ*\D)} (8)
and
Sou = [ st =5 |- 5 (T T9) ~ Vi
5 R gy )
respectively.

Here U is the complex scalar field of the bosonic matter,
¢° is a triplet of scalar fields, A is the solid angle deficit
parameter, Vg and V), are the self-interaction potentials
for the boson field and monopole fields, respectively,
R is the Ricci scalar, and £gg and &gy are the nonminimal
coupling constants.
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The stress-energy tensors associated with these actions
are

BS _
T,y =

(V,0°)(V, ) + 5 (9,9°)(V,0)

~ S (TL2) (VW) 4 2Vp)

- fBS (G/u/ + g/u/vava - Vuvu)(q/\ll*)’ (10)

N =

A? A?
T = 5 (9,0 (98) + 5 (9,4) (,4°)
1
- EQﬂD(Az(vaW)(vafﬁa) +2Vam)
- éGMAZ(G;w + g;wvava - vuvu)(¢a¢a)' (1 1)

Here G, is the Einstein tensor and we have used the result
that the variation of an arbitrary function of the Ricci scalar,

f(R), is

3f(R) _ Of(R) 1
Tg"” = G—RR"” —Ef(R)g,w

0
+ (gyuvava - vyvu) % . (12)

We take quartic potentials for the fields [13],

A
Vaw == (g =177, (13)
m2 * /IBS * 2

where Agy and Agg are additional parameters. We now
impose spherical symmetry and time independence of the
geometry and work in polar-areal (Schwarzschild-like)
coordinates (t,r,6,¢), in which the line element takes
the form

ds? = —a(r)?dt* + a(r)*dr* + r*dQ?, (15)

where dQ? is the line element of the unit two sphere.
Taking the hedgehog ansatz for the monopole, ¢* =

¢(r)x*/r, and assuming harmonic time dependence for the

boson star, ¥ = y/(r)e'”, the total potential, V, defined by

V=Vem + Vas, (16)

becomes

A R
V:%A4(¢2_1)2+m7w2+%v/4- (17)

We then derive the following equations for the stationary
field configurations by varying the actions with respect to
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the matter fields, y and ¢:

* 20,
8%1// = <§BSWT - l//a—z + 8,,,V> 612 - l//

_(0,0)(0,w) N (0,a)(0,w)

a a

, (18)

2 0,V 20,
0 = (£GM¢T+r—f+%)a2 —

_02)(0,9) | (0,4)(0,9)

a a

(19)

Here T =—-R =T¥*, is the trace of the stress-energy
tensor and 9,V and 9,V are given, respectively, by

0,V = mPy + dgsy’, (20)

OpV = demA*(p?* — 1) (21)

Equations for the metric components follow directly
from the Einstein equations. After rearranging, we have

-1
0.0 =
T A+ P (Easw (0,0) + Eaud2$(0,0)))

w2
X [ K(ZAzqﬁz +2VrH)a — riy? ¥a> a’
+ (_rz(arl//)z + 8§BSW(8rW)r - r2A2(8r¢)

+8§GMA2¢(8,¢);’)(1} ¢ —2ad® + Za] : (22)

2

1 10)
0,a = {<<§2GMA2¢2T + &’T + 3 V+ ywz

1 3 AZ ) ) i
X (Z - 6BS> ) a’ + (T (8r¢) + §GMA (ar¢)
Lo+ (o) - B OA )

_EGMA%(araxarqs))a)r '

a

A202 44 A2V a3 _ .3
+( ¢ EomA*P?)a C—l—a a
2r 2r

+ a*r¢(Eempd,V + Epsyd, V), (23)

where
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_ =< 2 2
r= a’r*(1 + 6(&gqw?* + 688 A P?) [A (24

+12§GM¢2)Q2 + Az((ar¢)2r2 + 6§GMr2 (8r¢)2)

2 2
® ®
+ (—6535 ry? = +4Vr? —y?r? _a2> a?

+ (P (Ow) + 6§Bsr2(8rw)2>]

B 68EamP0,V + 688psy 0, V

, 24
1+ 64’51235‘//2 + 6C§éMA2¢2 ( )
and we have defined ¢ as
1
(= (25)

1+ Epsy? + EquA?P?

Note that if we have functions a, @, y, ¢ and eigenvalue
@ which satisfy (18)—(23), then w — tw, @ — 7a, a — a,
v =y, ¢ — ¢, where T € RT, yields another, physically
identical solution, corresponding to a rescaling of the polar
time coordinate, .

In the much simpler
Egs. (18)—(23) reduce to

minimally coupled case,

2
o= <_ g + 8,,,V> a’ — 20,y _(0,0)(0)
a r a
ara)(arl//)

+ (T , (26)

20 0,V , 20,4 (0,0)(0,
PR = (r—er%)aZ— r¢_( “)OE ¢)
(9,a)(9,¢)

+ Y (27)

B Va 1y*e? AL, »
8,0{— <<—7+Z (X2 (1)(1 +Z(A (8,45)

1— A2 2 2 _
Fowy) ) EEEIESE ay
2r
a a vro® Vo AP 3
8,61——5%—5%-(4“2 +§+ 2]"2 >Lll”
+ 5 () + 22(0,0)). (29)

Since the boson star action is invariant under the trans-
formation y — we™?, # € R, we can define a conserved
current, J,, associated with the transformation:

i

J,= Ten (V¥ -0V, "), (30)
2
oy
J, =—-— 31
=2 (31)
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and with it a conserved charge, N,

2
ar
N = /Jﬂn”\/fd)c3 = /Ma)z/lzdr, (32)

where y is the determinant of the metric induced on the
t = const spacelike hypersurfaces and n* is the vector field
normal to those surfaces.

Regularity of the metric at the origin requires

=0 =0, (33)
$lr—0 =0, (34)
dyal,—g = 0, (35)
al—o =1, (36)
0,a|,_y=0. (37)

We note that (37) is not linearly independent of the other
boundary conditions but is a consequence of the regularity
of a at the origin.

