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We present results from numerical solution of the Einstein field equations describing the head-on

collision of two solitons boosted to ultrarelativistic energies. We show, for the first time, that at sufficiently

high energies the collision leads to black hole formation, consistent with hoop-conjecture arguments. This

implies that the nonlinear gravitational interaction between the kinetic energy of the solitons causes

gravitational collapse, and that arguments for black hole formation in super-Planck scale particle

collisions are robust.
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I. Introduction.—Using ultrarelativistic scattering of
particles to probe the nature of the fundamental forces
has a long tradition in modern physics. One reason why
is the de Broglie relation, stating that the characteristic
wavelength of a particle is inversely related to its momen-
tum, and consequently probing short-range interactions
between particles requires large momenta. In any conven-
tional setting gravity is an irrelevant force in such inter-
actions. However, in general relativity all forms of energy,
including momentum, gravitate, and thus at sufficiently
high energies one would expect gravity to become impor-
tant. The current paradigm suggests that this will happen
when center of mass energies approach the Planck scale,
and for collisions with energies sufficiently above this, that
black holes will be formed [1].

The four dimensional Planck energy Ep is �1019 GeV,

wholly out of reach of terrestrial experiments, and as far as
known is not reached by any astrophysical process, barring
the big bang or the unobservable regions inside black
holes. However, if there are more than four dimensions,
intriguing scenarios have been suggested where the true
Plank scale is very different from what is then just an
effective four-dimensional Planck scale [2]. A ‘‘natural’’
choice for the true Planck energy is the electroweak scale
of�TeV, as this would solve the hierarchy problem. If this
were the case, and the paradigm of black hole formation is
correct, this would imply that the Large Hadron Collider
(LHC) will produce black holes, and that black holes are
formed in Earth’s atmosphere by cosmic rays [3]. Existing
experimental bounds on the Planck energy in this context
are at around 1 TeV [4].

However, one potential problem with the above sce-
nario, even before one considers issues regarding the ex-
istence of extra dimensions, physics near the Planck
regime, etc., is whether in classical general relativity the
generic outcome of ultrarelativistic two ‘‘particle’’ scatter-
ing is a black hole for small impact parameters. There have
so far been no solutions to the field equations demonstrat-

ing this, and as we will outline next, the evidence usually
presented for the case of black hole formation is based on a
set of conjectures and the use of limiting-case solutions of
dubious applicability.
The main argument for black hole formation is a variant

of Thorne’s hoop conjecture [5]: if a total amount of matter
and energy E is compressed into a spherical region such
that a hoop of proper circumference 2�R completely en-
closes the matter in all directions, a black hole will form if
the corresponding Schwarzschild radius Rs ¼ 2GE=c4 is
greater than R, where G is Newton’s constant and c the
speed of light. To apply this to the collision of two classical
spherical solitons, each with rest mass m0 and traveling
toward each other with speed v in the center of mass frame,

let E ¼ 2�m0c
2, the total energy of the system, where � ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

. The largest radius R to be enclosed by the
hoop is the rest-frame radius R0, as the Lorentz contraction
only flattens the particles in the direction of propagation.
The hoop conjecture then says black holes will form if � *
c4R0=4Gm0.
The above argument is purely classical. Quantum me-

chanics enters with the assumption that the argument still
holds for the collision of fundamental particles, now taking
R0 to be the de Broglie wavelength hc=E of the particle,
where h is Planck’s constant. Dropping constants of Oð1Þ,
the criteria for black hole formation is then E *

ðhc5=GÞ1=2, the Planck energy. However, our goal in this
Letter is only to address the soundness of the classical
hoop-conjecture argument; if it fails, there is no reason to
expect a full quantum version to hold.
It is not obvious that the hoop conjecture is applicable in

all situations. Consider a single particle boosted beyond the
Planck energy. Since the boosted particle’s spacetime is a
coordinate transformation of its rest-frame geometry, there
is clearly no black hole formation. As trivial as this ex-
ample may seem, it is still insightful, as it illustrates that
not all forms of energy gravitate in the same way. Here,
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kinetic energy, unlike rest mass energy, does not produce
spacetime curvature, yet both forms of energy contribute to
the mass of the spacetime, as measured for instance by the
ADMmass [6]. The kinetic energy dominates the rest mass
energy by orders of magnitude, and for black hole forma-
tion to be a generic outcome the particular nature of the
particles and nongravitational interactions between them
cannot play a role. Therefore, it must be the nonlinear
interaction between opposing streams of gravitational ki-
netic energy that causes a black hole to form, in the process
converting kinetic energy to rest mass and gravitational
wave energy.

What is often quoted as evidence for black hole forma-
tion comes from the study of the collision of two infinitely
boosted ‘‘particles,’’ described by the Aichelburg-Sexl
(AS) metric [7]. The AS solution is obtained by taking a
Schwarzschild black hole of mass m, applying a Lorentz
boost �, and then taking the limits � ! 1 and m ! 0, so
that the product E ¼ �m remains finite. The result is a
gravitational ‘‘shock wave,’’ where the nontrivial geometry
is confined to a two-dimensional plane traveling at the
speed of light, with Minkowski spacetime on either side.
Two such solutions, moving in opposite directions, can be
superimposed to give the precollision geometry of the
spacetime (see [8] for an insightful description). Though
the geometry is not known to the future of the collision, at
the moment of collision a trapped surface can be found [9].
Assuming cosmic censorship, this would be an example of
black hole formation in an ultrarelativistic collision.

