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Gravitational Wave Extraction and Outer Boundary Conditions by Perturbative Matching
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We present a method for extracting gravitational radiation from a three-dimensional numerical
relativity simulation and, using the extracted data, to provide outer boundary conditions. The method
treats dynamical gravitational variables as nonspherical perturbations of Schwarzschild geometry. We
discuss a code which implements this method and present results of tests which have been performed
with a three-dimensional numerical relativity code. [S0031-9007(98)05380-0]

PACS numbers: 04.25.Dm, 04.30.Db, 04.70.Bw

Numerical relativity represents the only currently viabledistances from the source, it is necessary to extract gravi-
method for obtaining solutions to Einstein equations fortational waves comparatively near the strong field region
highly dynamical and strong field sources of gravitationaland to have boundary conditions that allow radiation to
radiation. Using these techniques to study coalescingass cleanly off the mesh. If poor outgoing boundary
black hole binaries is the purpose of the multi-institutionalconditions are imposed, spurious radiation is produced
Binary Black Hole “Grand Challenge” Alliance effort [1] which can contaminate the computed gravitational wave
which is presently underway in the United States. Thiform. Additionally, the outer boundary is usually close
effort is also motivated by the prospect of observationenough to the isolated source that backscatter of radiation
with the next generation of gravitational wave detectors. from curvature is significant. This source of incoming

In addition to tremendous demands on computationatadiation needs to be built into the outer boundary condi-
resources, implementing the standad+- 1 [2,3] for- tions. An approach to the extraction of gravitational wave
mulation of Einstein theory as a Cauchy problem [4] isinformation and the computation of outer boundary con-
complicated considerably by the necessity of imposinglitions that exploits the matching of the interior numerical
boundary conditions which maintain numerical accuracysolution with an exterior perturbative solution on spacelike
and the physical correctness of the solution. Both inneslices has been developed during the past decade and
and outer boundary conditions have received considerabkgpplied to a number of different physical scenarios [6—38].
attention. Recent efforts on interior boundaries have foExtension of these techniques to three-dimensional (3D)
cused on the excision of the interior of the black hole fromsimulations has been one of the efforts of the Alliance. A
the computational domain (see, for example, [5]). Thisparallel development is also underway in the Alliance that
paper will concentrate on the problem of outer boundarymatches interior Cauchy solutions to exterior solutions on
conditions applied at a finite radius around a source otharacteristic hypersurfaces [9].
gravitational waves. In this Letter we report the first successful application

Proper boundary conditions on spacelike slices obf the perturbative matching approach to provide outer
asymptotically flat spacetimes aessentialfor the accu- boundary conditions for a 3D numerical relativity code.
rate computation of the gravitational wave forms producedn this context, the perturbative matching method should
in the strong field region that represent the observationallpe viewed as a general “module” that can be coupled to
relevant aspect of the computation. Since it is not feasiblany nonlinear “interior” 3D code. While the latter solves
to simulate on spacelike slices out to arbitrarily largethe Einstein equations in the highly dynamical strong field
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region, the former extracts gravitational wave data and In odd parity, we take the wave equation fof and use
imposes outer boundary conditions. In the following wethe linearized momentum constrain‘%o(xf‘ — Bf‘Kf) =
give an overview of the method and present test results, to eliminate the odd-parity amplitud@x). In even
obtained from the evolution of linear waves. parity, we use the wave equation fey, together with the
Nonspherlcal_perturbatlons of Schwarzschlld geometryy 4ve equation obtained for the trace= K',’» = h(t, )Y,
have been studied for many years in the context of blacknq the linearized momentum constraints. In this way we

hole perturbations [10,11] and as a way to extract gaugesjiminates, andc. and obtain two coupled equations for

invariant information about gravitational radiation [6]. a. andh. For each(¢, m) mode, we therefore have one
More recently Schwarzschild perturbation theory has beede-parity equation

found to be useful in studying the late-time behavior of the

coalescence of compact binaries in a numerical simulation{af - N*9? — z[iﬂa, — 2—]‘3/1 <1 - 3ﬂ> +
after the horizon has formed [8,12,13]. r r 2r

We base our treatment of Schwarzschild perturbation NZV(K +D 6_MH( Y-
theory on a recent hyperbolic formulation of Einstein field r2 r3 @xJem =Y,
equations [14]. A principal advantage of this approach is 4)

that we can easily derive perturbative wave equations i . :

terms of the standar@l + 1 variables, making it straight- and two coupled even-parity equations,

forward to match exterior perturbative solutions to interior| 52 — §452 — gN“a, + N2 w+n _ o +

numerical ones. This method leads to spatially gauge- ' oo r? r?