Unlike the boson star profile, v, the global monopole
field, ¢, is not free to take on arbitrary values at the origin.
Recall that ¢ is the magnitude of the ¢*’s and that, at every
point, ¢¢ is analogous to an outward-pointing vector field.
As such, to maintain a regularly spherically symmetric
solution, we must have ¢ = 0 at the center of symmetry.

In the limit that » — oo, the boson star profile approaches
zero exponentially while the global monopole transitions
to its vacuum state: w — 0, ¢ = 1+ >_;c;r™". Assuming
series expansions in 1/r, the metric equations can be
integrated, yielding the following regularity conditions at
infinity [13,27]:

limy = 0, (38)
limg = 1 : (39)
imgp =1-— ,
roo AomA*r* (1 4 EguA?)

A2 oM\ -1/
lima=(l-————=+~—] .  (40)
r—>o 1 +&emA r

AZ M 1/2
lima=(1-———5+"—) . (41)
re 1+ &amA r

The asymptotic expansion (40) motivates the definition
of the mass function, M(r), as

_r( —_ A2
M(r)—z(a 1+1—|—§GMA2>, (42)
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which, in the asymptotic limit, is proportional to the
Arnowitt-Deser-Misner (ADM) mass in a solid angle
deficit space-time [28]:

M, = limM(r), (43)
A2 -3/2

My =M [1———— ) . 44

ADM oo< 1+§GMA2> (44)

Together, Eqgs. (33)—(41) give the following boundary
conditions [13]:

Pl =0, (45)

al,— =1, (46)

limy = 0, (47)
lim¢ = 1 ! (48)
r—oo AomA* (1 + EguA?)

lima = (49)

a=-—.
r—oo a

Finally, rather than numerically solving (18)—(23) in r,
we find it more convenient to adopt a compactified
coordinate, x, defined by

x_r—i—p (50)
px

rzl—x’ (51)

x €10,1], (52)

where p is a positive real number and is typically set
between 1 and 100, such that the solution features are well
resolved on a grid uniformly spaced in x.

III. METHODOLOGY

In the following section, we review the numerical
techniques used to find solutions to (18)—(23). First we
introduce the terminology used to discuss the novel features
of the model (Sec. III A) and discuss the solution procedure
itself (Sec. III B). Finally, we test the convergence of the
numerical solutions (Sec. III C), demonstrating that the
solutions we have found are not numerical artifacts.
Additional information on the shooting method and inde-
pendent residual convergence tests may be found in
Appendix A. Likewise, the details of our multiple precision
shooting method can be found in Appendix B.
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A. Solution families and branches

The solutions we present in Sec. I'V exhibit sufficiently
complex behavior that we believe it is worthwhile to define
a number of terms at the outset. Specifically, we will later
make extensive use of the terms family and branch to
denote specific sets of solutions.

The parameter space we consider here is six-dimen-
sional, spanned by y(0), A, Agm, Ags» Egm and Egg. From
this point forward we set m = 1 and note that this sets the
energy scale of the solutions. We define a family of
solutions to be the set of all ground state solutions with
common A, Agum, Ags> Egm and Egg. As such, within a given
family, solutions can be indexed by the boson star central
amplitude, y(0), which is the only free parameter of the
family. As a concrete example, consider the set of all mini-
boson stars (boson stars without self-interaction) which
may be considered a family with A = 0, Agg = 0, &gm = O,
&gs = 0 and Agy arbitrary. From this perspective, Fig. 1
plots the progression of asymptotic mass M, for the mini-
boson star family.

We define a branch of a family to be the set of all
solutions in the family where the asymptotic mass, M, is
C! as a function of the central amplitude, y(0). Using this
definition, mini-boson stars are a family consisting of a
single branch as shown in Fig. 1, while Fig. 2 provides a
mass plot illustrating a hypothetical family with three
branches.

B. Solution procedure

The set of equations (18)—(23) and boundary conditions
(45)—(49) define a boundary value problem (BVP) where
w/a(0) is the eigenvalue of the system. Due to the
appearance of features that shall be discussed shortly, it

0.8

0.61

3 0.4}

=

0.21

FIG. 1. Asymptotic mass, M ., as afunction of boson star central
amplitude, w(0), for ground state boson stars with no quartic self-
interaction potential (so-called mini-boson stars). Stars located to
the left of the first turning point are stable against small perturba-
tion while stars located to the right are unstable [4]. Using our
terminology, the set of mini-boson stars is a family consisting of a
single branch, since the mass is everywhere C'.
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8
=
-0.5
_17
1 2 3
15 - -
10° 10° 10* 10° 10° 10" 10°
¥(0)

FIG. 2. Asymptotic mass, M, as a function of boson star
central amplitude, w(0), for a hypothetical family of solutions
with three branches. The branches of the family are separated by
vertical lines, the positions of which correspond to values of (0)
where dM,/dy(0) is ill defined.

is quite difficult to find initial guesses which will converge
to the correct solutions using standard iterative BVP
solvers. The primary computational challenge, therefore,
is finding sufficiently accurate initial guesses whereupon
we can let the BVP solver we use do its job.

To arrive at a suitable initial guess, the static equations
are first integrated using an iterative shooting technique
[29]. In this method, the boson star profile, w(r), is
initialized to O and the equations for the monopole,
¢(r), and metric are integrated using a Runge-Kutta-
Fehlberg solver (RK45) until the monopole field is well
approximated by its asymptotic expansion, Eq. (48). At this
point, a tail satisfying the expansion is fit to the global
monopole such that ¢ and 0,¢ are continuous across the
join, and the metric equations are integrated to the end of
the numerical domain.