There are several aspects of the infinite boost construc-
tion that should give one pause as to its applicability to a
large-yet-finite � collision of massive particles. The AS
limit is not asymptotically flat, and the algebraic type of the
metric has changed from Petrov type D (two distinct null
eigenvectors of the Weyl tensor) to Petrov type N (one null
eigenvector). This latter point can be thought of as the
gravitational field changing from a Coulomb-like to a
pure gravitational wave field. The AS metric is also not a
good description to the geometry of a finite boosted par-
ticle on the shock surface; one is then left with the unin-
sightful conclusion that the description is good sufficiently
far from the particle that its metric is Minkowski. It has
also been argued that black hole formation is due to the
strong focusing of geodesics off the AS shock wave [10].
However, there is no dynamics in this description (neither
in the superposed AS metrics for that matter), and it is
difficult to imagine how the geodesic structure can capture
what is a highly nonlinear and dynamical interaction be-
tween gravitational energy.

To test the hypothesis that black holes form in high
energy collisions of particles, we numerically solve the
Einstein field equations coupled to matter that permits
stable, self-gravitating soliton solutions—these are our
model particles. The particular soliton we use is a boson
star [11]. One motivation for choosing this model was from
earlier studies of low velocity, head-on collisions of boson
stars, which suggested that as the velocity increases, grav-

ity appears to ‘‘weaken,’’ and the boson stars pass through
each other exhibiting a nonrelativistic solitonic interfer-
ence pattern [12]. In particular, the magnitude of the bo-
sonic matter field developed interference fringes of
wavelength � / 1=P, with P the momentum of each boson
star, which is exactly the relationship observed during the
collision of Bose-Einstein condensates bound via
Newtonian gravity. This model therefore seems perfect to
address the genericity requirement for black hole forma-
tion at super-Planck scale collisions, in that the self-
interaction of the matter will not bias the outcome toward
black hole formation (as, for example, using black holes as
model particles would).
II. Methodology.—We solve the Einstein equations,

Rab � gab=2R ¼ 8�Tab, using a variant of the generalized
harmonic formalism [13] with constraint damping [14] as
described in [15]. In this formalism, the spacetime coor-
dinates satisfy a wave (harmonic) condition hxa ¼ Ha,
with the Ha encoding the coordinate (gauge) degrees of
freedom. Experimentation with coordinate choices led us
to develop what we term a damped harmonic condition,
which can be written Ha ¼ �½na � �na�, where � is a
constant, na is the timelike unit normal to the t ¼ const
slices, and �na is another timelike unit normal field which is
to be chosen so that the resulting coordinate system is
nonsingular. Such an approach was independently intro-

duced in [16], where the choice �na ¼ ð@=@tÞa=�þ
logð�= ffiffiffi

h
p Þna, with � the lapse function and h the deter-

minant of the spatial metric, was proposed. We use a
variant of this condition that transitions to Ha ¼ 0 shortly
after the collision.
The matter is a minimally coupled complex scalar field

� with mass parameter m, equation of motion h� ¼
m2�, and stress tensor Tab ¼ 2r½a�rb� ���
gabðrc�rc ��þm2� ��Þ, where �� is the complex conju-
gate of �. For initial data we superimpose two boosted
boson stars following a procedure analogous to that for
binary black holes presented in [17]. This construction by
itself does not fully satisfy the constraint equations.
However, the further apart the boson stars are at t ¼ 0,
the smaller the error is, and we have performed tests that
indicate for the initial separations here the error is suffi-
ciently small to not qualitatively affect the conclusions.
Each boson star is identical with a central scalar field

amplitude �0 chosen so that the maximum compactness
2MðrÞ=r of each star is � 1=20, where the mass aspect
MðrÞ approaches the ADM mass MADM as r ! 1. We
subsequently scale all units to M0 � 2MADM. We choose
an initial coordinate separation between the boson stars in
the center of mass (simulation) frame of d0 ¼ 250M0, and
give each boson star a boost of �. Thus, with this compact-
ness, the hoop-conjecture estimate of the black hole for-
mation threshold is �h � 10.
III. Results.—Our key result is the simple answer ‘‘yes’’

to the question of do ultrarelativistic boson star collisions
lead to black hole formation in classical general relativity?
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Despite the objections we noted to the use of the hoop
conjecture in this scenario, it therefore does appear that the
argument captures the essential physics of high speed
soliton collisions. We find black hole formation at �c ¼
2:9� 10%, less than a third that predicted by the hoop
conjecture. Of course, the latter is an order of magnitude
estimate, and the numerical value of the threshold may
depend on the particular soliton model. Note that the
maximum compactness of single, stable boson stars is
�0:25 (see, e.g., [18]), though it is not immediately appar-
ent whether this is of relevance here.

