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Gravitational Wave Extraction and Outer Boundary Conditions by Perturbative Matching
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We present a method for extracting gravitational radiation from a three-dimensional numerical
relativity simulation and, using the extracted data, to provide outer boundary conditions. The method
treats dynamical gravitational variables as nonspherical perturbations of Schwarzschild geometry. We
discuss a code which implements this method and present results of tests which have been performed
with a three-dimensional numerical relativity code. [S0031-9007(98)05380-0]
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Numerical relativity represents the only currently viabl
method for obtaining solutions to Einstein equations fo
highly dynamical and strong field sources of gravitationa
radiation. Using these techniques to study coalesci
black hole binaries is the purpose of the multi-institutiona
Binary Black Hole “Grand Challenge” Alliance effort [1]
which is presently underway in the United States. Th
effort is also motivated by the prospect of observation
with the next generation of gravitational wave detectors.

In addition to tremendous demands on computation
resources, implementing the standard3 1 1 [2,3] for-
mulation of Einstein theory as a Cauchy problem [4] i
complicated considerably by the necessity of imposin
boundary conditions which maintain numerical accurac
and the physical correctness of the solution. Both inn
and outer boundary conditions have received considera
attention. Recent efforts on interior boundaries have f
cused on the excision of the interior of the black hole from
the computational domain (see, for example, [5]). Th
paper will concentrate on the problem of outer bounda
conditions applied at a finite radius around a source
gravitational waves.

Proper boundary conditions on spacelike slices
asymptotically flat spacetimes areessentialfor the accu-
rate computation of the gravitational wave forms produce
in the strong field region that represent the observationa
relevant aspect of the computation. Since it is not feasib
to simulate on spacelike slices out to arbitrarily larg
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distances from the source, it is necessary to extract gra
tational waves comparatively near the strong field regio
and to have boundary conditions that allow radiation t
pass cleanly off the mesh. If poor outgoing boundar
conditions are imposed, spurious radiation is produce
which can contaminate the computed gravitational wav
form. Additionally, the outer boundary is usually close
enough to the isolated source that backscatter of radiat
from curvature is significant. This source of incoming
radiation needs to be built into the outer boundary cond
tions. An approach to the extraction of gravitational wav
information and the computation of outer boundary con
ditions that exploits the matching of the interior numerica
solution with an exterior perturbative solution on spacelik
slices has been developed during the past decade
applied to a number of different physical scenarios [6–8
Extension of these techniques to three-dimensional (3
simulations has been one of the efforts of the Alliance.
parallel development is also underway in the Alliance th
matches interior Cauchy solutions to exterior solutions o
characteristic hypersurfaces [9].

In this Letter we report the first successful applicatio
of the perturbative matching approach to provide out
boundary conditions for a 3D numerical relativity code
In this context, the perturbative matching method shou
be viewed as a general “module” that can be coupled
any nonlinear “interior” 3D code. While the latter solves
the Einstein equations in the highly dynamical strong fie
© 1998 The American Physical Society



VOLUME 80, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 2 MARCH 1998

e

e

-

i-
ed

p

d
e

-
s

s

i-
r”

e

region, the former extracts gravitational wave data an
imposes outer boundary conditions. In the following w
give an overview of the method and present test resu
obtained from the evolution of linear waves.

Nonspherical perturbations of Schwarzschild geomet
have been studied for many years in the context of bla
hole perturbations [10,11] and as a way to extract gaug
invariant information about gravitational radiation [6].
More recently Schwarzschild perturbation theory has be
found to be useful in studying the late-time behavior of th
coalescence of compact binaries in a numerical simulati
after the horizon has formed [8,12,13].

We base our treatment of Schwarzschild perturbatio
theory on a recent hyperbolic formulation of Einstein fiel
equations [14]. A principal advantage of this approach
that we can easily derive perturbative wave equations
terms of the standard3 1 1 variables, making it straight-
forward to match exterior perturbative solutions to interio
numerical ones. This method leads to spatially gaug
invariant radial wave equations for each angular mode [1
which we have used (a) to extract gravitational radiatio
from a 3D numerical relativity simulation, (b) to evolve
this information to large radius yielding an approximat
asymptotic wave form, and (c) to provide outer boundar
conditions for such a simulation. One of the major advan
tages of the perturbative method is that we have replac
the computationally expensive 3D evolution of the grav
tational waves via the nonlinear Einstein equations with
set of 1D linear equations we can integrate to high acc
racy and minimal computational costs.