Subsequently, the monopole field is held fixed and the
boson star is solved for via shooting by varying the @
parameter. Typically this parameter is chosen such that the
mass of the configuration is a minimum and the boson star
is in the ground state (i.e. the boson star profile exhibits no
nodes) [10]. Once complete, the boson star field is held
fixed and the monopole equations are reintegrated, etc. This
iterated shooting process is continued until the initial guess
is sufficiently close to the true numerical solution so as to
converge in the BVP solver we use. Sufficient convergence
is typically achieved after 3-5 iterations, at which point the
¢, norms of the residuals are typically around 107>. This
process is summarized in Algorithm 1.

This shooting problem is itself particularly difficult
due to the (potentially) very different characteristic
length scales of the boson star and global monopole.
Correspondingly, a naive application of the shooting
method will not yield guesses suitable for use in a BVP
solver for the vast majority of the parameter space. The
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Algorithm 1. TIterated shooting procedure.

1: initialize ¢(x) to O

2: initialize w(x) to 0

3: while not converged do

hold w(x) fixed

shoot for ¢(x)

fit tail to ¢(x)

integrate metric functions to asymptotic region
hold ¢(x) fixed

: shoot for y(x)

10:  fit tail to y(x)

11: integrate metric functions to asymptotic region
12. end while

R AN AR

interested reader is directed to Appendix B for a detailed
description of how we overcame this issue using a multiple
precision shooting method.

Upon achieving a sufficient level of convergence, the
fields are used as an initial guess for a boundary value
solver built using the program TWPBVPC, which solves two
point boundary value problems using a monoimplicit
Runge-Kutta method [30]. To account for the fact that
the static equations constitute an eigenvalue problem in
w/a, the equations and boundary conditions are supple-
mented by the trivial ordinary differential equation
0, = 0 [31]. Our BVP solver requires the same number
of boundary conditions as equations and we have many
possible choices for a boundary condition for this last
equation. Of these, we adopt 0,a|,_, = 0 [31] which, as
noted above, is satisfied automatically in the continuum as
a consequence of regularity at the origin.

As detailed in Secs. IIT A and IV, the solutions we have
found are characterized as belonging to specific branches
of various families. Within a given branch, it is possible to
use parameter continuation” to find additional solutions on
that same branch, but we were unable to use this method to
traverse between branches. Our procedure for finding
solutions is thus as follows: within a given family, we
identify all branches using the shooting method, and these
approximate solutions are used as initial data for our BVP
solver. Subsequently, we populate the various branches
using parameter continuation (one continuation per branch)
and the BVP solver.

C. Convergence of numerical solutions

Once we have constructed our solutions, it is necessary to
verify that the results we have found are in fact approximate

2By using the solution output from the BVP solver as an initial
guess for a problem with slightly modified parameters, it is
possible to generate a solution to the modified problem if that
solution does not exhibit significantly different characteristics.
Unfortunately, we were unable to use this method to generate
solutions on different branches as solutions on distinct branches
are radically different from one another.
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FIG. 3. Convergence of independent residuals for a solution
near the limit of our code’s ability to resolve solutions. This limit
occurs when features are present at very large distances from the
origin. Here we plot the scaled residuals of the metric function a
evaluated on grids of 8192, 4096 and 2048 points using a second-
order finite difference scheme for the IR evaluator. With the
scaling given in the figure, overlap of curves implies second-
order convergence. As described in the subsequent sections, the
large spikes near the middle and right of the graph are caused by
the presence of shells of matter far from the origin. However, even
in the vicinity of these shells, convergence is sufficiently precise
that it is difficult to distinguish the separate scaled residuals.

solutions of (18)—(23) and not numerical artifacts. We
accomplish this by performing independent residual (IR)
convergence tests on the results (see Appendix A 2).

Figure 3 demonstrates second-order IR convergence for
a typical solution from the BVP solver. When higher-order
schemes for the independent residuals are used on the 8192
point grid, the residuals are observed to be nonsmooth
fluctuations about zero with an amplitude of ~107'2,
indicating that our solutions are essentially exact to
machine precision.

All results presented in the subsequent sections are based
on solutions output on a grid of at least 8192 points with a
specified error tolerance of no more that 10~'2. We note that
TWPBVPC allocates additional grid points in the vicinity of
poorly resolved features and verifies convergence through
the use of high-order discretizations [30]. As such, if 8192
grid points are insufficient to resolve a particular feature of
a solution, TWPBVPC will automatically allocate additional
points to ensure that the desired error tolerance is main-
tained. Note that in the above convergence test, these
advanced features are deactivated so that each output
resolution is not “polluted” by higher-order approxima-
tions. As such, the true solutions are of even higher fidelity
than those used in our testing.

IV. RESULTS

Due to the large parameter space associated with these
solutions (as noted above, six-dimensional in w(0), Agg,
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TABLE 1. Parameters for families of solutions. Each family
consists of a continuum of solutions differentiated by the central
amplitude of the boson star.

Family A? Acm Eas Eom
(a) 0.49 0.001 0 0
(b) 0.01 0.001 0 0
(c) 0.36 1.000 0 0
(d) 0.81 0.010 0 0
(e) 0.25 0.001 3 3
() 0.49 0.010 5 0
() 0.09 0.010 0 5

Acms A, &g and &gyp), it was not feasible to perform a
comprehensive survey of the solution space. Instead, we
focus on a number of families of solutions which appear to
capture the novel behavior associated with this model.

Specifically in subsequent sections, we will deal with
seven families of solutions whose fixed parameters are
given in Table I and where the variable family parameter in
each instance is the central amplitude, w(0), of the boson
star. For simplicity, the boson star quartic self-interaction
coupling constant, Agg, has been set to 0, and we remind the
reader that we have set m = 1.

To better highlight the main properties of these families
and provide the reader with a representative view of some
of the solution phenomenology, profiles of the metric
functions, monopole field, boson star profile, mass function
and Noether charge are shown in Figs. 4-9 for select
solutions from families (b), (d) and (e).