invariant radial wave equations for each angular mode [15]4M  3M? 4 _, M
B + [ 2521 2o,

which we have used (a) to extract gravitational radiation .3 4 " ’
from a 3D numerical relativity simulation, (b) to evolve 2
- . . o . 2 M 3M
this information to large radius yielding an approximate (1= — == |Wem =0,
asymptotic wave form, and (c) to provide outer boundary r r r
conditions for such a simulation. One of the major advan- (5)
tages of the perturbative method is that we have replacéd, ., , 2 _, Ll +1)  2M
the computationally expensive 3D evolution of the gravi 9 — N'9; — 7N o0 + N ) + 3
tational waves via the nonlinear Einstein equations with a >
. . . . ™ 2M ™
set of 1D linear equations we can integrate to high accu- — | Wew — —5 (3 — — )(@a+)em = 0.
r r r

racy and minimal computational costs.

We split the gravitational quantities of interest into (6)
background and perturbed parts: the three-meffjic=  (The usual Regge-Wheeler and Zerilli equations can be
gij + hij, the extrinsic curvatureX;; = K;; + «;;, the  obtained by a more complete analysis [15].)

lapse functionN = N + «, and the shift vectod’ = We now turn to implementation and tests of this tech-
B’ + vi, where the tilde denotes background quantitiesnique. Consider a numerical relativity simulation which
We assume a Schwarzschild background, evolves Einstein equations in either the standard 1

gijdx'dx) = N72dr? + r2(d6* + sirt 0d¢?), (1)  (ADM) or hyperbolic form on an interior 3D grid. (No
_ M\ /2 restrictions need be put on the choice of the 3D coordi-
N = <1 - —) . (2) nate system.) In the tests described here, we have used
5 T the ADM 3D interior code of the Alliance [16] to evolve
(It follows thatK;; = 0 = B'.) The perturbed parts have |inear, ¢ = 2,m = 0, Teukolsky waves [17]. The interior
arbitrary angular dependence. _ 3D grid uses (topologically) Cartesian coordinates and up
We use this approximation to linearize the hyperbolics (129)3 grid points. In the results shown, the initial data
equations and, in particular, we find that the wave equatiogonsist of a metric formed from the sum of the background
for K;; reduces to a linear wave equation fgf involving  cartesian metric and a Gaussian envelope of amplitude
also the backgrou_nd Iapse_ [15]. We sep_arat_e the angulay — 10, width » = 1, and of a vanishing extrinsic cur-
dependence in this equation by expandiag in terms  yatyre. Theabm evolution is undertaken on a cubical grid
of tensor spherical harmonio@);;,...,(f4)i. In the  of extent{x,y,z} = *4, with unit lapse and zero shift.

notation of [11], we have During each time step, the procedure for extracting ra-
kij = ax(t,r)(21)i; + rbx(t,r)(&2); diation and imposing outer boundary conditions proceeds
+ N 24, r)(f‘z)ij + by, r)(ﬂ)ij in three steps: (i)extraction of the independent ampli-

A ) tudes and their time derivatives on a 2-sphere of radius
+ rPei(t,r) (J)iy + rPde(t,r) (Fa)ij, (3)  rp inscribed in the grid, (ijevolutionof the radial wave
where ax, bx are the odd-parity multipoles, while,  Egs. (4)—(6) out to large radii using the extracted ampli-
by, c+, d+ are the even-parity ones. Note that we havetudes to construct inner boundary values on the “exterior”
suppressed the angular indidgsm) of (¢1),;,...,(fs);; 1D grid, and (iiijreconstructiorand ‘injectiori’ of K;; and
and ofax,...,d+ over which there is an implicit sum. d,K;; at specified grid points at or near the boundary of the
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interior grid. The last step uses the momentum constraintsyperbolic formulationp,K;; can also be provided at the

and the inverse of the transformation employed in step (i)boundary. The evolution equation of the three-metric can

In Fig. 1, we show the schematic location of the differ-be integrated using;; at the boundary so Dirichlet data

ent outer boundaries and of the extraction 2-sphere on twior g;; need not be provided there. The second method

successive spacelike time slices at 1y andt = 1,. relates, at the 3D outer boundary, the null derivatives of
The first step involves interpolatink;; andd,K;; onto  the extrinsic curvature obtained from the interior g, )

the 2-sphere and evaluating their projections onto the amnd from the perturbative modul&;(, since background

propriate conjugate tensor spherical harmonics to elimiextrinsic curvature is assumed to be zero):

nate the angular dependence and obtain the corresponding d 2

multipoles. The precise location of the 2-sphere withiny, (Kij = i) + J(Kif' — ki) + o (Kij = xij) = 0.