We split the gravitational quantities of interest into
background and perturbed parts: the three-metricgij ­
g̃ij 1 hij, the extrinsic curvatureKij ­ K̃ij 1 kij, the
lapse functionN ­ Ñ 1 a, and the shift vectorbi ­
b̃i 1 yi , where the tilde denotes background quantitie
We assume a Schwarzschild background,

g̃ijdxidxj ­ Ñ22dr2 1 r2sdu2 1 sin2 udf2d , (1)

Ñ ­

µ
1 2

2M
r

∂1y2

. (2)

(It follows thatK̃ij ­ 0 ­ b̃i .) The perturbed parts have
arbitrary angular dependence.

We use this approximation to linearize the hyperboli
equations and, in particular, we find that the wave equati
for Kij reduces to a linear wave equation forkij involving
also the background lapse [15]. We separate the angu
dependence in this equation by expandingkij in terms
of tensor spherical harmonicssê1dij , . . . , s f̂4dij . In the
notation of [11], we have

kij ­ a3st, rd sê1dij 1 rb3st, rd sê2dij

1 Ñ22a1st, rd s f̂2dij 1 rb1st, rd s f̂1dij

1 r2c1st, rd s f̂3dij 1 r2d1st, rd s f̂4dij , (3)
where a3, b3 are the odd-parity multipoles, whilea1,
b1, c1, d1 are the even-parity ones. Note that we hav
suppressed the angular indicess,, md of sê1dij , . . . , s f̂4dij

and ofa3, . . . , d1 over which there is an implicit sum.
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In odd parity, we take the wave equation forkru and use
the linearized momentum constraints,=̃kskk

i 2 d
k
i k

j
j d ­

0, to eliminate the odd-parity amplitudesb3d. In even
parity, we use the wave equation forkrr together with the
wave equation obtained for the tracek ­ k

j
j ­ hst, rdY,m

and the linearized momentum constraints. In this way w
eliminateb1 andc1 and obtain two coupled equations for
a1 andh. For eachs,, md mode, we therefore have one
odd-parity equationΩ

≠2
t 2 Ñ4≠2

r 2
2
r

Ñ2≠r 2
2M
r3

µ
1 2

3M
2r

∂
1

Ñ2

∑
,s, 1 1d

r2
2

6M
r3

∏ æ
sa3d,m ­ 0 ,

(4)
and two coupled even-parity equations,∑
≠2

t 2 Ñ4≠2
r 2

6
r

Ñ4≠r 1 Ñ2 ,s, 1 1d
r2

2
6
r2

1

14M
r3

2
3M2

r4

∏
sa1d,m 1

∑
4
r

Ñ2

µ
1 2

3M
r

∂
≠r 1

2
r2

µ
1 2

M
r

2
3M2

r2

∂∏
shd,m ­ 0 ,

(5)∑
≠2

t 2 Ñ4≠2
r 2

2
r

Ñ2≠r 1 Ñ2 ,s, 1 1d
r2

1
2M
r3

2

7M2

r4

∏
shd,m 2

2M
r3

µ
3 2

7M
r

∂
sa1d,m ­ 0 .

(6)
(The usual Regge-Wheeler and Zerilli equations can b
obtained by a more complete analysis [15].)

We now turn to implementation and tests of this tech
nique. Consider a numerical relativity simulation which
evolves Einstein equations in either the standard3 1 1
(ADM) or hyperbolic form on an interior 3D grid. (No
restrictions need be put on the choice of the 3D coord
nate system.) In the tests described here, we have us
the ADM 3D interior code of the Alliance [16] to evolve
linear,, ­ 2, m ­ 0, Teukolsky waves [17]. The interior
3D grid uses (topologically) Cartesian coordinates and u
to s129d3 grid points. In the results shown, the initial data
consist of a metric formed from the sum of the backgroun
Cartesian metric and a Gaussian envelope of amplitud
A ­ 1026, width b ­ 1, and of a vanishing extrinsic cur-
vature. TheADM evolution is undertaken on a cubical grid
of extenthx, y, zj ­ 64, with unit lapse and zero shift.

During each time step, the procedure for extracting ra
diation and imposing outer boundary conditions proceed
in three steps: (i)extraction of the independent ampli-
tudes and their time derivatives on a 2-sphere of radiu
rE inscribed in the grid, (ii)evolutionof the radial wave
Eqs. (4)–(6) out to large radii using the extracted ampl
tudes to construct inner boundary values on the “exterio
1D grid, and (iii)reconstructionand “injection” of Kij and
≠tKij at specified grid points at or near the boundary of th
1813
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interior grid. The last step uses the momentum constrai
and the inverse of the transformation employed in step
In Fig. 1, we show the schematic location of the diffe
ent outer boundaries and of the extraction 2-sphere on t
successive spacelike time slices att ­ t0 andt ­ t1.