As is evident from these figures, the model exhibits a
number of unusual properties, the most obvious of which
concerns the profiles of the boson star field. For many

22} e
2t /
18 /| —family (b)
— I |- - -family (d)
&~ .
T 167 : - - family (e)
14} /
1.2} L
‘// \~,~________
1 =T .
10° 10" 10 10°  10°
T

FIG. 4. Radial component of the metric, a(r), as a function of
areal radius, r, for representative solutions from families (b),
(d) and (e). Here the meaning of the global monopole’s solid
deficit angle is obvious: rather than approaching flat space as
r— oo, we approach a space-time which is the four-
dimensional analog of a cone.
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FIG. 5. Time component of the metric, a(r), as a function of

areal radius, r, for the same solutions plotted in Fig. 4. When the
energy contribution of the global monopole is strong, observers at
infinity see time at the center of symmetry as flowing faster rather
than slower as is the case for ordinary compact stars.

FIG. 6. Global monopole field, ¢(r), as a function of areal
radius, r, for the previously plotted solutions. Relative to the
boson star profile (Fig. 7), where the effect of coupling to the
monopole is clear, for the majority of the parameter space
the global monopole field is not significantly distorted by the
presence of the boson star. In the presence of large nonminimal
couplings, however, the field can become significantly dis-
torted near the origin, which contributes to the compactness of
the stars [13].

families, these profiles are characterized by a series of
matter shells which are located far from the origin and
which contain the majority of the bosonic mass of the
system. Although these configurations are superficially
similar to the excited states of a standard boson star, we
emphasize that they represent ground states of the system.
The excited states—which we can also find—are charac-
terized by higher masses and nodes in the boson star profile
at radii beyond the final shell, as in the case of a standard
boson star [10]. In what follows, we restrict our inves-
tigation to ground state solutions.
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FIG. 7. Boson star field, y(r), as a function of areal radius, r,
for the previously plotted solutions. Here, we can see that the
solutions from families (d) and (e) are not monotonically
decreasing, instead exhibiting successive shells of matter. Ex-
cluding the central peak, the solutions from families (d) and (e)
consist of seven and three shells, respectively.

101 ' ' ' i

—family (b)] N

- - -family (d) '/ Sl
57 |- - family (e) |
o) /
=

10° 10" 10° 10" 10°
r
FIG. 8. Mass function, M(r), as a function of areal radius, r, for

the previously plotted solutions. It can be seen from inspection
that the majority of the bosonic mass is contained within the
matter shells rather than near the origin. In the minimally coupled
case, the mass contributions from the monopole and boson star
are roughly equal and opposite, while in the nonminimal case the
global monopole can contribute a positive effective mass [13,27].

A. Branching behavior of minimal topological-defect
boson stars

Interestingly, the number of matter shells is not constant
within a given family. Viewed as a function of the boson
star central amplitude, y(0), as one progresses through the
family the matter shells will move either towards or away
from the origin depending on the region of parameter space
one is investigating. At discrete central amplitudes, ¢,
which we will refer to as critical central amplitudes in
anticipation of later results, the solution will either gain a
shell far from the origin or lose the furthest shell. This

PHYSICAL REVIEW D 93, 044022 (2016)
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FIG. 9. Charge function, N(r), as a function of areal radius, r,
for the previously plotted solutions. When the number of shells is
relatively small and well separated, each matter shell is seen to
contribute roughly the same quantity of bosonic matter.

—p(0) =1.25-107*
0 | ---1(0) =1.28 - 1074 | |
--9(0) = 1.50 - 10~

.
i

-20

10 0 1 ‘2 ‘3 4
10 10 10 10 10

FIG. 10. Progression of boson star profile, y, about a critical
central amplitude for family (d) as a function of central
amplitude, w(0). Approaching the critical central amplitude (¢~
1.255843 x 10~*) from below (black line), there are no shells far
from the origin. After crossing the critical central amplitude (red
line), there is a shell of bosonic matter located far from the origin.
As the central amplitude is further increased (blue line), the
asymptotic shell migrates inwards.

behavior is shown in Figs. 10 and 11, which demonstrate
the behavior of the matter fields in the vicinity of a
critical central amplitude for solutions from family (d).
We note that in many cases the shells appear at extremely
large distances: we will refer to these as asymptotic shells
and will, in fact, eventually argue that they appear at
infinity.

Examining Fig. 10, one observes that the boson star field
at times becomes exceedingly small in the region between
successive shells. In fact, when one is sufficiently close to a
critical central amplitude, it is not unusual for the boson
star field in the part of the domain before the final shell to
approach y(r) ~ 1073%, the limit of double precision

044022-9



GRAHAM D. REID and MATTHEW W. CHOPTUIK

1}
0.75 (0)=1.25-10"1
. ¥(0) =1.28 1074
= - — .10~4
= 05 ¥(0) =1.50- 10
0.25}
0 L
10° 10’ 10% 10° 10*
r
FIG. 11. Progression of global monopole field, ¢, about a critical

central amplitude (y¢ ~ 1.255843 x 10~*) for family (d) for the
same solutions shown in Fig. 10. The global monopole field is not
significantly affected by the presence of the asymptotic shells and
exhibits no significant changes near the critical point.

floating point numbers.” Correspondingly, the appearance
of the shells of matter is due to the nonlinear interaction of
the boson star and global monopole mediated by gravity
rather than a consequence of the equations describing the
boson star alone.

Plotting asymptotic mass versus central amplitude, as in
Figs. 12 and 13, the locations of the critical central
amplitudes, when they exist, are clearly visible as mass
gaps in the spectrum. The gaps in turn correspond to the
abrupt appearance of shells of matter far from the origin.