Figure 1 shows snapshots of the scalar field for several
boost parameters at key times. For the collision beginning
at rest (� ¼ 1), a single perturbed boson star forms, under-
going large oscillations that slowly damp via the emission
of scalar radiation. For larger boosts, the initial boson star
interaction exhibits the usual nongravitational interference
pattern, but shortly afterward there is some compression of
the stars due to gravity. For the modest boost of � ¼ 1:15,
though the stars are perturbed by the compression, they
pass through each other. Approaching the threshold with
� ¼ 2:75, the compression is much greater, and though the
boson stars pass through each other the perturbation is
strong enough to cause them to ‘‘explode.’’ I.e., though
the bulk of the momentum in the scalar field is concen-
trated in two fronts propagating outward along the axis, a
non-negligible component appears to move outward in
spherical shells emanating from two focal points, corre-

sponding to the locations of maximum compression seen in
subpanel 3.
For the � ¼ 4 case the interaction is similar to � ¼ 2:75

until apparent horizon formation; this is consistent with the
intuition that in this regime the ‘‘matter does not matter’’—
it is the gravitational energy determining the dynamics, and
here the scalar field is merely a tracer of the underlying
geometry. After black hole formation, the resultant evolu-
tion is strikingly different. Most of the scalar field falls into
the black hole, though a small fraction escapes. Similar to
the � ¼ 2:75 case, at late times (subpanel 4) the matter that
escapes can be traced back to appear to have originated as
two pulses on the axis at the locations of maximum com-
pression (subpanel 3). However, now a piece of each out-
ward moving wave front gets trapped in the black hole. The
wave front remains connected, and with time this causes
the concentric outward propagating arc patterns seen in
subpanel 4.
Figure 2 depicts the gravitational wave emission, as

measured by the Newman-Penrose scalar �4, for the two
higher � cases of Fig. 1. Note, however, that the damped
harmonic coordinates cause a strong ‘‘distortion’’ of the
metric near the solitons, which eventually propagates out-
ward with the gravitational wave. This prevents a clean
interpretation of�4, defined here with a tetrad aligned with
the coordinate basis vectors, as representing the gravita-
tional wave signal. With this caveat in mind, there is an
interesting feature suggested by Fig. 2. The wavelength in

FIG. 1 (color online). Magnitude j�j of the scalar field from 4 different simulations, in 4 panels (left to right). The 4 subpanels within
each panel depict j�j at different times as follows (top to bottom): (1) t=M0 ¼ 0, (2) a time at which the boson stars first completely
overlap, (3) a short time later when j�j reaches a first local maximum due to gravitational focusing, (4) a late time after the collision.
The axis of symmetry is coincident with the top edge of each subpanel. The insets, where present, are zoom-ins of the central
interaction regions. For the � ¼ 4 case, a black hole forms near the time of subpanel 3—the black line in the corresponding inset shows
the shape of the apparent horizon then, and the black semicircle in subpanel 4 is the excised region inside the black hole.
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the black hole formation case is consistent with the wave
being associated with the dominant quasinormal ringdown
mode of the black hole. However, in the subthreshold case
the characteristic wavelength is quite a bit shorter, and
there seems to be a trend of smaller length-scale features
developing the closer to threshold we tune, which will
continue if the threshold exhibits type II critical behavior
[19]. As it relates to particle collisions, this suggests black
hole formation may not be the ‘‘end of short-distance
physics,’’ but that the low energy relationship equating
small distances to large momenta ceases to be valid, and
probing physics at smaller distances requires fine-tuning
the interaction energy.

IV. Conclusions.— We presented numerical results from
a first study of the ultrarelativistic collision of solitons
within general relativity. The goal was to test if at suffi-
ciently high energy gravity dominates the interaction, lead-
ing to black hole formation. We found that, for this class of
soliton, the conjecture is true, and the threshold of black
hole formation occurs at a boost �c approximately 1=3 that
predicted by Thorne’s hoop conjecture. Interestingly, a
factor of �1=3 also arises in calculations of trapped-
surface formation in the collision of null sources following
an S-matrix approach to the scattering problem [20]. With
�c ¼ 2:9� 10% the ratio of kinetic to rest mass energy is
� 2:1; we believe this is sufficiently large to make a
compelling case that black hole formation is generic in
ultrarelativistic particle collisions, regardless of the inter-
nal structure of the particles. Thus the arguments that
super-Planck scale particle collisions lead to black hole
formation are robust, and furthermore using black holes as
the model particle to study the gravitational aspects of the
interaction at these energies [8,9,21] is valid. Our results
also suggest that when gravity becomes a strong player in
the interaction at scales slightly below the Planck scale, the
de Broglie relationship equating smaller distances to larger
energies may cease to hold. Of course, here the nature of
quantum gravity will be crucial, and may provide its own
cutoff to short-distance physics, though gravity will not
play the role of the censor.
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FIG. 2 (color online). �4 at t ¼ 540M0 on the plane passing
through the collision point and orthogonal to the axis.
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