The first step involves interpolatingKij and≠tKij onto
the 2-sphere and evaluating their projections onto the a
propriate conjugate tensor spherical harmonics to elim
nate the angular dependence and obtain the correspon
multipoles. The precise location of the 2-sphere with
the interior 3D grid depends on the specific case under
vestigation. In general, for the perturbative matching
be justified, we require that the extraction surface be
cated in a region where the gravitational field is close
Schwarzschild. One must be careful that the numerical
rors introduced by the interior evolution do not domina
the exterior solution (see [18] for details).

The second step entails evolving Eqs. (4)–(6). In th
test presented here, we consider a flat background w
M ­ 0. The initial data for the 1D exterior grid is se
consistently with the interior 3D initial data. During eac
time integration of the 1D exterior grid, the extracte
multipoles are used as inner boundary values and stand
Sommerfeld outgoing wave conditions are imposed
the outer boundary (e.g., atr ­ 30). The top diagram
of Fig. 2 shows the only relevant multipole for this tes
[19], extracted from the interior 3D grid at a 2-sphere o
radiusrE ­ 1 [20]; the lower diagram shows its evolved
wave form at a radiusr ­ 8. Different curves refer to
different resolutions of the interior 3D grid and show th
convergence to the analytic solution.

The third and final step consists of computing out
boundary values for the interior 3D grid, and this step c
proceed in one of two ways. In the first method, the valu
of Kij reconstructed from the exterior 1D data are injecte
as Dirichlet data at all the boundary points of the interio
3D grid. (No restrictions are put on the shape of th
2-surface where the data are injected.) For a code usin

FIG. 1. Location of the different outer boundaries and of th
extraction 2-sphere for two successive time slices. The da
shaded region shows the spatial domain over which the
nonlinear equations are solved.
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hyperbolic formulation,≠tKij can also be provided at the
boundary. The evolution equation of the three-metric ca
be integrated usingKij at the boundary so Dirichlet data
for gij need not be provided there. The second metho
relates, at the 3D outer boundary, the null derivatives o
the extrinsic curvature obtained from the interior gridsKijd
and from the perturbative module (kij, since background
extrinsic curvature is assumed to be zero):
≠

≠t
sKij 2 kijd 1

≠

≠r
sKij 2 kijd 1

2
r

sKij 2 kijd ­ 0 .

(7)
This method resembles a Sommerfeld condition but
more general since it can be used in regions where th
radiation is not dominated by the asymptotic outgoing
behavior. Moreover it takes into account arbitrary angula
dependence, as well as the effects of a Schwarzschild bla
hole background. Experimentation with the two method
has shown that this “perturbative Sommerfeld” approac
is very accurate and generally more stable than the dire
injection of Dirichlet data. Figure 3 shows convergenc
to zero of theL2 norm of the difference between one
component ofKij (Kzz) and its analytic value, integrated
over the entire outer boundary of the interior 3D grid.

An important property ofany outer boundary imple-
mentation is that it should allow the outgoing radiation
to escape freely to infinity. In practice, however, a fi-
nite discretization always produces a certain amount o
reflection at the outer boundary and this could drive in
stabilities which grow exponentially. We have compare
the long-term stability obtained with the perturbative oute
boundary module with that of the best “alternative” oute

FIG. 2. Convergence to the analytic solution of the extracte
sr ­ 1d and evolvedsr ­ 8d multipole sa1d20. The amplitude
is scaled byr3 to compensate for the radial falloff.
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FIG. 3. Convergence to zero of theL2 norm of the error of
Kzz integrated over the 3D outer boundary surface.

boundary conditions we have tried: namely, a standard o
going Sommerfeld condition. Figure 4 shows the resul
of this comparison both on a long time scale and on
shorter time scale. (The calculations were performed u
ing a very coarse resolution.) As shown in the inset (fir
echoes att , 7), the amount of reflection produced with
the perturbative method is smaller than that produced
the Sommerfeld condition. Moreover, the use of pertu
bative boundary conditions delays the onset of expone

FIG. 4. Long-term evolution of theL2 norm of the error in
Kzz at the 3D outer boundary surface. The inset showsKzz
at the outer boundary along thex axis and the appearance
of the spurious reflections aftert , 7, which should be
analytically zero. These are partially suppressed with the u
of perturbative Sommerfeld outer boundary conditions. Th
interior grid hass33d3 grid points and the code is stopped when
the norm is unity.
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tial error growth and allows for a much longer evolution
(see main figure). Increasing the interior resolution an
the number ofs,, md modes used we can further prolong
the running time. Usings49d3 interior grid points, we are
able to evolve the code for more than 50 crossing times.
strong contrast, when a standard Sommerfeld condition
used, increased interior resolution results in a shorter ru
ning time [18].
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