We can gain some insight into the appearance (or
disappearance) of a shell as follows. Assuming that the
magnitude of the boson star profile goes as |y| < 2, and
enforcing the boundary conditions (38)-(41), we find
T « r~2. Under these conditions, Eq. (18) may be written
to leading order in 1/r as

Py = 8(r)ya, (3)

where we define the criticality function, §(r), as

2

5@5—%+W. (54)

Then, provided the following conditions hold as r — oo:

5(r) > 0, (55)

*From a numerical perspective, this is not so much of a concern
as it might appear. Even if the relative error of the boson field
becomes large in these regions, the absolute error of the solution
will remain small. What is important is that we maintain accuracy
in regions of significant matter density such as the shells.
Correspondingly, the exact minimum value achieved is both
uncertain and unimportant.
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FIG. 12. Asymptotic mass as a function of central amplitude for
family (c). Unlike the other families, family (c) does not exhibit
critical central amplitudes and consists of only a single branch.
This is likely due to the size of the global monopole self-
interaction (Agy = 1.00) which greatly reduces the length scale
of the monopole (in the case of the minimally coupled monopole,
the transformation Agy — &*Agm. 7 = 7/k, t = t/k generates a
new solution from an existing one). As such, the space-time
achieves its asymptotic solid angle deficit on a length scale small
compared to the size of the boson star.

A2 -1/2

[ , 56

‘T < I+ fGMA2> (56)
AZ 1/2

] —— , 57

“ < 1+ chMAz) 57)

the solutions to (53) are exponentials as would be expected
for the boson star by itself. If, however, 6(r) switches sign
at some finite » > 1, the second derivative of the solution

N

-4

|
0.4} 1
|

0.2} !
28_0-2 :\\\\\\V// / -

-04 1

FIG. 13. Asymptotic mass as a function of central amplitude for
family (d). The bottom plot shows an expanded view of the top one,
highlighting the structure. Note the turning point showcased in the
subplot and marked with the vertical dashed line. This corresponds
to a matter shell that was originally progressing inwards (as a
function of boson star central amplitude), progressed to some
minimal distance from the origin (corresponding to the turning
point) and then reversed direction and progressed outwards.
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FIG. 14. Progression of mass function, M(x), about a critical
central amplitude (p¢ =~ 1.255843 x 107*) for solutions from
family (d) as a function of central amplitude. Here we have
plotted the same solutions shown in Fig. 10. As one progresses
across the critical point, a new shell of matter appears far from the
origin (red dashed line) and then moves inward (blue dot-dashed
line). Note that the inner and asymptotic shells contain approx-
imately the same amount of bosonic matter and that as we cross
the critical central amplitude, the asymptotic mass changes
discontinuously. Also note the use of the compactified spatial
coordinate, x, here and in many of the plots below.

would become negative, forcing the appearance of a zero
crossing and the nature of the solution would no longer be
simple exponential growth or decay. As such, the condition
5(r) > 0 as r —» oo predicts a change in the nature of
the asymptotic solution at that point, which happens to
correspond to the development of a shell of matter.

The critical central amplitudes therefore correspond to
the solutions which have § = 0 at infinity. An example of
this is shown in Figs. 14 and 15 which plot the mass

0.25¢ - *Q/)(O) = 125 . 10_4
' —(0) =1.28-10~*
0.2 ——-(0) = 1.50 - 10~
0.15¢
&
= 01
0.05¢1
0
-0.05
0 0.25 05 0.75 1
T
FIG. 15. Progression of criticality function, §(x), about a critical

central amplitude (p¢ =~ 1.255843 x 107*) for solutions from
family (d) as a function of central amplitude. As before, we have
plotted the same solutions shown in Figs. 10 and 11; however, we
have plotted versus x to more clearly showcase the turning points
of the criticality function. Note that as we cross the critical central
amplitude, §(x), never dips below 0 asymptotically.
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function, M(r), and criticality function, &(r), respectively,
in the vicinity of a critical central amplitude.

B. Branching behavior of nonminimal
topological-defect boson stars

Solutions with nonminimal coupling also exhibit critical
central amplitudes and mass gaps, but additionally display
a few crucial differences relative to the minimally coupled
case. Figures 16-18 show the mass spectra for families
(e), (f) and (g). From Figs. 16 and 18 it can be seen that the
nonminimal coupling smooths the transitions that occur at

10+ }

of !

FIG. 16. Asymptotic mass as a function of central amplitude for
family (e). The subplot shows an expanded view of the upper plot
highlighting the structure. The nonminimal global monopole
coupling appears to smooth out the transitions for at least a
subsection of the parameter space. However, note the disconti-
nuity between the final and penultimate branches of the upper-
most subplot, which is not an artifact of the resolution of the plot.
At the critical central amplitude, the mass approaches ~1.5 on the
left and =~ — 1.3997 on the right.

1.5¢1

Al i

¢ 057
= o\\v/ / /

-05 1

FIG. 17. Asymptotic mass as a function of central amplitude
for family (f) with a minimally coupled global monopole and
nonminimally coupled boson star. The subplot shows expanded
views of the uppermost plot, highlighting structure which is
insufficiently resolved in the first plot. Unlike Figs. 16 and 18,
there is no smoothing between the solution branches.
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FIG. 18. Asymptotic mass as a function of central amplitude for
family (g). As with family (e), the branches exhibit significant
smoothing. Correspondingly, the smoothing behavior appears to
be an effect of the nonminimal global monopole coupling rather
than nonminimal boson star coupling.

the critical amplitudes, for at least some of the parameter
space. The mechanics of this smoothing mechanism are
expanded upon in Figs. 19 and 20, where it is shown that as
the central amplitude, y(0), is increased, the location of the
matter shell increases to some maximum radius, at which
point further changes to the central amplitude result in the
shell shrinking to nothing. Note, however, that this behav-
ior is not universal for the nonminimally coupled case;
there is a mass gap about the final branch of family
(e) shown in Fig. 16 and family (f) is entirely without