the interior 3D grid depends on the specific case under in- (7)

vestigation. In general, for the perturbative matching torhjs method resembles a Sommerfeld condition but is
be justified, we require that the extraction surface be 10p0re general since it can be used in regions where the
cated in a region where the gravitational field is clqse tQadiation is not dominated by the asymptotic outgoing
Schwarzschild. One must be careful that the numerical efenayior. Moreover it takes into account arbitrary angular
rors introduced by the interior evolution do not dominategependence, as well as the effects of a Schwarzschild black
the exterior solution (see [18] for details). hole background. Experimentation with the two methods
The second step entails evolving Egs. (4)=(6). In thg 55 shown that this “perturbative Sommerfeld” approach
test presented here, we consider a flat background witR yery accurate and generally more stable than the direct
M = 0. The initial data for the 1D exterior grid is set ipiaction of Dirichlet data. Figure 3 shows convergence
consistently with the interior 3D initial data. During each {4 serg of theL, norm of the difference between one
time integration of the 1D exterior grid, the extractedcomponent ofk;; (K..) and its analytic value, integrated
multipoles are used as inner boundary values and standagger the entire outer boundary of the interior 3D grid.
Sommerfeld outgoing wave conditions are imposed at ap important property ofany outer boundary imple-
the outer boundary (e.g., at=30). The top diagram mentation is that it should allow the outgoing radiation
of Fig. 2 shows the only reIe_vant mu_ltlpole for this testy, escape freely to infinity. In practice, however, a fi-
[19], extracted from the interior 3D grid at a 2-sphere ofjte giscretization always produces a certain amount of
radiusry = 1 [20]; the lower diagram shows its evolved (efiection at the outer boundary and this could drive in-
wave form at a radiug = 8. Different curves refer 0 gapilities which grow exponentially. We have compared
different resolutions of the interior 3D grid and show thetne |ong-term stability obtained with the perturbative outer

convergence to the analytic solution. , boundary module with that of the best “alternative” outer
The third and final step consists of computing outer

boundary values for the interior 3D grid, and this step can
proceed in one of two ways. In the first method, the values -1 0 1 2 3 4 5 6 7

of K;; reconstructed from the exterior 1D data are injected A I R IR RN RN RN RN
as Dirichlet data at all the boundary points of the interior i — analytic 1
3D grid. (No restrictions are put on the shape of the s5x10-5 |- 129% pts —
2-surface where the data are injected.) For a code using <, i 653 pts ]
S0 :
< oL . _
L 333 pts ]
. i 173 pts ]
RO T P T I P T I
5x10-5 | | | \ | | ARRRRAREN
Exterior t - r=8 .
1D Outer : o .
Boundary ! - B
0
/N —5%1075 |~
Interior ™. t S~ . i ]
%Eugg;? 0 ,u-"‘"Extraction L b b P b b by va bag g
Y R 2-sphere 4 -3 -2 -1 0 1 2 3 4

FIG. 1. Location of the different outer boundaries and of the t-r

extraction 2-sphere for two successive time slices. The darkIG. 2. Convergence to the analytic solution of the extracted
shaded region shows the spatial domain over which the 30r = 1) and evolvedr = 8) multipole (a+),. The amplitude
nonlinear equations are solved. is scaled by* to compensate for the radial falloff.
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2x1078 e tial error growth and allows for a much longer evolution
(see main figure). Increasing the interior resolution and
the number of(¢, m) modes used we can further prolong
the running time. Using49)? interior grid points, we are
able to evolve the code for more than 50 crossing times. In
strong contrast, when a standard Sommerfeld condition is
used, increased interior resolution results in a shorter run-
ning time [18].

This work was supported by the NSF Binary Black
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at Urbana-Champaign).

T T I T [ TTrr[rT

1293 pts |

65°% pts

338 pts

173 pts

10-8

I K, — (Kzz)ANALYT[C Il

N
NN e

L

;_ %

s b b b b b bens b I

0 1 2 3 4 5 6 7 8
t

FIG. 3. Convergence to zero of tHe norm of the error of
K., integrated over the 3D outer boundary surface.
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