0

10° 10" 10° 10°

10

< 10° {’"\‘
Y —(0) = 4.040-1072|| [
% ---1(0) = 4.042 - 1072 ;/ \l
~-(0) = 4.044-1072] |1
107} “
|
0

FIG. 19. Progression of boson star profile, y, about a critical
central amplitude for family (e) as a function of central
amplitude. Approaching the critical central amplitude (y§=
4.04229 x 1072) from below (black line), there are no shells
far from the origin. As the critical central amplitude is crossed
(red line), a matter shell appears some finite distance from the
origin. As the central amplitude is further increased (blue line),
the shell increases in mass and begins to migrate inwards. In
contrast to the behavior of the minimally coupled case (Fig. 10),
the shells of matter appear or disappear at some finite distance
from the origin.
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FIG. 20. Progression of mass function, M(x), about a critical
central amplitude (y§ ~ 4.04229 x 1072) for family (e) as a
function of central amplitude. Here we have plotted the same
solutions shown in Fig 19. In contrast to the apparent behavior of
the minimally coupled case where the critical points can be
determined by eye, in the nonminimally coupled case the shells of
matter disappear at some finite distance from the origin and the
asymptotic mass is continuous across the critical central ampli-
tude. In general, when the shells of matter appear or vanish at a
finite distance from the origin, the criticality function is of limited
use in determining the value of the critical central amplitudes.

smoothing (Fig. 17). Evidence based on various solution
families we have examined suggests that this smoothing
behavior is a function of global monopole coupling rather
than boson star coupling.

As the asymptotic shells may appear at either some
finite areal radius or at infinity in the nonminimally coupled
case, the criticality function, §(r), is of limited use in
determining the value of the critical central amplitudes, ¢,
when smoothing is present. When the asymptotic shell
vanishes at some finite areal radius, we find the critical
central amplitudes through continuation, tuning the boson
star central amplitude until the final shell vanishes. In the
case that the asymptotic shell vanishes at infinity, the
critical central amplitudes are found via the procedure
described in Sec. IVA.

C. Critical scaling of asymptotic shells

In the nonminimally coupled case, the matter shells
frequently vanish at some finite areal radius. Given these
results, it is worth investigating in more detail whether the
observed behavior of what we have identified as asymptotic
shells is simply an artifact of limited resolution and/or
finite precision in our numerical algorithms. The following
analysis of the dependence of the location of such a shell on
the family parameter strongly suggests that the phenom-
enology we are seeing is bona fide.

Plotting areal radius of an asymptotic shell, r,, as a
function of |y(0) — y¢| as in Figs. 21 and 22, it is seen that
r, follows the scaling law:
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FIG. 21. Areal radius of outermost shell (r,) as a function of

[w(0) —y¢| for selected branches of family (d). Within a given
family, the areal radius of the outermost shell follows the scaling
law (58) with very similar exponents, p ~ 1. It is possible that the
variations in the computed exponents, relative to p = 1, would
disappear in the limit r; — oo, |w(0) — y$| — 0, with the metric
functions approaching their asymptotic values. However, our
code is incapable of exploring this regime.

ry o [y (0) —yi[77, (58)

with p ~ 1.

This indicates that at the critical central amplitude, ¢,
the shell reaches infinity. As such, a critical central
amplitude appears to signal something analogous to a
first-order phase transition in statistical mechanics where
the asymptotic mass takes the role of the energy and the
mass gap is similar to latent heat. In the nonminimally
coupled scenario these transitions may be partially

10
family (a)
—p =0.994
. family (b)
107} —p=20.975 |
< family (d)
— p=10.993
10°}
107 107 107 10°
[P (0) — ]

FIG. 22. Areal radius of outermost shell (r,) as a function of
[w(0) —y¢| for selected branches of families (a), (b) and (d).
Given the variation in the parameters, the scaling exponent p is
remarkably consistent across families (p = 1). As in the case of a
single family (see Fig. 21), it is possible that these small
variations would disappear in the asymptotic limit.
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FIG. 23. Areal radius of outermost shell () as a function of

[w(0) — w¢| for selected branches of families (e) and (f). Here we
plot the penultimate branch of family (e) as it is the only one
which exhibits a mass gap (see Fig. 16). It is observed that both
the minimally coupled and nonminimally coupled cases exhibit
approximately the same scaling exponent, p ~ 1.

smoothed out, as shown in Fig. 16 and 20, in which case
scaling law is not obeyed.

From Fig. 21 it can be seen that within a given family, the
areal radius of the outermost shell, r,, appears to follow the
same scaling law, indicating the presence of an underlying
mechanism for the scaling that we will investigate in the
next section. Moreover, Figs. 22 and 23 demonstrate that
this scaling appears to be preserved across families, with
variations perhaps due to the fact the shells are not entirely
within the asymptotic regime. As such, there is evidence
that all families, including nonminimally coupled families,
follow the same universal scaling law (p = 1).

D. Derivation of scaling law

In this section we present a derivation of the apparently
universal scaling law observed above. We show that the
scaling relation can be derived assuming only that asymp-
totic shells of matter exist and that the region before the
asymptotic shell is well approximated by the asymptotic
expansion of the fields given by (38)—(41). In what follows,
we view the solutions as simultaneous functions of r and
w(0). In particular, we consider the following functional
quantities:

a(r.y(0)), (59)

@((0)). (60)

As previously noted, in the case where there is a mass gap
between branches, the areal radius of the asymptotic shell,
rg, corresponds to any boson star central amplitude,
w(0) = y¢, where the criticality function, §(0), is equal
to O far from the origin. Provided we are in the asymptotic
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regime, we have the following condition derived from the
asymptotic expansion of a as r — oo:

A2 2M(y(0))
I +éamd® 7 ) oy

atr)7 = (1 -

where M is the value of the mass parameter before the
asymptotic shell.

Writing the radius of the asymptotic shell as a para-
meterized function of y(0),

ry = r;(w(0)). (62)

and evaluating (18) in the asymptotic regime, we have

_ o0 rw(0) (63)

a(ry.y(0))?

where y(y(0)) parameterizes the 1/r dependence of (18).
Equation (63) is then the condition that the criticality
function, &(r), approximately vanishes in the vicinity of the
asymptotic shell.

We expand the parameter y(w(0)), mass function,
M(y(0)), and eigenvalue, w(y(0)) as functions of the boson
star central amplitude, y(0), about the critical point, y¢:

dr(w(0))

o) =+ o) -wi G e
My 0) = Mo + 0w PG e
oy (0)) = wp + |y(0) - |% S

where derivatives are evaluated on the branch with the
asymptotic shell and the signs are chosen to give the observed
behavior. Upon substituting (61)—(66) into (63) and evaluating
at r = ry we find

(Gl 2ty wO il roram)

y Ow A2 '
2 < —m2 - =
@+ 2 (0) =yl ow(0) " (1 1+fGMA2>
(67)

Noting that evaluation of (61) at the critical point
(r = o) gives

2 AZ
GNP — (68)
m 1+ &emA

this simplifies to
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1 9, oM 2
. __Gamtaom (G + Mo)m (69)
' @o 836(00) @0 By, (0y a.,, |l//( ) =il

It can be seen from inspection that in the limit
lw(0) —w¢| — 0, Eq. (69) has the same functional form
as the scaling law found experimentally [Eq. (58)] with
p =1 as observed in Sec. IV C.

V. SUMMARY

Following and expanding upon the work of Marunovic
and Murkovic [13], we have found new families of
numerical solutions for the topological-defect boson star
system (Secs. I and II). As we were unable to find our
solutions using standard BVP solvers with generic initial
guesses, we developed a modification of the standard
shooting method which permits integration to arbitrary
distances (Appendix B). With initial guesses supplied by
this shooting procedure, we were able to find convergent
solutions using a BVP solver based on the code TWPBVPC
[30] (Sec. III B). The correctness of these solutions was
then established through the use of independent residual
convergence tests (Sec. III C).

Analysis of these solution families (Sec. IV) reveals that
the solutions possess a number of novel properties which
are summarized here. Perhaps most fundamentally, in
contrast to boson stars, topological-defect boson stars
cannot, in general, be deformed continuously throughout
the parameter space. There exist critical central amplitudes
in the parameter space for which the matter fields and
metric functions exhibit finite change due to an infinitesi-
mal change in parameters. Specifically, as one increases the
central amplitude of the boson star, y(0), while keeping all
other quantities fixed, there exist a series of central
amplitudes, w¢, where shells of bosonic matter either
appear or disappear far from the center of symmetry
(Secs. IVA and IV B). To our knowledge, solutions with
this behavior have not been previously observed.

These abrupt transitions in the functional form of the
solutions appear similar to statistical mechanical phase
transitions about a critical central amplitude. As such, these
solutions may represent critical solutions in the sense that
the appearance of a shell of matter far from the origin is
analogous to the latent heat of a phase transition.

Of particular note is the observation that the areal radius
of the centers of these asymptotic matter shells appears to
follow a universal scaling law, Eq. (58), with p=x1
(Sec. IV C). This relation is observed to hold in both the
minimally coupled and nonminimally coupled cases and
suggests an underlying closed-form explanation which we
were able to derive (Sec. IV D).

We are currently studying the stability of these solutions
through dynamical simulation and perturbation theory.
Results will appear in a subsequent paper.
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APPENDIX A: NUMERICAL TECHNIQUES

In the following Appendix, we briefly review the
numerical techniques used in finding solutions to our
model. Appendix A 1 reviews the shooting method while
Appendix A 2 reviews independent residual testing. More
detailed information on these subjects can be found in [29]
and [32], respectively.

1. Shooting method for BVPs

Given a set of ordinary differential equations Lu(x) = 0
and boundary conditions Gu(x) =0, where L and G
are differential operators and u(x) is the solution vector,
one can formulate a solution as an initial value problem
at x = xy where the initial conditions are given by the
guess ug(xg). Setting i = 0, and integrating the problem
to the boundary regions, one finds the residual
res;, = Gu; and then updates the initial guess using
u; (%) = u;(xo) —J 'res;, where J=9G/du,(xy) is
the Jacobian of the boundary conditions. Upon repeated
iteration i = 1, 2, 3, ..., the solution is expected to converge
quadratically provided u;(xy) is sufficiently close to u(xy).

Even if the problem is not well defined on the entire
domain (i.e. there exist choices of wu;(x) for which the
function exhibits discontinuities on the domain), one can
sometimes use a modified version of this method. In the
case of the mini-boson star, the only free parameters at the
origin are w/a(0) and the central amplitude y(0). Fixing
w(0), one finds that for w/a(0) < Q;, where €; is an
eigenvalue of the problem, the solution diverges to positive
infinity. Conversely, for w/a(0) > €;, the solution diverges
to negative infinity. One may therefore use a binary search
to find Q; precisely enough to integrate to the asymptotic
regime of the boson star, where one fits an exponential tail
to the star. The algorithms below summarize this process
for the boson star (Algorithm 2) and global monopoles
(Algorithm 3), respectively.

Algorithm 2. Boson star shooting.

: hold ¢(x) fixed

: initialize y(0)

: set bounding values of @, wy;e, and wyyy

csetw = O'S(whigh + CU]OW)

: perform binary search on ®, integrating y(x) and metric
functions as far as possible

: find rp,, such that bounding solutions differ by e

: fit tail to w(r) for r > rp.

8: integrate metric functions to asymptotic regime

L T R N

~
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Algorithm 3. Global monopole shooting.

: hold w(x) fixed
: initialize ¢(0) =0
: set bounding values of d¢p/0r, O/ Oryign and O/ Or gy,
2 set 0gp/Or = 0.5(0¢p/ Oryign + Op/ Ot io,)
: perform binary search on d¢/0r, integrating
¢(x) and metric functions as far as possible
: find rp,, such that bounding solutions differ by e
- fit tail to ¢(r) for r > rpay
8: integrate metric functions to asymptotic regime

I S R N

~N

2. Independent residual convergence

Assume a differential equation Lu =0 and a corre-
sponding finite difference approximation L"u” = 0. Here,
h is the discretization scale and L" and u” are the finite
difference approximations to the differential operator and
solution, respectively. An IR convergence test applies an
alternate numerical discretization, I:h, of the differential
operator, to the previously found solutions to yield a
residual, res”.

Knowing the order, m, of the solution and order, n, of the

IR operator, Lh, we expect the residual, reés”, to be
proportional to A’ with [ = min(m, n). As the IR operator
is applied to finer grids with spacings h,h/2,
h/2%,...,h/2% we expect the residuals to be proportional
to h',h!/2!, ' /2%, ... k! /2K indicating [th-order conver-
gence. If instead the residuals fail to converge or converge
to a value other than 0, there is an error in either the solution
procedure or the IR operator. As such, IR convergence tests
provide good evidence for convergence of numeric sol-
utions provided that IR operator has been derived sepa-
rately and correctly [32].

APPENDIX B: MULTIPLE PRECISION
SHOOTING METHOD

It might be asked why it is not possible to use simple
functions (such as Gaussians) as initial guesses for the
BVP solver rather than crafting nearly exact solutions with
the shooting method. In practice, we have found that for an
arbitrary initial guess the solution is more likely to
converge to one of the infinity of excited boson star states
[10] than to the ground state. In addition, since we are
dealing with a numeric problem on a finite domain, there
are “pseudosolutions” which satisfy the boundary condi-
tions to within tolerance where imposed but fail to
correspond to any solution when more stringent error
tolerances are used. For these reasons it can be challenging
to find good initial guesses even in the absence of a global
monopole.

Additionally, once the global monopole field is intro-
duced, the ground state solutions include shells of bosonic
matter far from the origin which contain much of the star’s
mass. Since these solutions are characterized by the
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FIG. 24. Profile of the boson star profile for a solution from
family (b) (see Table I). It can be seen that the double precision
shooting method (e ~ 10~'%) does not localize w sufficiently to
integrate the solution to the asymptotic regime. Here we compare
the true solution (black line) to the bounding solutions generated
via the shooting method and observe that the integration with
double precision fails before all relevant features are resolved.

appearance of matter shells, an initial guess which does
not have the shells in at least approximately the correct
positions is unlikely to converge.

In practice, when we supply the BVP solver with simpler
initial guesses the solutions either fail to converge or else
converge to a pseudosolution for large error tolerances and
then fail to converge when subjected to more rigorous error
tests. For this reason it is important to supply a very good
initial guess to the BVP solver.

Complicating the shooting process is the fact that in
many cases double precision (8-byte floating point) is
insufficient to tune @ such that the boson star achieves its
asymptotic behavior. Figure 24 displays an illustrative
example, showing the result of shooting in @ with double
precision and how it fails to capture the true solution. From
experience, certain branches (typically those with many
shells) have necessitated finding o to better than 10710 to
integrate the problem to the asymptotic regime. As double
precision has a relative error of about 107!6, this is
problematic.

Finding a parameter to within 10~1%° demands the use of
extended precision libraries and integrating with such a
small error tolerance would be a prohibitively expensive
prospect for extensive parameter space surveys.
Fortunately, we do not need to actually solve the problem
to these tolerances. In practice, maintaining a relative error
of 107!2 or so is more than sufficient to provide a good
initial guess to the BVP solver. As such, we do not have to
find e to within 107150 of the true value, we simply have to

PHYSICAL REVIEW D 93, 044022 (2016)

Algorithm 4. Multiple precision shooting method.

1: hold ¢(x) fixed
2: initialize w(0)
3: while not in asymptotic regime do

4:  set bounding values of @, @yjgn and @y,
5 set w = O.S(a)high + wlow)
6:  perform binary search on w, integrating y/(x) and metric

functions as far as possible
7:  find r,,, such that bounding solutions differ by e
8:  initialize y(ry.) With bounding solution at r,,,
9: end while
10: integrate metric functions to asymptotic regime

find @ to within 107'%° of a value which results in an
asymptotically well-behaved solution with respect to our
given step size and error tolerance.

Thus, we arrive at the following paradigm: use extended
precision to differentiate between solutions (characterized
by minute differences in @) while maintaining an error
tolerance of e~ 107'2. In other words, our shooting
solutions maintain extremely high precision but only
standard accuracy.

Unfortunately, computations that use extended precision
libraries are extremely slow compared to hardware-
implemented single or double precision operations and
performing all operations to accuracy better than 107150
while maintaining an overall integration error of € ~ 10712
seems wasteful. For this particular problem it turns out that
it is possible to do better.

Using quad precision (16-byte floating point), it is
possible to integrate the equations and find @ to a precision
of about 1073*. Maintaining an absolute error € ~ 10~'¢ and
relative error of at least ¢ ~ 107!2, we find the radial
location r,,,, where the high and low bounding solutions
differ by some value greater than this tolerance (typically
102 for absolute error and 10~® for relative error) and stop
the integration at this point.

We then initialize a new shooting problem at r = rp,,
with the initial conditions being the result of the previous
integration and once again integrate outwards, shooting for
w. This process is repeated until the boson star profile is in
the asymptotic regime. The overall process is summarized
in Algorithm 4.

We typically perform about seven of these iterations (the
equivalent of about 200 digit precision in @, allowing us to
integrate out about 7 times as far as double precision), at
which point it is found that the final value of @ differs from
the first by about 10710, This is acceptable considering our
desired accuracy. In practice we have found this method to
be tens of times faster than integrating with extended
precision libraries.
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